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Abstract

This paper presents a new deconvolution-based energy

formulation for segmenting the image of stripe-based pat-

terns projected by structured light systems. Our framework

features an explicit modeling of the blurring introduced by

the lens of a structured light system. This allows a signif-

icant improvement when working out of focus, a situation

which occurs when performing depth measurement. The

proposed iterative algorithm includes two steps: a deconvo-

lution and a segmentation. For both steps, a geometrically

plausible regularization term is used. It considers the pro-

jected displacement induced by the camera, projector and

scene configuration. We validate our method using real im-

agery acquired using off-the-shelf equipment.

1 Introduction

In the last decades, projector-camera systems have been

used in many applications ranging from 3D reconstruc-

tion to multi-projector visualization. For many applica-

tions, the main task is to establish the correspondence be-

tween the pixels of a projector and those of a camera (see

Fig 1). This is accomplished by projecting known light

patterns on an unknown scene viewed by a camera. The

projector “applies” textures to the scene and the patterns

are designed (or structured) such that it is possible to iden-

tify which projector pixel illuminates the part of the scene

viewed by a camera pixel. Different patterns can be used:

a survey by Salvi et al. classified them in 3 categories,

namely, direct codification, neighborhood codification and

time-multiplexing. The Gray code is probably the best

known time-multiplexing code[11]. It uses a succession of

patterns composed of white and black stripes. For this rea-

son, it is also known as a stripe-based code. The width of

the stripes vary with the patterns. Whilst the examples in

this paper use Gray code patterns, our approach is appli-

d c a m e r a p r o j e c t o r
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Figure 1. Representation of the structured light system.

The distance along the optical axis between the camera and

the scene (which is a plane) is d. The angle between the

camera’s image plane and scene plane is β, and α is the

angle between the projector’s optical axes and the camera’s

image plane. The center of projection of the projector is

(cx, cz). The camera pixels q and q
′ correspond to projec-

tor pixel T pc(q) and T pc(q′) respectively.

cable to other stripe-based codes. We propose an energy

framework for segmenting the Gray code patterns designed

to work in harsh acquisition conditions. When working with

off-the-shelf equipment, many sources of error affect the

segmentation. We classify them as originating from projec-

tion, imaging or from the overall system:

• Projection Depth of field and aberration affect the de-

tectability of spatial transitions. Calibration parame-

ters vary due to thermal instability. Error is introduced

by dithering and signal synchronization.

• Imaging Depth of field, aberration, anti-aliasing fil-

ter and small fill factor limit the detectability of the

pattern. Also, when using color cameras, artifacts are

introduced by Bayer color processing and the Bayer

matrix itself.

• Overall system Surface properties and ambient light

impact the Signal-to-Noise Ratio (SNR). It is also re-

duced by high frame rates, or non-uniform sensitivity

of projection and camera.



Our framework explicitly models the blurring induced

by the limited depth of field (camera and projector) and re-

duces the impact of the other error sources by using regu-

larization. Blurring was described as a significant limitation

of digital projector profilometry[1] and our framework al-

lows a significant improvement when working out of focus,

a situation which occurs when performing depth measure-

ment. Our algorithm iteratively performs a deconvolution

and a segmentation of the patterns. Moreover, it takes into

consideration the projected displacement which is induced

by the camera, the projector and the scene configuration.

This allows the use of regularization terms which are ge-

ometrically plausible. Our algorithm is targeted at scenes

composed of many quasi-planar surfaces. This type of sit-

uation may be encountered in industrial inspection and in

planar calibration applications. The remainder of this paper

is divided as follows: in Section 2, previous work is pre-

sented; Section 3 presents our formulation; the geometry

plausible regularization is described in Section 4; the point

spread function is discussed in Section 5; implementation

details are presented in Section 6; experimental results are

discussed in Section 7.

2 Previous work

A recent paper by Salvi et al. [23] contains an exten-

sive survey of structured light (SL) techniques. Few meth-

ods use energy minimization frameworks for the decoding

of patterns[5, 29, 13, 26, 14]. Some use it to remove am-

biguity in their code [5, 29, 13], whilst others use it to re-

duce sensitivity to noise [26, 14]. In [17], the best focus

distance is used as a constraint in the self-calibration of a

SL system. To the best of our knowledge, our algorithm

for decoding SL patterns is the only one to explicitly model

blurring. There is a large body of literature on the problem

of thresholding, segmentation and deconvolution [25, 19].

