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ABSTRACT

In order to simplify the data analysis from standard addition experiments, we propose x-y
coordinate swapping followed by the conventional linear regression. The results of the
standard addition experiment are obtained directly from the intercept of the inverse
calibration approach. Consequently, the uncertainty evaluation becomes significantly
simplified. The method is also applicable to nonlinear curves, such as the quadratic fit,
without incurring any additional complexity.

GRAPHICAL ABSTRACT

THE METHOD OF STANDARD ADDITIONS

DIRECT ; [ ) ) ’ "t INVERSE
REGRESSION [ | . _ REGRESSION

£

AMOUNT OF THE
ANALYTE ADDED

I i AMOUNTOFTHE
0 ANALYTE ADDED =

X, =a/a,
ulxg) = xo[v¥(a)/ay? + 1 (a))/at + S
2% (a;)/(ay ;)] 2 "

u(x;) = u(b,)

1[7



Introduction

It is a common knowledge in analytical chemistry that the instrumental response can be
affected by the sample matrix. This behaviour leads to biased results when the analytical
signal produced from the sample is compared against the calibration graph prepared from
matrix-free standard solutions. To overcome this problem, the method of standard additions
was introduced in the 1930s." To date, the method of standard addition remains a serious tool
in quantitation and the best tool available when isotope dilution cannot be applied. Like any
scientific tool, the method standard addition has witnessed new developments most notable
of which is the concomitant use of the internal standard.?

To wit, if more than one addition of a standard is performed method of standard additions
seeks the point with zero response (assuming all signals are corrected for blank
contribution), i.e., the analytical result is

Xo = =Xy=o (1)
The calculation of x, is done by fitting of best line through the observed data {x, y} where x is
the amount of the added analyte, and y is the corresponding analytical response. For a
commonly used straight line fit, y = a, + a,x,

Xo = ao/a1 (2)
which means that the result of the classical standard addition is the ratio of the intercept and
the slope of the linear fit. A drawback of this traditional approach is that the uncertainty of
the analytical result cannot be obtained readily from the fitting parameters a, and a,. Rather,
uncertainty propagation must be performed by combining the uncertainties of a, and a..
Moreover, because the intercept and the slope are correlated estimates, uncertainty
propagation of their ratio must involve the covariance between these two estimates which is
not trivial and is often neglected in practice:

u(x,) u(a,) u(a cov(a,,aq,
(%) _¥(@) w(a) _,covlaa) G
XO aO a1 aoa1
where
COV(GO, a‘l) =-X-u' (a1) (4)

In general, uncertainty calculations of standard addition results are rather tedious; and
treatises on the subject are riddled with mathematical equations.? In addition, several recent
studies have focused on a more general problem of nonlinear calibration curves in analytical
chemistry,® which further complicates the data analysis.

THEORY
Variable transformation for standard additions

To the annoyance of many chemists, traditional standard addition regression does not yield
the analytical result directly. This problem has been noted before. Notably, Tellinghuisen has
proposed an alternative approach whereby the variable-of-interest for standard additions, x,,
is cast as an explicit variable of the fitting model rather than calculated from the fitting
parameters.”’ The method involves variable transformation from the classical y = a, + ax
(with x, = aofa,) to y = ao(a, + x) which gives a direct estimate of the standard addition result,
i.e., Xo = a,. Likewise, quadratic fitting of y = a, + a,x + a,x* can be done using a function y =
ao(a, + X) + ay(a, + x)* which yields x, = a, Albeit simple in its concept, the variable
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rearrangement fromy = a + bx to y = a(b + x) = ab + ax leads to a nonlinear fitting problem
because of the product of both variables, ab, in the model equation. As a result, no simple
algebraic expressions can provide the results and iterative minimization methods must be
employed, such as the Excel SOLVER macro.

Coordinate swapping

Consider a typical standard addition experiment where x is the vector of the masses of the
added standard and y is the vector of the corresponding instrumental responses. Now,
instead of fitting y = a, + a,x, one performs fitting of x = b, + b,y which is known as the inverse
calibration.® The advantage of the coordinate swapping becomes evident after calculation of
Xo = —Xy=0; it is equal the (negative) intercept of the inverse regression, i.e.,

Xo = ‘bo (5)
Consequently, the uncertainty of the standard addition result is the uncertainty of the
intercept and no additional uncertainty propagation is necessary thus obviating the need to
evaluate the covariance between parameters:

u(xo) = u(bo) (6)
Nonlinear models

The difficulty of employing polynomial fitting in standard addition models is in large part due
to the complexity of obtaining the analytical results. For example, the analytical result from a
quadratic fit, y = a, + a,x' + a,x?, is

