
Publisher’s version / Version de l'éditeur:

Applications of Artifical Intelligence & Expert Systems (IEA/AIE-2004), 2004

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Chemical Reaction Metaphor in Distributed Learning Environments
Lin, H.; Yang, Chunsheng

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=8504768d-08d4-4183-9b4f-c2aedd013a49

https://publications-cnrc.canada.ca/fra/voir/objet/?id=8504768d-08d4-4183-9b4f-c2aedd013a49

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Chemical Reaction Metaphor in Distributed Learning

Environments *

Lin, H., and Yang, C.
May 2004

* published in the Proceedings of the International Conference on Industrial &

Engineering. Applications of Artifical Intelligence & Expert Systems (IEA/AIE-2004).

Ottawa, Ontario, Canada. May 2004. NRC 46551.

Copyright 2004 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Chemical Reaction Metaphor in Distributed Learning

Environments

Hong Lin1 and Chunsheng Yang2

1Department of Computer & Mathematical Sciences, University of Houston-Downtown

1 Main Street, Houston, Texas 77002, USA

linh@uhd.edu
2 Institute for Information Technology, National Research Council

1200 Montreal Rd, Ottawa, Ontario, Canada K1A 0R6

Chunsheng.Yang@nrc.gc.ca

Abstract. This paper presents an application of Chemical Reaction Metaphor

(CRM) in agent-based distributed learning systems. The suitability of using

CRM to model multi-agent systems is justified by CRM’s capacity in catching

dynamic features of multi-agent systems in an e-learning environment. A case

study in course material updating demonstrates how the CRM based language,

Gamma language, can be used to specify the architecture of the learning

environment. Finally, a discussion on the implementation of Gamma language

in a distributed system is given.

 Keywords: Agent-oriented modeling, e-learning, program specification,

 very high-level languages

1. Introduction

Distributed learning is becoming a more and more prevailing method for conveying

courses in recent years. The absence of the needs for classrooms and fixed time

schedule adds to the flexibility in course delivery, which includes: virtual classroom,

asynchronous mode teaching, and mobility.

To allow these advantages, however, software engineering is burdened with

unprecedented challenges of implementing such a learning environment, which

should be of the following main features: adaptive curriculum sequencing, problem

solving support, adaptive presentation, student model matching. It is very difficult to

develop a system that could meet all requirements for every level of educational

hierarchy since no single designer of such a complex system can have full knowledge

and control of the system. In addition, these systems have to be scaleable and provide

adequate quality of service support [1]. This gives reason to finding a model that can

catch the interactive and dynamic nature of e-learning systems. Such a model should

be general enough to address common architectural issues and not be specific to

design issues of a particular system. A direct benefit of such a model is

expressiveness and extensibility --- changes in the domain knowledge would not

require an intensive system-wide modification to alter the information and all objects

that initiate actions based on that changing information.

2. Agent-Oriented Modeling and the Chemical Reaction Metaphor

The agent concept provides a focal point for accountability and responsibility for

coping with the complexity of software systems both during design and execution [2].

It is deemed that software engineering challenges in developing large scale distributed

learning environment can be overcome by an agent-based approach [3]. In this

approach, a distributed learning system can be modeled as a set of autonomous,

cooperating agents that communicate intelligently with one another. As an example,

Collaborative Agent System Architecture (CASA) [4, 5] is an open, flexible model

designed to meet the requirements from the resource-oriented nature of distributed

learning systems. In CASA, agents are software entities that pursue their objectives

while taking into account the resources and skills available to them.

We found that the dynamic nature of distributed agents in e-learning environments

makes it an ideal object for modeling by Gamma languages [6-9]. The concurrency

and automation of agents require that the modeling language does not have any

sequential bias and global control structure. In addition, the dynamic nature and non-

determinism of interaction between an agent and its environment are suited to a

computation model with a loose mechanism for specifying the underlying data

structure. Therefore, chemical reaction metaphor provides a framework for the

specification of the behavior of an agent. For example, data, which move around the

internet, can be well modeled by chemical resolution; and mobile agents, which are

created dynamically and transferred from clients to servers, can be included in the

environment variable of a higher-order Gamma configuration. This provides a

mechanism for describing both inter-agent communications and agent migration.