Some methods simultaneously segment and deconvolve the

images [21, 2]. Their goal is to deconvolve images, while

ours is to segment the patterns of a SL 3D scanner. The clos-

est work to ours is [21] where a segmentation-based regular-

ization term for image deconvolution is proposed. As will

be shown, there are significant differences in how we incor-

porate the segmentation information into the deconvolution

and in how we regularize the segmentation. Also, blind de-

convolution and segmentation have been used for bar code

thresholding [6]. This application is 1D, whilst the underly-

ing structure of ours is 3D.

3 Our formulation

Our algorithm takes as input two images G and R of

size m × n. The first one, G, is an image of a static scene

acquired while one of the Gray code patterns is projected.

The image R is simply G with white and black stripes re-

versed and R(q) is the intensity of image R at pixel q. Us-

ing G and R allows an increase in robustness and we define

I = G − R. When neglecting the noise, the image forma-

tion for I is described as I(q) = H(q)∗∗X(q) where X is

the non-degraded image of G−R and H is the Point Spread

Function (PSF) of the system which depends on the projec-

tor, the camera and the scene configuration. Note that this

is different from conventional deconvolution where blurring

is introduced only by the camera lens. The system PSF will

be further described in Section 5 and for now it will be as-

sumed that it is spatially invariant. With H and I known,

the non-degraded image is the one minimizing

||Hx − i||2 (1)

where H is a mn by mn block Toeplitz matrix with Toeplitz

blocks representing the convolution with the PSF H [9].

The vector x and i are stacks of the columns of the images

X and I respectively and are of length mn. Since this de-

convolution is ill-conditioned we propose to simultaneously

segment and deconvolve the image I using the result of the

segmentation to regularize the deconvolution. We add a reg-

ularization term based on the heuristic that two neighboring

pixels should have the same intensity if they belong to the

same class (they are either white or black). This allows to

reduce the impact of noise. The matrix S contains, for each

two-pixel neighborhood interaction, a row with two non-

zero entries corresponding to the neighbors. Those entries

are 1 and −1 respectively. Explicitly, each line of Sx rep-

resents an equation of the form X(q) − X(q′) = 0 where

q and q′ are neighbor pixels. The neighborhood structure is

presented in Section 4. The regularization term is

λ2||MdSx||2 (2)

where λ is a user-defined parameter and Md is a diagonal

matrix where each diagonal entry is the probability that all

the pixels involved in the interaction of the corresponding

row of S belong to the same class. While the previous reg-

ularization term improves the conditioning, the deconvolu-

tion is still ill-posed. In order to fix the scaling and anchor

the solution, we add the regularization term

γ2
(

||Mb(x − ub)||2 + ||Mw(x − uw)||2
)

(3)

where γ is a user-defined parameter and Mb and Mw are a

diagonal matrix for the black and white class respectively.

The vector ub and uw are the expected intensity for the

black and white class respectively. They are not necessar-

ily spatially constant. Those vectors can be estimated by

projecting white and a black images, or approximated us-

ing the image I directly or iteratively estimated as in [21].

Diagonal entries of Mb and Mw are the probabilities that

the corresponding pixel of X belong to the black and white



class respectively. In [21], the segmentation of the image is

used as part of the regularization term, while we use proba-

bility densities. When Mb, Mw, Md, ub and uw are fixed,

the terms of Eq. 1, 2 and 3 form a Tikhonov regularization

which may be solved iteratively [9]. The matrix Mb, Mw

and Md depend on the segmentation which is described in

the next section.
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Figure 2. Projected displacement as a function of angle

α and β for a projector and camera having a focal length of

5 and a sensor element size of 0.1. The distance along the

optical axis between the camera and the plane is 200, The

projector is located at (20,0) and the camera is located at the

origin.

3.1 Segmentation

The set P contains the pixels of image X and the set

L = {w, b} contains the label for white and black pixels.