_-a,*.al-4a,,

xo - (7)
2a,

and the uncertainty calculation is prohibitively complex:
w'(a,) , glui(a)  d'ui(a,)

u(x,)=
(x.) z 4aiz 4aiz ®)
_gcov(a,,a,) . dcov(a,,a,) qdcov(a,,a,)
a,z a,z 2a}z

where z = a’ - 4d.a,, q=a1¢«/;, d=ag-2a,a,, and the parameter covariances are

calculated as follows:
PRI DI DI
(5] -y (9)
(Xx) -2x®
(Xx) -n2x
ny x*=> x> x* )
(Xx) -nZx

In stark contrast to eqS. 8-11, the simplicity of the uncertainty calculation in the inverse
calibration approach remains unchanged when polynomial models are employed:

u*(x,)=u’(b,) (12)

cov(a,a,)=u'(a,)

(10)

COV(GO, az ) = U2 (az )

COV(G1 ’ az) = u2 (az )
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This is a particularly attractive feature given the growing use of nonlinear calibration
functions in analytical chemistry (see Table 1).°

Table 1. Comparison of the direct and inverse calibration approaches for standard additions

Direct calibration Result

y =+ d,X Xo = dold,

Y =do+aX +ax° Xo = (=a, = V(a,’ - 4a,a,))/(2a,)
¥ = (0o + ax + a,x*) (1 + a;x) Xo = (-a, £ V(a,’ - 4a,a,))/(2a,)
Inverse calibration Result

x=Db,+ by Xo =—bo

x=bg+ bx'+b,x* Xo = =b,

x = (bo + by + by*)| (1 + byy) Xo = ~b,

Regressions with Excel

Calculations using Excel spreadsheets have become the norm in science. Yet, many fitting
algorithms involve the soLVER macro which performs minimization of a user-defined function
against the user-defined argument. Although effective, the use of this macro requires active
user input, and it does not provide the uncertainty estimates for the parameters. On the
contrary, the LINEST function is a standard part of Excel and it performs linear and nonlinear
fitting. Table 2 summarizes useful LINEST directives in order to perform fitting on linear or
polynomial models, including the rational Padé functions.

Table 2. LINEST() fitting of functions commonly encountered in analytical chemistry'

Type Function Excel directive®

Direct Y = doX =LINEST(Y, X, FALSE, TRUE)

Linear Y =do + a:X =LINEST(Y, X, TRUE, TRUE)?

Quadratic | y=do + a,x' + a,x =LINEST(y, x*{0,1,2}, FALSE, TRUE)

Polynomial | y=ao+a,x' +... +anx™ | =LINEST(y, x*{0,...,m}, FALSE, TRUE)

Padé[1,1] |y=(ao+ax)/(1+a,x) =LINEST(y, x*{0,1,0}*-y*{0,0,1}*x"{0,0,1}, FALSE, TRUE)

Padé[2,1] |y = (a0 + a,x + a,x*)/ =LINEST(y, x*{0,1,2,0}*~y"*{0,0,0,1}*x"{0,0,0,1}, FALSE, TRUE)
(1+asx)

1 For inverse fitting x = f(y), interchange a instances of x and y in the uUNEsST directive.
For example, inverse linear fit becomes =LINEST(X, Y, TRUE, TRUE).

2 Symbols x and y stand for the data input range. For example, if the values of x and y
are in cells A1 to As and B1 to B5 respectively, then the linear fit is obtained by
entering =LINEST(B1:B5, A1:A5, TRUE, TRUE). Also note that unlike many other functions
which are entered in a singe cell by pressing enter, LINEST is an array function which is
entered over several cells by pressing ctrl+shift+enter.

3 Alternatively, one can write =LINEST(y, x{0,1}, FALSE, TRUE).

Experimental Part

Bromide was analyzed in certified groundwater reference material by using headspace gas
chromatography mass spectrometry (GC/MS) after the aqueous derivatization with
triethyloxonium tetrafluoroborate. lodide ions naturally present in the groundwater were
used as the internal standard for bromide. Experimental details are summarized in the
Supplementary material and further details can be found elsewhere.[ref]
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Results and discussion

To demonstrate the validity of the coordinate swapping in standard additions, and also to
show the usefulness of this approach when dealing with nonlinear standard addition models,
determination of bromide in groundwater certified reference material was undertaken using
state-of-the-art GCMS method.” All relevant experimental data are given in Table 3. There,
Magaar) is the mass of the sample in the mixture of the sample (A) and standard (A*).
Consequently, ma«aavy is the mass of the standard in the corresponding mixture. mgasqi is
the mass of the AA* mixtures after addition of all reagents.

