
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=83a490b6-508b-4306-b94d-c89ca0c94420

https://publications-cnrc.canada.ca/fra/voir/objet/?id=83a490b6-508b-4306-b94d-c89ca0c94420

NRC Publications Archive
Archives des publications du CNRC

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Feature model debugging based on description logic reasoning
Noorian, Mahdi; Ensan, Alireza; Bagheri, Ebrahim; Boley, Harold; Biletskiy,
Yevgen

Feature Model Debugging based on Description

Logic Reasoning

Mahdi Noorian1, Alireza Ensan1, Ebrahim Bagheri1,2, Harold Boley3, and Yevgen Biletskiy1

University of New Brunswick, Fredericton, Canada1

Athabasca University, Edmonton, Canada2

National Research Council Canada3

m.noorian@unb.ca, alireza.ensan@unb.ca, ebagheri@athabascau.ca, harold.boley@nrc-cnrc.gc.ca, biletski@unb.ca

Abstract—Software product line engineering refers to the
concept of sharing commonalities and variabilities of a set of
software products in a target domain of interest. Feature models
are one of the prominent representation formalisms for software
product lines. Given the fact that feature models cover all possible
applications and products of a target domain, it is possible
that the artifacts are not necessarily and always consistent.
Therefore, identifying and resolving inconsistencies in feature
models is a significant task; especially, due to the fact that a large
number of possible products and complex interactions between
the software product line features need to be checked. To address
these challenges, in this paper, we propose a framework with
an automated tool to find and fix the inconsistencies of feature
models based on Description Logic (DL) reasoning. The basic
idea of our approach is to first transform and represent a feature
model using Description Logics. The second step is to identify the
possible inconsistencies of the feature model using DL reasoning
and then recommend appropriate solutions to a domain analyst
for resolving existing inconsistencies.

I. INTRODUCTION

Software Product Line (SPL) engineering is a paradigm

that models families of software products with similar char-

acteristics [12]. These characteristics, known as features, can

characterize the specifications of a given domain. In fact, SPLs

employ features to model all of the possible configurations

and applications of a domain. The use of these features that

allow for the sharing of commonalities among features of a

domain strengthens the capability of SPLs to be used in re-use-

based software development [15]. SPLs are usually represented

using Feature Models (FM) that can indicate variability and

commonality of product lines in a graphical representation.

FMs have a tree structure where each feature is a node of the

tree and its edges are the possible variabilities of the features.

Within the software development lifecycle of SPL, the

process of developing a feature model for a given domain

is referred to as the Domain Engineering phase, whereas the

process of selecting the desirable features from the designed

feature model for developing a new applications is called

the Application Engineering phase. In both steps, inconsistent

definitions and designs can be encountered that need to be

automatically detected and semi-automatically resolved which

requires the development and customization of AI techniques

specifically for this purpose.

The task of inconsistency identification and resolution within

a feature model is the main concern of this paper. Several

approaches have been proposed to verify the validity of a fea-

ture model and its products; but only very few techniques exist

that address the issue of inconsistency resolution within feature

models. Furthermore, there is no automated tool available that

is able to perform all of the tasks of inconsistency checking,

debugging and resolution within feature models; so this fact

shows the necessity for the development of a comprehensive

automated AI-centric tool for this purpose. To this end, we

propose a framework that describes the whole process of FM

design and product generation based on Description Logics. It

can check the validity of a given model, and all of its products;

also it gives resolutions for invalid products or inconsistent

models.

In real world applications such as MS Office, millions of

features exist in the feature model. To generate new applica-

tions from this huge number of features, a comprehensive and

reliable method is needed because feature model validation in

this case would need too much time to be properly performed

by a human analyst. So if a domain analyst is responsible for

validating a large product line, he would need an automated

tool that would help him/her by suggesting the best configu-

ration and resolution strategies in an efficient amount of time.

For this purpose, the strength of DL reasoning can be useful to

guide domain analyst within the process of domain verification.

In this work, we propose a formal framework for perform-

ing inconsistency checking, validation and resolution based

on DL reasoning for SPL. Using DL reasoning techniques

which are implemented within Pellet [16] and also based on

Reiter’s algorithm [13], we can find the solutions for resolving

inconsistencies within a feature model. The main contributions

of this work can be summarized as follows:

• We show the importance of using Description Logic vari-

ants especially OWL-DL in the area of software product

lines;

• We propose a comprehensive framework for inconsistency

checking by employing the Pellet reasoning engine. Also,

we utilize Reiter’s algorithm to propose solutions for

resolving the identified inconsistencies.