A L-configuration C : P 7→ L associates a label to every

pixel of P . The probability of a configuration C given X is

p(C|X) =
1

Z

∏

q∈P

p(q|C(q))
∏

(q,q′)∈N

p(C(q), C(q′))

(4)

where Z is the normalization factor of the Bayes formula

and N is the set of pair of neighbor pixels. The probabil-

ity p(X(q)|C(q)) is a Gaussian distribution having mean

identical to those of ub and uw. In our implementation,

the variance is assumed to be equal for both classes. We

have observed that those hypotheses are acceptable. Also,

p(C(q), C(q′)) is the probability of having a class transi-

tion between the pixel q and q′ which is related to the pro-

jected displacement presented in the next section. For each

pixel q, we need in order to deconvolve X the probabili-

ties p(C|X,C(q) = b) and p(C|X,C(q) = w), that is,

the probabilities of the most likely segmentation of image

X with the pixel q having the label black and white respec-

tively. These probabilities can be approximated using loopy

Belief Propagation which must compute these in order to

find an approximate solution to the maximization in C of

c a m e r aqq 'q ' '2 3 4 5 61 2 3 4 5 6p r o j e c t o r c a m e r as c e n e p r o j e c t o r
Figure 3. Left) Rectified projector-camera system with a

fronto-parallel scene. Right) Mapping camera pixel to pro-

jector column for the configuration shown on the left side.

Eq. 4 [28]. Note that in our segmentation, the regulariza-

tion is based on a geometric model and does not attempt to

reduce the noise which is handled in Eq. 2.

Our algorithm starts by evaluating p(C|X,C(q) = b)
and p(C|X,C(q) = w) for all pixels q which are used

to fill the matrix Mb and Mw. Here, we denote the di-

agonal entry of Mb corresponding to pixel q as Mb(q):
it is set to p(C|X,C(q) = b). The matrix Mw is filled

similarly and each row of Mb and Mw is then normal-

ized such that Mb + Mw = I. The matrix Md can be

computed from the normalized Mb and Mw. The diago-

nal entry of Md corresponding to two neighbors q and q′

is Mb(q)Mb(q′) + Mw(q)Mw(q′). The energy function

containing the terms of Eqs. 1, 2 and 3 can be minimized

using gradient descent. A few gradient descent iterations

are performed before the re-computation of the probabili-

ties. Those steps are repeated until a non-ambiguous seg-

mentation of X is obtained or until a maximum number of

iterations is reached. In our implementation, the first seg-

mentation is performed directly on I .

4 Projected displacement and 3D geometry

The class transition probabilities used in the previous

section depend on the 3D structure of the scene. Explicitly,

they depend on the projected displacement which is induced

by the scene geometry and the internal and external param-

eters of the projector and camera. Fig. 1 illustrates a 2D

projector-camera system with a planar scene. The projected

displacement ∆D is

∆D(q,q′) = T pc(q) − T pc(q′) (5)

where T pc is a function that applies the homography map-

ping a point on the camera plane onto the projector plane.

Fig. 2 shows, for a 2D camera-projector system, the value

of the projected displacement ∆D for varying angles α and

β. Note that the variation is non-negligible. Also, ∆D is a

scalar rather than a vector in this 2D case.

For now, we will assume that the camera and projec-

tor planes are rectified and that the scene is a single plane

which is fronto-parallel to the SL system (see Fig. 3-left)

[10]. In this case, the image viewed by the camera is that

of the projector shifted along the horizontal axis. The mag-

nitude of this displacement - that is, the disparity - depends



on the depth of the plane in the scene. Fig. 3-right shows

the camera and projector images corresponding to such a

scene when the stripes in the projector (and camera) are one

pixel wide. The camera pixels q and q′ belong to the class

black and correspond to the same column in the projector.