3. Specifying Multi-Agent Systems in an E-Learning Environment

From the workflow model of the course development, we can build a collaborative

system model that partitions the problem into one or more smaller tasks, which are

tackled by corresponding agents. For example, let’s examine the multi-agent system

for course maintenance and recommendation that was designed in [10]. The online

course materials are updated often in order to keep them as current as possible, esp. in

some rapidly changing fields like ‘computing and information systems’. Because of

the complexity of the materials, and the short development cycles within which they

are produced, the course instructor should make the necessary adjustments time by

time for the benefit of the students. Whenever there is a significant change on the

content of several designated web pages of online course materials, students who take

the course should be notified by the course coordinator by e-mail. Figure 1 shows the

conversation schemata for course maintenance.

The conversation model of the course material change notification consists

of the following elements. For simplicity of illustration, we assume that a student who

takes the course is in one of the 3 phases, numbered 1, 2, or 3. The interpretation of

the phases is trivial and left undefined (For example, phase 1 might be the phase

before the first exam, phase 2 the phase between the first exam and the second exam;

and phase 3 the phase between the second exam and the final exam.) except that we

assume only students who have passed the previous phase are allowed to enter the

next phase. A course web page also bears a phase number, indicating to which phase

its content is significant. Once a change is made to a web page, all students taking the

course and whose phase number matches the phase number borne by the web page

will be sent the link to that page.

• Notification Agent Control Client (NACC): The Notification Agent Control Client

of an instructor or a student runs on his/her machine and allows him/her to control

the behavior of the corresponding Notification Agent deployed in a distributed

environment. In our system, NACC adds a student into the student database or

removes him/her from the database, or changes the phase number the student is

currently in.

• Notification Agent (NTFC): The basic function of the Notification Agent is to

send e-mails to students taking the course according to the student profiles stored

in a database when the course material has been significantly changed.

• Monitoring Agent (MNTR): The Web Change Monitoring Agent of a system

administrator monitors a collection of course material URLs stored in a database.

When the agent detects a significant change, it sends a message to the Notification

Agent. Also, once a broken link is detected in the topic tree, it notifies the

maintenance agent to either correct the link or delete the orphaned page.

• Student Information Agent (STIF): A Student Information Agent is designed for

providing services about student information, such as providing an e-mail list for a

course by automatically maintaining the email list of students taking a course; and

maintaining the profile of each student.

• Maintenance Agent (MNTN): The maintenance agent provides proxy services to

the instructor. It maintains the content of the topic tree.

• Topic Tree or Link Database (LINK): The course material is organized in the

form of a topic tree. Each entry in the topic tree is a link to a web page.

Figure 1: A conversation schemata for course maintenance

Let INST and STUD denote the multisets of instructors and students,

respectively, and I, S, and L denote the instructor (We assume that there is only one

instructor), the initial roll of the class, and the initial content of the course (in the form

of the set of links), respectively, the following is the Gamma program that specifies

the above system:

MAIN i S0 L0 = [P, NACC = [Q1, STUD = S0], NTFC = [Q2, STUD = S0, LINK = L0],

MNTR = [Q3, LINK = L0],

STIF = [Q4, STUD = S0], MNTN = [Q5, INST = {i}, LINK = L0]] where

 P = P1 + P2 + P3 + P4 + P5

P1 = [Q1, STUD = S+{(s, 1, Ø)}]: NACC, [Q2, STUD = S’, LINK = L]: NTFC

→ [Q1, STUD = S+{(s, 1, Ø)}]: NACC, [Q2, STUD = S’+{(s, 1, Ø)}, LINK

= L]: NTFC ← (s, 1, Ø) ∉ S’

P2 = [Q1, STUD = S+{(s, NULL, M)}]: NACC, [Q2, STUD = S’, LINK = L]:

NTFC → [Q1, STUD = S]: NACC, [Q2, STUD = S’ - {(s, p, M)}, LINK =

L]: NTFC

P3 = [Q1, STUD = S+{(s, p, M)}]: NACC, [Q2, STUD = S’+{(s, p, M’)}, LINK

= L]: NTFC → [Q1, STUD = S+{(s, p, M’)}]: NACC, [Q2, STUD = S’+{(s,

p, M’)}, LINK = L]: NTFC ← M ≠ M’

