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Abstract.  This paper presents an application of Chemical Reaction Metaphor 

(CRM) in agent-based distributed learning systems. The suitability of using 

CRM to model multi-agent systems is justified by CRM’s capacity in catching 

dynamic features of multi-agent systems in an e-learning environment. A case 

study in course material updating demonstrates how the CRM based language, 

Gamma language, can be used to specify the architecture of the learning 

environment. Finally, a discussion on the implementation of Gamma language 

in a distributed system is given.                       

      Keywords: Agent-oriented modeling, e-learning, program specification,  

  very high-level languages 

1. Introduction 

Distributed learning is becoming a more and more prevailing method for conveying 

courses in recent years. The absence of the needs for classrooms and fixed time 

schedule adds to the flexibility in course delivery, which includes: virtual classroom, 

asynchronous mode teaching, and mobility. 

To allow these advantages, however, software engineering is burdened with 

unprecedented challenges of implementing such a learning environment, which 

should be of the following main features: adaptive curriculum sequencing, problem 

solving support, adaptive presentation, student model matching. It is very difficult to 

develop a system that could meet all requirements for every level of educational 

hierarchy since no single designer of such a complex system can have full knowledge 

and control of the system. In addition, these systems have to be scaleable and provide 

adequate quality of service support [1]. This gives reason to finding a model that can 

catch the interactive and dynamic nature of e-learning systems. Such a model should 

be general enough to address common architectural issues and not be specific to 

design issues of a particular system. A direct benefit of such a model is 

expressiveness and extensibility --- changes in the domain knowledge would not 

require an intensive system-wide modification to alter the information and all objects 

that initiate actions based on that changing information. 



2. Agent-Oriented Modeling and the Chemical Reaction Metaphor 

The agent concept provides a focal point for accountability and responsibility for 

coping with the complexity of software systems both during design and execution [2]. 

It is deemed that software engineering challenges in developing large scale distributed 

learning environment can be overcome by an agent-based approach [3]. In this 

approach, a distributed learning system can be modeled as a set of autonomous, 

cooperating agents that communicate intelligently with one another. As an example, 

Collaborative Agent System Architecture (CASA) [4, 5] is an open, flexible model 

designed to meet the requirements from the resource-oriented nature of distributed 

learning systems. In CASA, agents are software entities that pursue their objectives 

while taking into account the resources and skills available to them. 

We found that the dynamic nature of distributed agents in e-learning environments 

makes it an ideal object for modeling by Gamma languages [6-9]. The concurrency 

and automation of agents require that the modeling language does not have any 

sequential bias and global control structure. In addition, the dynamic nature and non-

determinism of interaction between an agent and its environment are suited to a 

computation model with a loose mechanism for specifying the underlying data 

structure. Therefore, chemical reaction metaphor provides a framework for the 

specification of the behavior of an agent. For example, data, which move around the 

internet, can be well modeled by chemical resolution; and mobile agents, which are 

created dynamically and transferred from clients to servers, can be included in the 

environment variable of a higher-order Gamma configuration. This provides a 

mechanism for describing both inter-agent communications and agent migration.  

3. Specifying Multi-Agent Systems in an E-Learning Environment 

From the workflow model of the course development, we can build a collaborative 

system model that partitions the problem into one or more smaller tasks, which are 

tackled by corresponding agents. For example, let’s examine the multi-agent system 

for course maintenance and recommendation that was designed in [10]. The online 

course materials are updated often in order to keep them as current as possible, esp. in 

some rapidly changing fields like ‘computing and information systems’. Because of 

the complexity of the materials, and the short development cycles within which they 

are produced, the course instructor should make the necessary adjustments time by 

time for the benefit of the students. Whenever there is a significant change on the 

content of several designated web pages of online course materials, students who take 

the course should be notified by the course coordinator by e-mail. Figure 1 shows the 

conversation schemata for course maintenance. 

The conversation model of the course material change notification consists 

of the following elements. For simplicity of illustration, we assume that a student who 

takes the course is in one of the 3 phases, numbered 1, 2, or 3. The interpretation of 

the phases is trivial and left undefined (For example, phase 1 might be the phase 

before the first exam, phase 2 the phase between the first exam and the second exam; 

and phase 3 the phase between the second exam and the final exam.) except that we 



assume only students who have passed the previous phase are allowed to enter the 

next phase. A course web page also bears a phase number, indicating to which phase 

its content is significant. Once a change is made to a web page, all students taking the 

course and whose phase number matches the phase number borne by the web page 

will be sent the link to that page. 