∆D(q,q′) is (0, 0), whilst pixels q′ and q′′ belong to dif-

ferent classes and are necessarily from adjacent columns (4

and 5) in the projector and ∆D(q′,q′′) = (1, 0). When a

smoothing penalty is applied between the labels of q and q′,

the presence of a depth discontinuity is penalized. However,

when smoothing is applied between q′ and q′′, the absence

of a depth discontinuity is penalized since a configuration

having q′ and q′′ match with the same projector pixel is fa-

vored. Thus, according to this rectified and fronto-parallel

model with one pixel wide vertical stripe, the probability of

transition between q′ and q′′ is 1, while it is 0 between q

and q′. For a calibrated SL system in a general configura-

tion, those probabilities can be estimated from the calibra-

tion parameters and the expected geometry of the scene. In

our experiment, for the narrowest stripe, we set the proba-

bility of transition for horizontal neighbor to 0.5. This cor-

responds to a transition occurring at every 2 camera pixels

and is the targeted value for a 3D scanner that would use

our algorithm. For the vertical transitions, the probability

is set to 0.15. This is a crude estimate based on the num-

ber of distinct objects expected in the scene and the slant

of the surfaces (i.e. we expect 15 transitions in an interval

of 100 pixels). Note that the neighborhood interaction hav-

ing a transition probability of 0.5 can be removed from N .

This allows the use of a 2-connected neighborhood, making

it possible to compute the exact conditional probabilities us-

ing dynamic programming. Note that, as the stripes become

wider, the difference between horizontal and vertical tran-

sition probabilities becomes smaller since there are far less

horizontal transitions that are expected, and the number of

vertical transitions is expected to remain the same. Since

those wide stripes are less ambiguous, we always use a 2-

connected neighborhood for all patterns. This results in a

reduction of the computational burden without affecting the

quality. We use the same neighborhood structure in Eq. 2

than in Eq. 4.

5 The system PSF

The system PSF H used in our algorithm is defined as

H(q) = Hc(q)∗∗W (q)∗∗Hp(q) where Hc and Hp are the

PSF of the projector and camera and vary with the distance

to the scene. These are conventional lens PSFs, while W is

the scene convolution matrix which depends on the distance

to the scene, the calibration parameters of the SL system and

surface properties. As an example, on the rectified configu-

ration with a fronto-parallel scene of Fig. 3, W would be a

diagonal matrix horizontally shifted. The magnitude of the

shift is equal to the disparity, and the magnitude of the di-

agonal entries depends on the surface albedo. Note that H

may not sum to one because of the surface albedo. In our

deconvolution framework, it is assumed that H does sum to

one. However, the components of ub and uw vary spatially,

which allows to accommodate for the albedo of the scene.

Since we expect the scene depth to vary, the system

PSF will also vary across the image. Many approaches

have been designed to cope with spatially varying PSF

[3, 12, 22, 7, 15]. Some of them assume that the PSF

is piecewise constant[12, 22, 7, 27], others use coordinate

transformations [24, 20], while others use interpolation of

the PSF across the image [3, 22, 15]. In this paper, we use

an interpolation approach based on an Karhunen-Loève de-

composition of the PSFs [15]. It allows a compact orthogo-

nal decomposition of the PSFs. The bases are denoted Hk.

The minimization of Eq. 1 with regularization terms 2 and 3

becomes

||
∑

k

HkCkx − i||2 + regularization (6)

where Ck is a diagonal matrix. Each diagonal entry is the

coefficient that scales the individual pixel of x prior to the

convolution. More details can be found in [15]. In this pa-

per, we focus on the image processing aspects of the pat-

tern segmentation and we assume that the PSFs at different

points in the image are known (see the future works de-

scribed in the conclusion). The PSFs for other points are

interpolated. We thus have all Hk and Ck available before-

hand.

6 Implementation details

During the deconvolution step of our algorithm the most

expensive operation is the computation of HkCkx which

is performed using a FFT [9]. The convolution for all

Karhunen-Loève bases can be computed simultaneously.

There are many commercially available products that could

be used to efficiently perform 2D FFT on programmable

hardware. The regularization terms of Eq. 2 and Eq. 3 can

be computed in linear time. The minimization of Eq. 6 is

performed using a simple steepest descent algorithm which

converges slowly. Faster algorithms exist [9].

The segmentation can also be implemented on pro-

grammable hardware. An implementation of belief propa-

gation on graphics hardware is presented in [4]. When using

a two-connected neighborhood, as we do, all the columns

can be processed simultaneously. It is possible to further

increase the amount of parallelism by reformulating Eq. 4.