• Based on our framework, we develop a tool called AUFM

which supports the design of FMs in both domain and

product levels. Hence, it identifies and resolves incon-

sistencies in the FM and its related products. Indeed,

developing such a tool in the area of software product

line can be helpful for domain analysts who are dealing

with feature model validation and verification.

• We ground the problem of inconsistency detection and

resolution on sound Description Logic representation and

reasoning mechanisms that would allow us to ensure that

the proposed revision solutions are at least syntactically

acceptable.

The remainder of this paper is as follows: The next section

reviews some preliminaries. Then, our approach for incon-

sistency resolution in feature models is described in Section

III. In Section IV, we support our approach by analyzing a

sample feature model. Subsequently, we evaluate the proposed

approach with a case study in Section V. After that, in Section

VI we discuss related work in this area. Finally, Section VII

is devoted to conclusions and some future work.

II. PRELIMINARIES

A. Feature Models

Features are important distinguishing aspects, qualities, or

characteristics of a family of systems [11]. They are widely

used for depicting the shared structure and behavior of a set

of similar systems. To form a product family, all the features

of a set of similar/related systems are composed into a feature

model. A feature model represents the possible configuration

space of all the products of a system product family in terms

of its features. Feature models can be represented both for-

mally and graphically; however, the graphical notation depicted

through a tree-like structure is more favored due to its visual

appeal and easier understanding.

In a FM, features are hierarchically organized by Structural

Constraints which can be typically classified as: 1) Mandatory:

a feature must be included in the description of its parent

feature; 2) Optional: a feature may or may not be included in

its parent description given the situation; 3) Alternative feature

group: one and only one of features from the feature group

can be included in the parent description; 4) Or feature group:

one or more features from a feature group can be included in

the description of the parent feature. In some case, the tree

structure of feature models falls short at fully representing the

complete set of mutual interdependencies of features; thus,

additional constraints are often added to feature models and

are referred to as Integrity Constraints. The two most widely

used integrity constraints are: Includes - the presence of a

given feature (set of features) requires the inclusion of another

feature (set of features); and Excludes - the presence of a given

(set of) feature(s) requires the elimination of another (set of)

feature. In the following sections, the term ’constraint’ refers to

both integrity and structural constraints unless it is specifically

mentioned.

Inconsistent Feature Model (IFM): An IFM is a FM

that is vulnerable to generate invalid products with regard to

structural and integrity constraints [18], [19]. In other words,

an IFM violates some constraint (both integrity and structural)

simultaneously. As discussed in [18], inconsistency in the

FM can happen in two levels including domain and product

configuration level when some defined constraints are violated.

B. Description Logics (DL)

Description Logic as a subset of First Order Logic is a

knowledge representation formalism that can help to effec-

tively perform reasoning over a knowledge base. A knowledge

base modeled using Description Logics could be defined as

Ψ = (T ,A), where T denotes TBox and comprises of a

set of general inclusion axioms and A stands for ABox and

comprises of a set of instance assertions. This kind of knowl-

edge representation contains a set of all concept names (CN),

role name (RN) and individuals (IN). The semantic of DL-

knowledge base is defined by an interpretation I = (∆I , .I)
where ∆I is a non-empty set of individuals and .I is a function

which maps each C ∈ CN to CI ⊆ ∆I , each R ∈ RN

to RI ⊆ ∆I × ∆I and each a ∈ IN to an aI ∈ ∆I . An

interpretation I satisfies a TBox axiom C � D iff CI ⊆ DI .

An interpretation I is a model of a TBox T iff it satisfies all

of its axioms. Furthermore, an interpretation I is a model of

knowledge base Ψ if it satisfies every TBox axiom and ABox

assertion of Ψ. A concept C is unsatisfiable with regards to

TBox T iff CI = ∅ for all models I of T . In addition, a TBox

T is called incoherent iff there is an unsatisfiable concept in

T . For detailed introduction to description logic, interested

readers can refer to [1].