 

• Notification Agent Control Client (NACC): The Notification Agent Control Client 

of an instructor or a student runs on his/her machine and allows him/her to control 

the behavior of the corresponding Notification Agent deployed in a distributed 

environment. In our system, NACC adds a student into the student database or 

removes him/her from the database, or changes the phase number the student is 

currently in. 

• Notification Agent (NTFC): The basic function of the Notification Agent is to 

send e-mails to students taking the course according to the student profiles stored 

in a database when the course material has been significantly changed. 

• Monitoring Agent (MNTR): The Web Change Monitoring Agent of a system 

administrator monitors a collection of course material URLs stored in a database. 

When the agent detects a significant change, it sends a message to the Notification 

Agent. Also, once a broken link is detected in the topic tree, it notifies the 

maintenance agent to either correct the link or delete the orphaned page. 

• Student Information Agent (STIF): A Student Information Agent is designed for 

providing services about student information, such as providing an e-mail list for a 

course by automatically maintaining the email list of students taking a course; and 

maintaining the profile of each student. 

• Maintenance Agent (MNTN): The maintenance agent provides proxy services to 

the instructor. It maintains the content of the topic tree. 

• Topic Tree or Link Database (LINK): The course material is organized in the 

form of a topic tree. Each entry in the topic tree is a link to a web page. 

 

 
 

Figure 1: A conversation schemata for course maintenance 



 

Let INST and STUD denote the multisets of instructors and students, 

respectively, and I, S, and L denote the instructor (We assume that there is only one 

instructor), the initial roll of the class, and the initial content of the course (in the form 

of the set of links), respectively, the following is the Gamma program that specifies 

the above system: 

 
MAIN i S0 L0 = [P, NACC = [Q1, STUD = S0], NTFC = [Q2, STUD = S0, LINK = L0], 

MNTR = [Q3, LINK = L0],  

STIF = [Q4, STUD = S0],  MNTN = [Q5, INST = {i}, LINK = L0]] where 

 P = P1 + P2 + P3 + P4 + P5 

P1 = [Q1, STUD = S+{(s, 1, Ø)}]: NACC, [Q2, STUD = S’, LINK = L]: NTFC 

→ [Q1, STUD = S+{(s, 1, Ø)}]: NACC, [Q2, STUD = S’+{(s, 1, Ø)}, LINK 

= L]: NTFC ← (s, 1, Ø) ∉ S’ 

P2 = [Q1, STUD = S+{(s, NULL, M)}]: NACC, [Q2, STUD = S’, LINK = L]: 

NTFC → [Q1, STUD = S]: NACC, [Q2, STUD = S’ - {(s, p, M)}, LINK = 

L]: NTFC  

P3 = [Q1, STUD = S+{(s, p, M)}]: NACC, [Q2, STUD = S’+{(s, p, M’)}, LINK 

= L]: NTFC → [Q1, STUD = S+{(s, p, M’)}]: NACC, [Q2, STUD = S’+{(s, 

p, M’)}, LINK = L]: NTFC ← M ≠ M’ 

P4 = [Q2, STUD = S, LINK = L+(l, p, normal)]: NTFC, [Q3, LINK = L’+{(l, p, 

changed)}]: MNTR → [Q2, STUD = S, LINK = L+(l, p, changed)]: NTFC, 

[Q3, LINK = L’+{(l, p, changed)}]: MNTR 

P5 = [Q1, STUD = S+{(s, 1, Ø)}]: NACC, [Q4, STUD = S’]: STIF → [Q1, 

STUD = S+{(s, 1, Ø)}]: NACC, [Q4, STUD = S’+{(s, 1, Ø)}]: STIF ← (s, 

1, Ø) ∉ S’ 

P6 = [Q1, STUD = S+{(s, NULL, M)}]: NACC, [Q4, STUD = S’]: STIF → [Q1, 

STUD = S]: NACC, [Q4, STUD = S’ - {(s, p, M)}]: STIF  

P7 = [Q1, STUD = S+{(s, p, M)}]: NACC, [Q4, STUD = S’+{(s, p+1, M)}]: 

STIF → [Q1, STUD = S+{(s, p+1, M)}]: NACC, [Q4, STUD = S’+{(s, 

p+1, M’)}]: STIF  

P8 = [Q2, STUD = S+{(s, p, M’)}, LINK = L]: NTFC, [Q4, STUD = S’+{(s, p, 

M)}]: STIF → [Q2, STUD = S+{(s, p, M’)}, LINK = L]: NTFC, [Q4, STUD 

= S’+{(s, p, M’)}]: STIF  ← M ≠ M’ 