This reformulation is presented in the Annex, and we imple-

mented it on off-the-shelf graphics hardware. The decoding

of SL patterns using a 1024 × 768 camera is accomplished

at a rate of more than 120 patterns per second on an old



NVIDIA 6800 graphics card. General purpose computation

using graphics hardware has greatly evolved in the last years

and the proposed formulation can be implemented using the

high-level programming language CUDA. For this reason,

we do not describe further its implementation.

Since both steps of our algorithm can be implemented

on programmable hardware, we believe that an implemen-

tation of our algorithm running at video frame-rate is pos-

sible. Our current software prototype runs on a computer

with 8 Dual-Core AMD Opteron Processor 8218. At most

6 cores are used simultaneously. the FFT code and BLAS

implementation of the ACML are used. We use the standard

FFT driver of the ACML with OpenMP support enabled.

Our non-optimized prototype processes one 640 × 480 im-

age in 20 seconds.
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Figure 4. Crop of the structured light pattern. Top left)
deconvolved image obtained by our algorithm. Top Right)
original image Middle left) result of our algorithm Middle
right) result of standard thresholding Bottom left) result

from an Markovian segmentation Bottom right) difference

histogram (see text).

7 Experimental results

Fig. 4 contains an example of Gray code decoded under

difficult acquisition conditions. The scanned image was ac-

quired with both camera and projector out of focus and with

a low SNR. The scene is composed of a single tilt plane,

thus making it easier to assess the quality of the segmenta-

tion by visual inspection. The result obtained by standard

thresholding is shown [23]. Note how noisy the segmenta-

tion is. We also provide the results when segmenting using

Residual error for different Gray code patterns
pattern index standard ours

1 >0.351 0.127

2 0.150 0.125

3 0.180 0.133

4 0.138 0.133

5 0.143 0.139

6 0.143 0.134

7 0.129 0.114

8 0.190 0.157

Table 1. Pattern 1 has the narrowest stripe. The images of

the first pattern are shown in Fig 4. For this pattern, some

stripes are inter-connected in the solution obtained by stan-

dard thresholding and they were manually removed before

computing the error. This manual removal is somewhat ar-

bitrary and we show the most conservative values that could

be obtained.

a Markovian framework. The method of [26] applied to one

pattern was used. The method did significantly over-smooth

the left part of the image. This over-smooth solution and the

noisy one of thresholding are explained by the histogram of

the distance between the threshold value and the pixel in-

tensities (see Fig. 4). More than 8.6% of the pixels have

an intensity equal to the threshold value, thus making those

very difficult to classify. In our deconvolved image, less

than 0.6 % of the pixel are in this situation, making the seg-

mentation much easier to perform.
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Figure 5. Intensity histogram before and after our algo-

rithm for the second, third and fifth patterns of the Gray

code. The images of the first pattern are shown in Fig 4.

Fig. 5 contains the intensity histogram of the images be-

fore and after the deconvolution for different sizes of stripes.

Note the reduced inter-class ambiguity after applying the

deconvolution. The pattern with large stripes are easier to

decode since they contain fewer transitions. As an example,

with the fifth pattern, both images have very few ambiguous

pixels. Nevertheless, the number of pixels having an inten-

sity in the interval ranging from 50 to 80 in the deconvolved

image is smaller than the original by an order of magnitude

(the class transition occurs at 63).

Since linearity is preserved under projective transform, a

linear regression was performed along each label disconti-

nuity in the camera. The residual error of the fit was used as

a metric to compare our approach with standard decoding

on the different patterns. Table 1 presents the results. The

most significant improvement is for the pattern with the nar-

rowest stripes. Fig. 6 contains graphs of the variation of the

residual error with the change of λ for the patterns 1 to 3 of

Table 1. Note that the minimum residual error occurs with

the same λ for all patterns. In our tests, we observed that



the best λ is related to the noise level and seems indepen-

dent of the width of the stripes. Note that γ was set to 0.5

in all our experiments. While λ is used to suppress noise, γ

weighs the energy term of Eq. 3 which anchors the solution.