P4 = [Q2, STUD = S, LINK = L+(l, p, normal)]: NTFC, [Q3, LINK = L’+{(l, p,

changed)}]: MNTR → [Q2, STUD = S, LINK = L+(l, p, changed)]: NTFC,

[Q3, LINK = L’+{(l, p, changed)}]: MNTR

P5 = [Q1, STUD = S+{(s, 1, Ø)}]: NACC, [Q4, STUD = S’]: STIF → [Q1,

STUD = S+{(s, 1, Ø)}]: NACC, [Q4, STUD = S’+{(s, 1, Ø)}]: STIF ← (s,

1, Ø) ∉ S’

P6 = [Q1, STUD = S+{(s, NULL, M)}]: NACC, [Q4, STUD = S’]: STIF → [Q1,

STUD = S]: NACC, [Q4, STUD = S’ - {(s, p, M)}]: STIF

P7 = [Q1, STUD = S+{(s, p, M)}]: NACC, [Q4, STUD = S’+{(s, p+1, M)}]:

STIF → [Q1, STUD = S+{(s, p+1, M)}]: NACC, [Q4, STUD = S’+{(s,

p+1, M’)}]: STIF

P8 = [Q2, STUD = S+{(s, p, M’)}, LINK = L]: NTFC, [Q4, STUD = S’+{(s, p,

M)}]: STIF → [Q2, STUD = S+{(s, p, M’)}, LINK = L]: NTFC, [Q4, STUD

= S’+{(s, p, M’)}]: STIF ← M ≠ M’

P9 = [Q2, STUD = S+{(s, p, M’)}, LINK = L]: NTFC, [Q4, STUD = S’+{(s,

p+1, M)}]: STIF → [Q2, STUD = S+{(s, p+1, M’)}, LINK = L]: NTFC,

[Q4, STUD = S’+{(s, p+1, M)}]: STIF

P10 = [Q2, STUD = S, LINK = L]: NTFC, [Q5, INST = I, LINK = L’]: MNTN →

[Q2, STUD = S, LINK = L’]: NTFC, [Q5, INST = I, LINK = L’]: MNTN ←

L ≠ L’

P11 = [Q3, LINK = L]: MNTR,, [Q5, INST = I, LINK = L’]: MNTN → [Q3, LINK

= L’]: MNTR, [Q5, INST = I, LINK = L’]: MNTN ← L ≠ L’

 Q1 = Enrl + Drop

Enrl = (s, 1, Ø): STUD ← Enroll(s)

Drop = (s, p, M): STUD → (s, NULL, M) ← Drop(s)

 Q2 = Updt ◦ Emal

Emal = (l, p, changed): LINK, (s, p. M): STUD → (l, p, changed): LINK, (s, p.

M+{l}): STUD ← l ∉ M

Updt = (l, p, changed): LINK → (l, p, normal): LINK

 Q3 = (l, p, normal): LINK → (l, p, changed): LINK ← Modified(I)

Q4 = (s, p, M): STUD → (s, p+1, M): STUD ← Pass(s, p)

 Q5 = AddInst + AddLink + Chng + Updt

AddInst = i: INST ← AddInst(i)

AddLink = i: INST → (l, p, normal): LINK, i: INST ← (l, p) = AddLink(l, i)

Chng = (l, p, normal): LINK, i: INST → (l’, p, changed): LINK, i: INST ← l’=

Change(l, i)

Updt = (l, p, broken): LINK, i: INST → (l’, p, normal): LINK, i: INST ← l’=

Update(I, i)

In this program, constants are written in boldface words. Each student record

is a tuple (student, phase, mailbox) where student is the name of the student, phase

the phase number where the student is in, and mailbox the mailbox of the student,

which is a multiset of email messages. Each entry of the link database is also a tuple

(link, phase, status) where link is the link to the web page in the topic tree, phase the

phase number this page is designed for, and status the status of the page, which can be

either normal, changed, or broken. Boolean functions Enroll(s) and Drop(s) return

whether student s is enrolled in the class or wants to drop. Modified(l) function returns

whether a particular web page pointed to by link l has been modified or not. Pass(s, p)

function finds out whether student s has passed phase p or not. Add(l, i) function

indicates whether instructor i wants to add page pointed to by link l into the link

database or not. Change(l, i) function returns the link to the changed page whose

original is pointed to by l. Update(l, i) function updates the broken link l and returns

the corrected link.