P9 = [Q2, STUD = S+{(s, p, M’)}, LINK = L]: NTFC, [Q4, STUD = S’+{(s, 

p+1, M)}]: STIF → [Q2, STUD = S+{(s, p+1, M’)}, LINK = L]: NTFC, 

[Q4, STUD = S’+{(s, p+1, M)}]: STIF 

P10 = [Q2, STUD = S, LINK = L]: NTFC, [Q5, INST = I, LINK = L’]: MNTN → 

[Q2, STUD = S, LINK = L’]: NTFC, [Q5, INST = I, LINK = L’]: MNTN ← 

L ≠ L’ 

P11 = [Q3, LINK = L]: MNTR,, [Q5, INST = I, LINK = L’]: MNTN → [Q3, LINK 

= L’]: MNTR, [Q5, INST = I, LINK = L’]: MNTN ← L ≠ L’ 

 Q1 = Enrl + Drop 

Enrl =  (s, 1, Ø): STUD ← Enroll(s) 

Drop = (s, p, M): STUD → (s, NULL, M) ← Drop(s) 

 Q2 = Updt ◦ Emal 

Emal = (l, p, changed): LINK, (s, p. M): STUD → (l, p, changed): LINK, (s, p. 

M+{l}): STUD ← l ∉  M 

Updt = (l, p, changed): LINK → (l, p, normal): LINK 



 Q3 = (l, p, normal): LINK → (l, p, changed): LINK ← Modified(I) 

Q4 = (s, p, M): STUD → (s, p+1, M): STUD ← Pass(s, p) 

 Q5 = AddInst + AddLink + Chng + Updt 

AddInst = i: INST ← AddInst(i) 

AddLink = i: INST →  (l, p, normal): LINK, i: INST ← (l, p) = AddLink(l, i) 

Chng = (l, p, normal): LINK, i: INST → (l’, p, changed): LINK, i: INST ←  l’= 

Change(l, i) 

Updt = (l, p, broken): LINK, i: INST → (l’, p, normal): LINK, i: INST ←  l’= 

Update(I, i) 

 

In this program, constants are written in boldface words. Each student record 

is a tuple (student, phase, mailbox) where student is the name of the student, phase 

the phase number where the student is in, and mailbox the mailbox of the student, 

which is a multiset of email messages. Each entry of the link database is also a tuple 

(link, phase, status) where link is the link to the web page in the topic tree, phase the 

phase number this page is designed for, and status the status of the page, which can be 

either normal, changed, or broken. Boolean functions Enroll(s) and Drop(s) return 

whether student s is enrolled in the class or wants to drop. Modified(l) function returns 

whether a particular web page pointed to by link l has been modified or not. Pass(s, p) 

function finds out whether student s has passed phase p or not. Add(l, i) function 

indicates whether instructor i wants to add page pointed to by link l into the link 

database or not. Change(l, i) function returns the link to the changed page whose 

original is pointed to by l. Update(l, i) function updates the broken link l and returns 

the corrected link. 

The program consists of configurations in two levels: the MAIN configuration 

in the higher level and all other configurations in the lower level. Program P in MAIN 

configuration exchanges elements of the multisets in the environments of the lower-

level configurations. 

This example shows how Gamma language expresses the architecture of a 

multi-agent system succinctly. With the underlying computing model, we do not need 

to consider the specifications of nonessential features of the system, e.g., the number 

of program units, connection links for communications, and organizations of data, and 

therefore can focus on the specification of the overall architecture. It catches the way 

program units interact with one another and local computations, such as the 

implementations of those local functions, are left to the subsequent design phase. 

The specification of the overall system benefits the subsequent design phases 

because details of the system can be added into the system in an accumulative 

fashion. The following section describes the specification of individual program units. 

4. From Architecture to Building Blocks 

A systematic design strategy was proposed in [11], in which Gamma specification of 

an agent system can be implemented in a hierarchical running environment composed 

of nodes in different levels of a tree. Interactions among agents can be implemented in 

a unified mechanism for synchronization. In this scheme, each configuration in the 

Gamma specification is implemented as a node. The overall architecture of the system 



is a tree structure, which expands and shrinks dynamically. A node only 

communicates with another node in the immediate upper or lower level. Interfaces 

between nodes specify the local conditions that may cause an action in the upper 

level. The actions in the upper level (in which nodes are called controlling nodes) can 

be creating/deleting nodes in the lower level or transforming the states of nodes in the 

lower level by data transfer. 