This value was appropriate in all our tests and the algorithm

seems much less sensitive to changes of γ than of λ.

Fig. 7 shows the images associated with a scan of pla-

nar surfaces acquired in even harder conditions. In this

dataset, the first 3 patterns are difficult to segment and stan-

dard thresholding yielded useless results for those patterns.

Between 30% and 66% of the pixels have the same intensity

in both the image G and R. In the deconvolved image this

drops to 3.3%, allowing a significant improvement in the

decoding. Fig. 8 shows the images associated with a scan

of two planes with different orientations.

8 Conclusion

We presented a new deconvolution-based energy formu-

lation for segmenting the images of a stripe-based SL sys-

tem. Our framework explicitly models the blurring induced

by the optics of a SL system. The proposed iterative al-

gorithm is composed of two steps, a deconvolution and a

segmentation, and uses a geometrically plausible regular-

ization. Our approach can decode SL patterns that cannot

be adequately decoded by either energy-based segmentation

or simple thresholding.

As for future work, we plan to investigate the integration

in our framework of the estimation of the coefficients Ck

based on the calibration (geometric and of the Karhunen-

Loève basis) and on the 3D information obtained when

combining the segmentation of all the Gray code patterns.

We would also like to quantitatively assess the improvement

into the 3D measurement that occurs when using the pro-

posed algorithm in a SL 3D scanner.
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Annex: parallel dynamic programming

When the neighborhood of Eq. 4 is 2-connected the opti-

mal solution can be computed using Dynamic Programming

Figure 7. The first 4 images are for a pattern with narrow

stripes. The 4 last are for wider stripes. Please zoom in the

electronic version for small details. For each data set the

order is Top left) deconvolved image obtained by our algo-

rithm. Top Right) original image Bottom left) result of our

algorithm Bottom right) result of standard thresholding.
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Figure 8. Top left ) result of our algorithm. Top right)
result of standard algorithm. Bottom left) image G (nor-

malize for visualization). Bottom rigt) intensity histogram,

note that it contains some discretization artefacts.
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Figure 9. DP problem containing 8 sites and 2 labels.

Left) Energy computation phase. The gray arrows represent

the smoothing cost already being taken into account, whilst

the black ones represent the smoothing cost computed at the

current step. Right) Recovery phase. The light gray boxes

represent sites for which the label is fixed in the current step.

The dark gray boxes represent sites for which the label has

been fixed in the previous step. The number on a site is the

step at which the label is determined. The arrows indicate

the dependency between sites. As an example, the labels of

sites 0 and 3 must be known before computation of the label

of sites 1 and 2.

(DP). The maximization of Eq. 4 can be reformulated as

an energy minimization with a Potts smoothing model [16].

The division and multiplication of the maximization are re-

placed by summation and subtraction in the minimization

framework, making it more attractive for an implementation

using programmable hardware. More details can be found

in [16]. When a Potts smoothing model is used, DP has a

complexity of Θ(N.L) where N is the number of sites and

L is the number of labels [8]. The depth of the recurrence

relations is linear in the number of sites. Lui et al. proposed

a GPU-based Smith-Waterman DP that exploits the paral-

lelism already present in the standard recursive formulation

[18]. We propose to use a divide-and-conquer strategy and

to reduce the depth of the recurrence relation in order to in-

crease the amount of parallel computation. This is done at

the price of increasing the total amount of computation. We

assume that the number of sites on a DP line is a power of

two. Otherwise, the number of sites can be expanded to a

power of two, by adding dummy sites and setting their like-

lihood cost to a constant value. In a GPU, this can be effi-

ciently done using the texture’s clamping mode of OpenGL.

On the left of Fig. 9, we illustrate the concept on a small

problem of 8 sites and 2 labels. In the first step, the ener-

gies for all the combinations of pairs of sites (0, 1), (2, 3),
(4, 5) and (6, 7) are computed simultaneously. Four values

are computed for each pair of sites. In the next step, the

lowest energy for the combinations of labels of sites (0, 3)
and (4, 7) are computed using the result of the previous step.