The program consists of configurations in two levels: the MAIN configuration

in the higher level and all other configurations in the lower level. Program P in MAIN

configuration exchanges elements of the multisets in the environments of the lower-

level configurations.

This example shows how Gamma language expresses the architecture of a

multi-agent system succinctly. With the underlying computing model, we do not need

to consider the specifications of nonessential features of the system, e.g., the number

of program units, connection links for communications, and organizations of data, and

therefore can focus on the specification of the overall architecture. It catches the way

program units interact with one another and local computations, such as the

implementations of those local functions, are left to the subsequent design phase.

The specification of the overall system benefits the subsequent design phases

because details of the system can be added into the system in an accumulative

fashion. The following section describes the specification of individual program units.

4. From Architecture to Building Blocks

A systematic design strategy was proposed in [11], in which Gamma specification of

an agent system can be implemented in a hierarchical running environment composed

of nodes in different levels of a tree. Interactions among agents can be implemented in

a unified mechanism for synchronization. In this scheme, each configuration in the

Gamma specification is implemented as a node. The overall architecture of the system

is a tree structure, which expands and shrinks dynamically. A node only

communicates with another node in the immediate upper or lower level. Interfaces

between nodes specify the local conditions that may cause an action in the upper

level. The actions in the upper level (in which nodes are called controlling nodes) can

be creating/deleting nodes in the lower level or transforming the states of nodes in the

lower level by data transfer.

The specification of the type of a node is composed of the module name,

declarations of environment variables, imported variables, exported variables, and a

body block consisting of sequentially executed statements.

process name(parameter-list)

environment Local environment variables

import Imported variables

export Exported variables

begin
Statements

End

Variables represent data sets. We leave the data structure for variables

unspecified to maintain high-level abstraction. Imported variables and exported

variables are written in the form of Module.Variable. If Module is omitted, the

variable is identical to the local variable. Imported variables store values received

from the nodes in the immediate lower or upper level while exported variables stores

the values that are sent to the node in immediate lower or upper level. Both imported

variables and exported variables can be interpreted as set of channels through which

data are exchanged between nodes in adjacent levels. There is a separated channel

established for each node. To maintain a high level of abstraction, we do not

distinguish channels for different nodes. Instead, we use operator X.node to find out

the sending node through variable X. Channels are automatic objects, which means

imported channels receive messages whenever a send action is initiated by another

node and exported channels send messages whenever data are available. To send a

message to another node, we only need to use add action to add data items into the

exported variables. Although we may use the same variable in both the import and

export section, incoming data and outgoing data are distinguished by default. That

means that outgoing data are never used in local computation.

Parameter list is used to pass initial values to the process when the process of

the particular module is created. There are four actions that can be performed by a

process:

• Add(variable, data): add data into variable

• Delete(variable, data): delete data from variable

• Select(variable): select an element of the data set represented by variable

• element.#n: projection operation --- extract the nth value of the tuple denoted by

element

Statements in the body block of a module can be an add/delete action, a

branching statement, or a looping statement. We omit the description of branching

statements because they are not used in this program. The looping structure has the

following syntax:

do cond1 -> statement1;

cond2 -> statement2;

…

 condn: -> statementn;

od

The semantics of the looping statement is: cond1, …, condn are tested and

one of the statements whose corresponding condition is tested to true is executed non-

deterministically. Conditions are tested repeatedly until none of the conditions

evaluates to true and the control is then transferred to the statement that follows the

do statement.

The modules designed for the course maintenance program in the previous

section is described in the following:

process NACC(STUD firstRoll)
environment
 STUD roll = firstRoll;
import
 STUD roll;
export
 STUD roll;
begin

do Enroll(s) Add(roll, (s, 1, Ø));
 s = Select(roll), Drop(s) Delete(roll, s), Add(roll, (s, NULL, s.#3));
od

end

process NTFC(STUD firstRoll, LINK origLink)

environment

 STUD roll = firstRoll; LINK link = origLink;

import

 LINK link;

export

 STUD roll; LINK link;

begin

do l = Select(link), l.#3 = “changed” →

do s = Select(roll), l ∉ s.#3 → Add(s.#3, l);od

do l = Select(link), l.#3 = “changed” → Delete(link, l), Add(link, (l.#1, l.#2,

“normal”));