The specification of the type of a node is composed of the module name, 

declarations of environment variables, imported variables, exported variables, and a 

body block consisting of sequentially executed statements. 

 
process name(parameter-list) 

environment Local environment variables 

import   Imported variables 

export  Exported variables 

begin   
Statements 

End 
 

Variables represent data sets. We leave the data structure for variables 

unspecified to maintain high-level abstraction. Imported variables and exported 

variables are written in the form of Module.Variable.  If Module is omitted, the 

variable is identical to the local variable. Imported variables store values received 

from the nodes in the immediate lower or upper level while exported variables stores 

the values that are sent to the node in immediate lower or upper level. Both imported 

variables and exported variables can be interpreted as set of channels through which 

data are exchanged between nodes in adjacent levels. There is a separated channel 

established for each node. To maintain a high level of abstraction, we do not 

distinguish channels for different nodes. Instead, we use operator X.node to find out 

the sending node through variable X. Channels are automatic objects, which means 

imported channels receive messages whenever a send action is initiated by another 

node and exported channels send messages whenever data are available. To send a 

message to another node, we only need to use add action to add data items into the 

exported variables. Although we may use the same variable in both the import and 

export section, incoming data and outgoing data are distinguished by default. That 

means that outgoing data are never used in local computation. 

Parameter list is used to pass initial values to the process when the process of 

the particular module is created. There are four actions that can be performed by a 

process: 

 

• Add(variable, data): add data into variable 

• Delete(variable, data): delete data from variable 

• Select(variable): select an element of the data set represented by variable 

• element.#n: projection operation --- extract the nth value of the tuple denoted by 

element 

 

Statements in the body block of a module can be an add/delete action, a 

branching statement, or a looping statement. We omit the description of branching 



statements because they are not used in this program. The looping structure has the 

following syntax: 

 
do cond1 -> statement1;   

cond2 -> statement2;   

… 

 condn: -> statementn; 

od 

 

The semantics of the looping statement is: cond1, …, condn are tested and 

one of the statements whose corresponding condition is tested to true is executed non-

deterministically. Conditions are tested repeatedly until none of the conditions 

evaluates to true and the control is then transferred to the statement that follows the 

do statement. 

The modules designed for the course maintenance program in the previous 

section is described in the following: 

 
process NACC(STUD firstRoll) 
environment 
 STUD roll = firstRoll; 
import 
 STUD roll; 
export 
 STUD roll; 
begin 

do  Enroll(s)  Add(roll, (s, 1, Ø)); 
 s = Select(roll), Drop(s)  Delete(roll, s), Add(roll, (s, NULL, s.#3)); 
od 

end 

 
process NTFC(STUD firstRoll, LINK origLink) 

environment 

 STUD roll = firstRoll; LINK link = origLink; 

import 

 LINK link; 

export 

 STUD roll; LINK link; 

begin 

do    l = Select(link), l.#3 = “changed” →  

do s = Select(roll), l ∉ s.#3 → Add(s.#3, l);od 

do   l = Select(link), l.#3 = “changed” → Delete(link, l), Add(link, (l.#1, l.#2, 

“normal”)); 

od 

end 

 

process MNTR(LINK origLink) 

environment 

 LINK link = origLink; 

import 

 LINK link; 

export 



 LINK link; 

begin 

do   l = Select(link), Modified(l) → Delete(link, l), Add(link, (l.#1, l.#2, “changed”)); 

od 

end 

 

process STIF(STUD firstRoll) 

environment 

 STUD roll = firstRoll; 

import 

 STUD roll; 

export 

 STUD roll; 

begin 

do  s = Select(roll), Pass(s.#1, s.#2) → Delete(roll, s), Add(link, (s.#1, s.#2 + 1, 

s.#3)); 

od 

end 

 

process MNTN(INST initInst, LINK origLink) 

environment 

 INST inst = initInst; 

LINK link = origLink; 

import 

 LINK link; 

export 

 LINK link; 

begin 

do AddInst(i) → Add(inst, I); 

i = Select(inst), l = AddLink(l, i) → Add(link, (l.#1, l.#2, “normal”); 

i = Select(inst), l = Select(link), l.#3 = “normal”, l’ = Change(l, i) →  

Delete(link, l), Add(link, (l’, l.#2, “changed”)); 

i = Select(inst), l = Select(link), l.#3 = “broken”, l’ = Update(l, i) →  

Delete(link, l), Add(link, (l’, l.#2, “normal”)); 

od 

end 

 

process MAIN(INST initInst, STUD firstRoll, LINK origLink) 

environment 

 NACC nacc; NTFC ntfc; MNTR mntr; STIF stif; MNTN mntn; 

import 

 STUD nacc.rollNacc, ntfc.rollNtfc, stif.rollStif; 