C. DL-knowledge base Diagnosis and Debugging

In the area of knowledge representation and specially the

semantic Web, knowledge base quality assurance is a promi-

nent task. In the literature, various model-based diagnosis

methods have been proposed for the purpose of developing

a consistent model of a DL knowledge base. Schlobach et

al [14] have utilized Reiter’s algorithm for identifying the

underlying reasons of inconsistencies in a DL knowledge

base, which is based on generating the conflict sets and the

related minimal hitting sets. A set is called conflict set when it

includes such elements that causes incoherencies. A hitting set

is further defined based on the concept of a conflict set such

that it contains at least one element from the collection of the

conflict sets. A hitting set is minimal iff it does not have any

subset which is a hitting set. In order to implement Reiter’s

algorithm, the concept of Minimal Unsatisfiability-Preserving

Sub-TBoxes (MUPS) is used, which refers to minimal conflict

sets in the TBox. MUPS of a TBox for unsatisfiable concept

A are the subsets of the TBox where A is satisfiable. MUPS

can be used to compute the Minimal Incoherence- Preserving

Sub-TBox (MIPS), which explains the incoherence of a TBox

[3]. Consider the TBox T in Table I [14].

The unsatisfiable concepts are A1, A3, A6, A7, e.g., MUPS

for A3 is {ax3, ax4, ax5}. Also MIPS for TBox T is

TABLE I
AN INCOHERENT TBOX T

ax1 : A1 � ¬A �A2 �A3 ax2 : A2 � A �A4

ax3 : A3 � A4 �A5 ax4 : A4 � ∀s.B � C
ax5 : A5 � ∃s.¬B ax6 : A6 � A1 � ∃r.(A3 � ¬C �A4)
ax7 : A7 � ∀s.B � C

Fig. 1. Reiter’s hitting set tree for MIPS in TBox T .

{{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}. Fig.1 represents

the Reiter’s hitting set tree for MIPS in the above sample

incoherent TBox T . Since MIPS is a minimal conflict set,

the minimal hitting set tree can be developed based on the

selection of at least one element from each of its subsets.

The check mark symbols in the leaves indicate the success-

ful diagnosis path from root of the tree. Thus, we can have the

following minimal hitting sets:

{{ax1, ax4}, {ax2, ax4}, {ax1, ax3, ax7}, {ax2, ax3, ax7},
{ax1, ax5, ax7}, {ax2, ax5, ax7}}
In order to make the TBox T coherent, we can simply choose

one element form the produced hitting set and omit the axioms

of the chosen set. Note that, the members of the hitting set

can be selected based on syntactic measures such as different

scoring functions on axioms of MIPS.

III. THE PROPOSED APPROACH

In our approach, we focus on the representation of software

product line feature models as Description Logic knowledge

bases, and consequently use formal reasoning approaches on

such a knowledge base to identify and possibly resolve any

inconsistencies. In order to support our theoretical framework,

we have developed an automated tool from which domain

analysts can benefit for the purpose of domain and prod-

uct consistency validation. First, the domain analysts can

begin by designing a feature model using the AUFM FM

Editor. Next, for the purpose of consistency validation, the

feature model which is in SXFM format (SXFM is XML

Fig. 2. A semi-automated inconsistency management framework.

TABLE II
DL-KNOWLEDGE BASE STRUCTURE DERIVED FROM A FEATURE MODEL.
Feature relation or integrity constraints Description logic modeling

G � T ,and GRule � T hasG � ObjectProperty , T � ∀hasG.G,

F1 � T ,and F1Rule � T ...Fn � T , and GRule≡ ∃hasG.G.

and FnRule � T Also,

Also, has Fi �ObjectProperty ,

G � ¬Fi , for 1 ≤ i ≤ n, T � ∀has Fi.Fi , and

Fi � ¬Fj , for 1 ≤ i, j ≤ n where i �= j. FiRule ≡ ∃hasFi.Fi. for 1 ≤ i ≤ n.

standard for representing a FM) can be sent to the AUFM

Feature Model Debugger. Then, by applying three sequential

processes: 1) Transformation; 2)Inconsistency Identification;

and 3) Inconsistency Resolution, the domain analysts receive

verification feedback. The feedback message contains, what

the inconsistent features/constraints are, why those features

are/cause inconsistency, and how the existing inconsistencies

can be resolved. This information can be used by the domain

analysts to correct the inconsistent FM and make it consistent.

Note that, feature model verification is an iterative process and

it will continue until the domain analysts are satisfied with their

design and product configuration. An overview of this process

is shown in Fig.2.

According to the framework, AUFM feature model de-

bugger consists of three main components. In the following

subsections, we will explain each of them in detail.

A. The FM to OWL- DL Transformation Component

In order to resolve inconsistencies in a feature model

through Description Logic reasoning, the first step is to convert

the feature model representation into some variant of De-

scription Logics. We have chosen OWL-DL for this purpose.