od

end

process MNTR(LINK origLink)

environment

 LINK link = origLink;

import

 LINK link;

export

 LINK link;

begin

do l = Select(link), Modified(l) → Delete(link, l), Add(link, (l.#1, l.#2, “changed”));

od

end

process STIF(STUD firstRoll)

environment

 STUD roll = firstRoll;

import

 STUD roll;

export

 STUD roll;

begin

do s = Select(roll), Pass(s.#1, s.#2) → Delete(roll, s), Add(link, (s.#1, s.#2 + 1,

s.#3));

od

end

process MNTN(INST initInst, LINK origLink)

environment

 INST inst = initInst;

LINK link = origLink;

import

 LINK link;

export

 LINK link;

begin

do AddInst(i) → Add(inst, I);

i = Select(inst), l = AddLink(l, i) → Add(link, (l.#1, l.#2, “normal”);

i = Select(inst), l = Select(link), l.#3 = “normal”, l’ = Change(l, i) →

Delete(link, l), Add(link, (l’, l.#2, “changed”));

i = Select(inst), l = Select(link), l.#3 = “broken”, l’ = Update(l, i) →

Delete(link, l), Add(link, (l’, l.#2, “normal”));

od

end

process MAIN(INST initInst, STUD firstRoll, LINK origLink)

environment

 NACC nacc; NTFC ntfc; MNTR mntr; STIF stif; MNTN mntn;

import

 STUD nacc.rollNacc, ntfc.rollNtfc, stif.rollStif;

 LINK ntfc.linkNtfc, mntr.linkMntr, mntn.linkMntn;

export

 STUD nacc.rollNacc, ntfc.rollNtfc, stif.rollStif;

 LINK ntfc.linkNtfc, mntr.linkMntr, mntn.linkMntn;

begin

 Add(nacc, NACC(firstRoll));

Add(ntfc, NTFC(firstRoll, origLink));

Add(mntr, MNTR(origLink));

Add(stif, STIF(firstRoll));

Add(mntn, MNTN(initInst, origLink));

do s = Select(nacc.rollNacc), s.#2 ≠ NULL, s ∉ ntfc.rollNtfc → Add(ntfc.rollNtfc,

s);

s = Select(nacc.rollNacc), s.#2 = NULL, s’ = Select(ntfc.rollNtfc), s.#1 = s’.#1

→ Delete(nacc.rollNacc, s), Delete(ntfc.rollNtfc, s’);

s = Select(nacc.rollNacc), s’ = Select(ntfc.rollNtfc), s.#1 = s’.#1, s.#2 = s’.#2,

s.#3 ≠ s’.#3 → Delete(nacc.rollNacc, s), Add(nacc.rollNacc, s’);

l = Select(ntfc.linkNtfc), l’ = Select(mntr.linkMntr), l.#1 = l’.#1, l.#2 = l’.#2,

s.#3 ≠ s’.#3 → Delete(ntfc.linkNtfc, l), Add(ntfc.linkNtfc, l’);

s = Select(nacc.rollNacc), s.#2 ≠ NULL, s ∉ stif.rollStif → Add(stif.rollStif, s);

s = Select(nacc.rollNacc), s.#2 = NULL, s’ = Select(stif.rollStif), s.#1 = s’.#1 →

Delete(nacc.rollNacc, s), Delete(stif.rollStif, s’);

s = Select(nacc.rollNacc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 + 1 = s’.#2,

s.#3 = s’.#3 → Delete(nacc.rollNacc, s), Add(nacc.rollNacc, s’);

s = Select(ntfc.rollNtfc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 = s’.#2, s.#3

≠ s’.#3 → Delete(stif.rollStif, s’), Add(stif.rollStif, s);

s = Select(ntfc.rollNtfc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 + 1 = s’.#2,

→ Delete(ntfc.rollNtfc, s), Add(ntfc.rollNtfc, (s.#1, s’.#2, s.#3));

s = Select(ntfc.rollNtfc), s’ = Select(stif.rollStif), s.#1 = s’.#1, s.#2 + 1 = s’.#2,