 LINK ntfc.linkNtfc, mntr.linkMntr, mntn.linkMntn; 

export 

 STUD nacc.rollNacc, ntfc.rollNtfc, stif.rollStif; 

 LINK ntfc.linkNtfc, mntr.linkMntr, mntn.linkMntn; 

begin 

 Add(nacc, NACC(firstRoll)); 

Add(ntfc, NTFC(firstRoll, origLink)); 

Add(mntr, MNTR(origLink)); 

Add(stif, STIF(firstRoll)); 

Add(mntn, MNTN(initInst, origLink)); 



do    s = Select(nacc.rollNacc), s.#2 ≠ NULL, s ∉ ntfc.rollNtfc → Add(ntfc.rollNtfc, 

s); 

s = Select(nacc.rollNacc), s.#2 = NULL, s’ = Select(ntfc.rollNtfc), s.#1 = s’.#1 

→ Delete(nacc.rollNacc, s), Delete(ntfc.rollNtfc, s’); 

s = Select(nacc.rollNacc), s’ = Select(ntfc.rollNtfc), s.#1 = s’.#1, s.#2 = s’.#2, 

s.#3 ≠ s’.#3  → Delete(nacc.rollNacc, s), Add(nacc.rollNacc, s’); 

l = Select(ntfc.linkNtfc), l’ = Select(mntr.linkMntr), l.#1 = l’.#1, l.#2 = l’.#2, 

s.#3 ≠ s’.#3 → Delete(ntfc.linkNtfc, l), Add(ntfc.linkNtfc, l’); 

s = Select(nacc.rollNacc), s.#2 ≠ NULL, s ∉ stif.rollStif → Add(stif.rollStif, s); 

s = Select(nacc.rollNacc), s.#2 = NULL, s’ = Select(stif.rollStif), s.#1 = s’.#1 → 

Delete(nacc.rollNacc, s), Delete(stif.rollStif, s’); 

s = Select(nacc.rollNacc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 + 1 = s’.#2, 

s.#3 = s’.#3 → Delete(nacc.rollNacc, s), Add(nacc.rollNacc, s’); 

s = Select(ntfc.rollNtfc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 = s’.#2, s.#3 

≠ s’.#3 → Delete(stif.rollStif, s’), Add(stif.rollStif, s); 

s = Select(ntfc.rollNtfc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 + 1 = s’.#2, 

→ Delete(ntfc.rollNtfc, s), Add(ntfc.rollNtfc, (s.#1, s’.#2, s.#3)); 

s = Select(ntfc.rollNtfc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 + 1 = s’.#2, 

→ Delete(ntfc.rollNtfc, s), Add(ntfc.rollNtfc, (s.#1, s’.#2, s.#3)); 

l = Select(ntfc.linkNtfc), l ∉ mntn.linkMntn → Delete(ntfc.linkNtfc, l); 

l = Select(mntn.linkMntn), l ∉ ntfc.linkNtfc → Add(ntfc.linkNtfc, l); 

l = Select(mntr.linkMntr), l ∉ mntn.linkMntn → Delete(mntr.linkMntr, l); 

l = Select(mntn.linkMntn), l ∉ mntr.linkMntr → Add(mntr.linkMntr, l) 

od 

end 

 

Note that higher-order operations remain in the module level. This makes the 

specification of the system closer to actual program. Also note that the transformation 

from Gamma specification to module specification can well be automated. Further 

transformation from module specification to programs in concrete language can be 

facilitated. The specification in the module level still focuses on generic process 

behavior. Data structures are left unspecified. Further refinement of the specification 

should include the use of data structures to organize the data sets. Therefore the 

Select operation can be implemented by an algorithm designed in accordance with 

the data structure. Another refinement would be the implementation of the data 

exchange channels. 

5. Conclusions and Future Work 

We propose a method for specifying a multi-agent system by using Gamma 

language. We find that in chemical reaction metaphor, architectural properties of a 

multi-agent system can be expressed succinctly and precisely. Through the case study, 

we demonstrate the usefulness of this method in the design of a multi-agent e-learning 

environment.We present a method for transforming the Gamma specification of the 

agent system into the specification in a module language, in which higher-order 

multiset operations are removed. This paves the way for implementing the specified 



system by using a sequence of program transformation. In the future, we will be 

working on the automation of the program transformation process and the refinement 

of module specifications by introducing data structures into the program. 
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