We utilize some theoretical concepts discussed in [20] to

represent a FM in OWL-DL to benefit from the reasoning and

expressiveness provided by it. The conversion is implemented

in both the domain and the configuration levels.

The domain conversion phase includes several tasks that

need to be performed in order to transform a FM into OWL-

DL. The first step of conversion is to assign an OWL class

named Feature Class for each feature in the domain; and

all Feature Classes are considered mutually disjointed. The

second step is defining a Rule Class for each Feature Class.

Such Rule Class is related to its corresponding Feature Class

with necessary and sufficient condition which is restricted

by existential restriction. For example, assume that F is a

Feature Class. So, corresponding FRule class is defined as

FRule ≡ ∃hasF.F . All relations that an individual Feature

Class might have with other Feature Classes are embedded

in its corresponding Rule Class. The aforementioned possible

relations can be defined as structural or integrity constraints. In

other words, each Rule Class represents all relations that the

related Feature Class has with its children in the necessary

condition definition; this is the main reason that a Rule

Class is defined. Consequently, for a root feature G and its

children F1, F2,..., Fn, the associated DL-knowledge base has

the general structure represented in Table II.

TABLE III
LOGIC REPRESENTATION FOR STRUCTURAL AND INTEGRITY CONSTRAINTS IN FMS

Structural or Integrity Constraints Description Logic Modeling

Mandatory GRule≡ ∃ hasF1.F1... GRule≡ ∃hasFn.Fn

Optional Does not impose any constraints

Or GRule� �(∃hasFi.Fi) for1 ≤ i ≤ n

Alternative GRule� �(∃hasFi.Fi) for1 ≤ i ≤ n

GRule� ¬ � (∃hasFi.Fi � ∃hasFj .Fj) for 1 ≤ i ≤ j ≤ n

Include(Require) GRule≡ ∃hasF1.F1...GRule≡ ∃hasFn.Fn

Exclude GRule≡ ¬(∃hasF1.F1)...GRule ≡ ¬(∃hasFn.Fn)

Fig. 3. The AUFM feature model editor.

As discussed before, there are two types of constraints

including structural and integrity constraints in a FM. For a

parent feature G and its children F1, F2,..., Fn, DL represen-

tation for all kinds of constraints are summarized in Table

III. It is worth noting that, Optional relations do not impose

any extra constraints to the feature model and DL-knowledge

base, so we are not concerned with Optional relationships in

the DL-knowledge base model.

The meaning of parent feature and its children is similar

in an Include/Excludes constraint which means that if feature

G is selected for one product, it is necessary that features

F1, F2,..., Fn are included/excluded in that product.

The products conversion phase is a straightforward task

in light of the domain conversion step. In order to model

a product of a FM using DL, we can add a class called

ProductClass and consider which features exist in that prod-

uct and which do not. Mathematically speaking, for a FM with

root feature G and set of features F1, F2,..., Fn, a product that

includes features F1, F2,..., Fi and does not contain features

F(i+1),F(i+2),...,Fn is defined as follows:

Product � GRule

Product ≡ (�(∃hasFj .Fj for1 ≤ j ≤ i ≤ n) �
(¬∃hasFk.Fkfori < k ≤ n))

B. The Inconsistency Identification Component

Basically, this component is responsible for finding the

inconsistencies in the FM and its related products. For a

given feature model, the source of inconsistencies can be two-

fold: structural constraint violation and integrity constraint

violation. After transforming feature model to OWL-DL, we

can perform DL reasoning with any standard DL reasoner to

pinpoint the inconsistent parts of the feature model. Several DL

reasoners are already available such as FaCT++ [17], RACER

[9], and Pellet [16] that implement Tableau based reasoning

[1]. Pellet has been seamlessly plugged into our designed

tool and we can take advantage of its facilities to implement

Reiter’s algorithm for inconsistency resolution, which will be

discussed in the next subsection. Thus, we have employed

Pellet as an integrated reasoning engine in AUFM and are

using it for the purpose of inconsistency checking.