→ Delete(ntfc.rollNtfc, s), Add(ntfc.rollNtfc, (s.#1, s’.#2, s.#3));

l = Select(ntfc.linkNtfc), l ∉ mntn.linkMntn → Delete(ntfc.linkNtfc, l);

l = Select(mntn.linkMntn), l ∉ ntfc.linkNtfc → Add(ntfc.linkNtfc, l);

l = Select(mntr.linkMntr), l ∉ mntn.linkMntn → Delete(mntr.linkMntr, l);

l = Select(mntn.linkMntn), l ∉ mntr.linkMntr → Add(mntr.linkMntr, l)

od

end

Note that higher-order operations remain in the module level. This makes the

specification of the system closer to actual program. Also note that the transformation

from Gamma specification to module specification can well be automated. Further

transformation from module specification to programs in concrete language can be

facilitated. The specification in the module level still focuses on generic process

behavior. Data structures are left unspecified. Further refinement of the specification

should include the use of data structures to organize the data sets. Therefore the

Select operation can be implemented by an algorithm designed in accordance with

the data structure. Another refinement would be the implementation of the data

exchange channels.

5. Conclusions and Future Work

We propose a method for specifying a multi-agent system by using Gamma

language. We find that in chemical reaction metaphor, architectural properties of a

multi-agent system can be expressed succinctly and precisely. Through the case study,

we demonstrate the usefulness of this method in the design of a multi-agent e-learning

environment.We present a method for transforming the Gamma specification of the

agent system into the specification in a module language, in which higher-order

multiset operations are removed. This paves the way for implementing the specified

system by using a sequence of program transformation. In the future, we will be

working on the automation of the program transformation process and the refinement

of module specifications by introducing data structures into the program.

References

1. Vouk, Mladen A., Donald L. Bitzer and Richard L. Klevans, Workflow and End-User

Quality of Service Issues in Web-Based Education, IEEE Trans. on Knowledge and Data

Engineering, 11, (4); July/August 1999, pp. 673-687

2. Yu, Eric, Agent-Oriented Modelling: Software Versus the World, Agent-Oriented Software

Engineering AOSE-2001 Workshop Proceedings. LNCS 2222. Springer Verlag. 206-225.

3. Vassileva J., Deters R., Greer J., MaCalla G., Kumar V., Mudgal C., (1998) A Multi-Agent

Architecture for Peer-Help in a University Course, Proceedings of the Workshop on

Pedagogical Agents at ITS’98, San Antonio, Texas, 64-68

4. Flores, R.A., Kremer, R.C., & Norrie, D.H. An Architecture for Modeling Internet-based

Collaborative Agent Systems, in T. Wagner & O.F. Rana (Eds.), Infrastructure for Agents,

Multi-Agent Systems, and Scalable Multi-Agent Systems, LNCS1887, Springer-Verlag,

2001, 56-63.

5. Lin F. O., Norrie D. H., Flores, R.A., & Kremer R.C. Incorporating Conversation Managers

into Multi-agent Systems, in M. Greaves, F. Dignum, J. Bradshaw & B. Chaib-draa (Eds.),

Proc. of the Workshop on Agent Communication and Languages, 4th Inter. Conf. on

Autonomous Agents (Agents 2000), Barcelona, Spain, June, 3-7, 2000, pp. 1-9.

6. Banatre, J.-P., & Le Metayer, D. (1990). The Gamma model and its discipline of

programming. Science of Computer Programming, 15, 55-77.

7. Banatre, J.-P., & Le Metayer, D. (1993). Programming by multiset transformation, CACM,

36(1), 98-111.

8. Banatre, J.-P., & Le Metayer, D. (1996). Gamma and the chemical reaction model: ten years

after. in: Andresli, J.M., & Hankin, C. (eds.), Coordination Programming: Mechanisms,

Models and Semantics, Imperial College Press.
9. Le Metayer, D. (1994). Higher-order multiset processing, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 18, 179-200.
10. Lin, F. O., Lin, H., & Holt, P., A Method for Implementing Distributed Learning

Environments, Proc. 2003 Information Resources Management Association International

Conference, May 18-21, 2003, Philadelphia, Pennsylvania, USA, 484-487.
11. Lin, H., A Language for Specifying Agent Systems in E-Learning Environments, in Fuhua

Oscar Lin (eds.): Designing Distributed Learning Environments With Intelligent Software

Agents, Idea Group Inc., to appear.