Finally, the lowest energy for the combinations of labels of

sites (0, 7) are computed. In general, this binary tree struc-

ture significantly reduces the number of steps required to

process all the sites. The table t(mi,j , ni,j , k, l) is the low-

est energy of all maps of sites in the interval [mi,j , ni,j ]
with site mi,j and ni,j at label k and l respectively. We de-

fine mi,j = i2j and ni,j = mi+1,j − 1. Explicitly, the table

t is defined inductively as

t(mi,1, ni,1, k, l) =
e(mi,1, k) + e(ni,1, l)
+s(mi,1, ni,1, k, l)

(7)

where e(m, k) is the likelihood term related to the probabil-

ity that site m has label k and s(m,n, k, l) is related to the

probability that two neighbors m and n have label k and l

respectively [16]. For j > 1

t(mi,j , ni,j , k, l) = min
k′,l′∈L

t′(i, j, k, l, k′, l′) (8)

with

t′(i, j, k, l, k′, l′) =

t(mi,j ,m
′
i,j , k, k′)

+t(n′
i,j , ni,j , l

′, l)
+s(m′

i,j , n
′
i,j , k

′, l′)
(9)

and where n′
i,j = (2i + 1)2j−1 and m′

i,j = n′
i,j − 1. The

entry of t can be evaluated in Θ(N · L2) operations where

N is the number of sites and L the number of labels. This

is more than the Θ(N · L) of ordinary DP with the Potts

smoothing model. However, the depth of the relation for our

formulation is in Θ(logN) rather than Θ(N). The minimal

energy is mink,l t(0, N−1, k, l) where N−1 is the index of

the last site. However, the entry of table t are not what we

required in order to minimize Eq. 6. We need the minimum

energy of a label map having site q at label k for all q and

k. This is also known as the min marginal. Those values

can be computed from a table v(mij , nij , k, l) which is the

lowest energy map (including all sites) with sites mij and

nij having label k and l respectively. Explicitly, the table v

is defined inductively as

v(0, N − 1, k, l) = t(0, N − 1, k, l) (10)

and for {mij ,m
′
ij , n

′
ij , nij} ⊆ [0, N − 1] ,

v(mi,j ,m
′
i,j , k, k′) = min

l,l′∈L
v′(i, j, k, l, k′, l′) (11)

v(n′
i,j , ni,j , l

′, l) = min
k,k′∈L

v′(i, j, k, l, k′, l′) (12)

with

v′(i, j, k, l, k′, l′) =
v(mi,j , ni,j , k, l)
−t(mi,j , ni,j , k, l)
+t′(i, j, k, l, k′, l′).

(13)

The minimum energy of a label map having site mi,j at

label k is simply minl v(mi,j , ni,j , k, l) . This can be com-

puted similarly for a site ni,j . Using the equivalence be-

tween probabilistic and energy formulations[16], the entries

of table v can be converted into the conditional probabilities

required in order to fill the matrix Mb and Mw.

Sometimes, the label map of minimum energy is re-

quired rather than the min marginal. Fig. 9-right shows the



recovery process of this label map of minimum energy for

a 2-label problem containing 8 sites. At step 1, the labels

of sites 0 and 7 are computed by looking only at the mini-

mum entry of table t for the pair of sites (0, 7). At step 2,

the labels of site 3 and 4 are found by using t for the pair

(0, 3) and (4, 7) combined with the result of step 1 and the

smoothing cost between site 3 and 4. The process is similar

for step 3, except that the results of all previous steps are

needed. The label map c
k,l
i,j is the lowest energy map for all

sites in the interval [mi,j , ni,j ] having sites mi,j and ni,j at

label k and l respectively. Explicitly, the label map c
k,l
i,j is

defined inductively as

(ck,l
i,j (mi,j), c

k,l
i,j (ni,j)) = (k, l) (14)

and for {m′
i′j′ , n′

i′j′} ⊆ ]mi,j , ni,j [

(ck,l
i,j (m

′
i′j′), c

k,l
i,j (n

′
i′j′)) = arg mink′,l′∈D

t′(i′, j′, ck,l
i,j (mi′,j′), ck,l

i,j (ni′,j′), k′, l′).
(15)

The depth of the relation is also in Θ(log N).
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