Table 3. Determination of bromide ions in groundwater (BCR-611): data’

Magaanylg Mas(aan)[8 M(aa%)dil§ Aeter Agy

2.005 99 0.000 00 2.353 82 14 610 8153
2.008 17 0.000 00 2.358 67 14 633 8176
2.180 35 0.000 00 2.355 67 13 422 7695
2.00174 0.049 49 2.350 62 21 863 8190
2.004 35 0.050 05 2.353 49 22161 8339
2.009 60 0.049 89 2.358 09 22 155 8199
1.999 61 0.099 24 2.348 73 29 786 8357
2.005 36 0.099 49 2.354 30 30 806 8652
2.009 01 0.099 91 2.358 00 30 427 8432
1.999 22 0.148 14 2.346 72 35088 7983
2.00276 0.148 72 2.35128 37794 8531
2.006 66 0.148 83 2.354 87 34243 7731
1.997 26 0.197 03 2.344 29 42 221 7909
2.00413 0.198 03 2.35216 46 070 8682
2.006 93 0.200 21 2.357 14 38 640 7286

1Mass fraction of Br~ in primary reference standard solution, ws = 1925(2); ng g

In our calculations we use a more elaborate formalism of standard additions which accounts
for the (small) differences in the amount of sample in each aliquot, and accounts for the
(small) differences in the dilution factors. We also employ an internal standard in order to
attain highest precision. More details on this precision-formalism of the standard additions
can be consulted elsewhere,®" and here we give only a brief summary of the variables which
are involved in constructing the standard addition plots. When no internal standard is used,
the following variables are considered:

M aanydi M psan) (13)

and x=w,,
Maanr) Mty

When the internal standard is used, there is no need to account for the sample dilution

factors, and the following variables are considered:

Y =Ags

A m \J L4
y=—28 and x=w, —&& (14)
Ay Maaar)
The incorporation of the mass fraction of the analyte in the primary standard, was, serves to

simplify the calculations. Such practice is acceptable if the uncertainty of the wax is negligible.
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However, when the uncertainty arising from the wa« needs to be explicitly accounted for in
the combined uncertainty budget, one can remove the wa+ from egs. 13 and 14. Then, the
mass fraction of the analyte in the sample is wa = Xowas, and the uncertainty is (u(wa)/wa)* =
(u(x0)/xo)" + (u(was)wax)’. This way one can ensure that the uncertainty associated with the
primary standard is properly incorporated in the uncertainty of the result. For the sake of
simplicity, this was not done in this work, also because the uncertainty in the primary
reference standard, u(wa+), is insignificant in comparison to the uncertainty of the fit for data
presented in this work.

Using data from Table 3, standard addition calculations were performed with three models:
linear, quadratic, and Padé[2,1] whose model equations are given in Table 1. Least squares
fitting was performed using LINEST() function as detailed in Table 2. For direct calibration
functions, the uncertainty of x, was obtained either from egs. 3-4 (linear model) or eqs. 8-11
(quadratic and Padé[2,1] models). For all inverse calibration functions, the uncertainty of the
result was obtained directly from eq. 6. The results are given in Table 4.

Table 4. Results of standard addition experiment.’

y = Agtar/Aey Equations Result, Complexity, | Complexity,
X = Was Mas(aas) Macaar) w(Br)/(ng/g) N(x,) N[u(x,)]
Direct calibration

Yy =0+ a,X Egs. 2,34 96.45(1.14) 1 28

Y =do + aX + dyX’ Egs. 7, 8-11 93.15(3.12) 8 170

Y = (a0 + ax + a,x%)] (1 + asx) Egs. 7, 8-11 94.93(1.17) 8 170
Inverse calibration

X=by+by Egs.s, 6 96.37(1.14)

X =by + byx + bx* Egs.5,6 93.09(3.34)

x =(bo + by + by*) (1 + byy) Egs. 5,6 94.94(1.12)

1 Mass fraction of bromide in BCR-611 as determined by the quadruple isotope dilution, w(Br")
= 96.28(42) ng/g (ref. 12). All uncertainties here are expressed with coverage factor k = 1.

2 Minimum number of elementary arithmetic functions (addition, multiplication, and
exponentiation) needed to obtain the result starting from the results given by the LINEST()
function (calculated for this dataset with N = 15).

In general, one can observe that the results of inverse calibration approach are no different
than those obtained from the traditional direct fitting of analytical signal against the mass of
the added analyte. The assignment of the x, values and their uncertainty estimates, however,
is considerably simpler from the inverse fits. In addition, the marked simplicity of the inverse
approach can spur the evaluation of the metrological performance of nonlinear standard
addition models.

Conclusions

Although strictly speaking the classical and inverse linear fitting are not mathematically
equivalent procedures, the distinction becomes relevant only for datasets that are very
noisy. Since this is not a norm in analytical chemistry, the inverse fitting offers significant
advantages to chemists. Given that the use inverse regression in standard addition
experiments simplifies the data analysis significantly over the traditional fitting approach, the
use of inverse regression should be embraced in the spirit of Occam’s razor.
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