C. Inconsistency Resolution Component

The inconsistency resolution component is an important

part of the AUFM feature model debugger. The aim of this

component is to find the minimum corrections needed to make

an inconsistent FM into a consistent one. In other words,

we are looking for a minimal subset of axioms in TBox

(here TBox refers to the converted FM into DL) that need

to be repaired or removed to render a correct FM and thus

make it consistent again. Note that here the TBox contains all

Feature Classes, Rule Classes, and their correlated properties

which are discussed in Tables II and III. Also, at the product

configuration time, the TBox will be extended by adding

Product Classes. For any incoherent TBox (inconsistent FM),

the reasoning engine returns the list of unsatisfiable axioms

(features and constraints). At this point, AUFM automatically

performs debugging and exposes the main reasons of incon-

sistency and provides reasonable solutions for resolving them.

All these tasks are carried out via a user friendly interface.

We adopt the theory of debugging and diagnosis from

[14] within our work. Based on this, for a given inconsistent

FM, AUFM finds the minimal conflict set for corresponding

TBox. Note that, here conflict set can be defined as a MIPS

set. Afterwards, Reiter’s hitting set algorithm is used to find

the minimal hitting set. Indeed, MIPS set expresses why the

feature model is inconsistent according to errors that are

found by the reasoning engine. In addition, the hitting set

represents how these errors can be resolved. AUFM supports

both services inherently and domain analyst can benefit from

them automatically.

IV. A SAMPLE PROCESS DEPICTION

To demonstrate the process of our framework, in this

section we illustrate the resolution of a sample inconsistent

feature model. According to our proposed approach, domain

analysts should go through the following steps to validate any

target feature model and its related products.

1. Design a feature model using the AUFM editor:

We have provided the AUFM feature model editor which can

TABLE IV
RESULTS FROM INTERACTIVE DEBUGGING PROCESS

Steps Inconsistencies Recommended solutions More Inconsistency?

1 Exclude violation MP3Rule≡ ∃hasMP3.MP3 Yes

2 Alternative violation OSRule≡ ∃hasOS.OS Yes

3 Mandatory violation PhoneRule ⊆ ∃hasUtilityFunction.UtilityFunction No

Fig. 4. Consistency checking result for Phone feature domain.

be used as a plug-in in the Eclipse platform. As depicted

in Fig.3, the Phone domain is graphically designed with 16

features which is a simple part of a real phone domain. The

corresponding SXFM file will be generated automatically by

AUFM. We will use this feature model as an example for

presenting our framework. The SXFM file for this can be

accessed from http://falcon.unb.ca/∼ j41z9/files.html.

2. Transformation from SXFM to OWL-DL: In this

stage, we need to transform the phone feature model into

its DL representation. For this matter, the produced SXFM

file will be used and fed as an input to the transformation

phase. The result of transformation component is an OWL-DL

knowledge base that represents the input feature model. The

generated OWL file for phone feature model is available at

http://falcon.unb.ca/∼ j41z9/files.html.

3. Consistency checking and inconsistency resolution:

Consistency checking can be performed in two levels, feature

domain and configuration levels. Here first, we perform

consistency evaluation for Phone feature model in the

feature domain level. Furthermore, by configuring a sample

product we will show how AUFM can identify probable

inconsistencies. In both levels, Pellet has been used as plug-in

in AUFM to perform tableau based reasoning to check

consistency in the TBox which is generated from the phone

feature model.

1) Consistency checking in feature domain level: Fig.4

represents the consistency checking result for the Phone feature

model at the feature domain level. As illustrated, the AUFM

reasoning engine does not find any unsatisfiable concepts.

Thus, Phone feature model is consistent in terms of feature

model structural and integrity constraints.

2) Consistency checking and inconsistency resolution in

configuration level: Before starting consistency checking in

this level, we need to configure a product. We configured

an inconsistent product, P, which violates one Mandatory,

Alternative, and Exclude constraints. ConsiderP as follows:

P= {Phone, Setting, Calls, Messaging, OS, Symbian,

WinCE, Media, MP3, MP4, Camera}.

The OWL file for product P can be accessed from

http://falcon.unb.ca/∼ j41z9/files.html. According to the struc-

tural and integrity constraints of the phone feature model,

product P cannot have both of the Symbian and WinCE features

at the same time. Also, MP3 and MP4 are related with

Exclude constraint. Thus, these two features cannot be included

in product P simultaneously. In addition, UtilityFunction is

defined as a Mandatory feature and it must be included in

product P, while it is not.

AUFM performs consistency validation which is an iterative

process. In each iteration, the system detects any possible

inconsistencies and provides its corresponding solution and

then sends a report back to the domain analysts. Then domain

analysts are able to look at and resolve inconsistency (based on

the recommendations from AUFM) and send the edited FM to

feature model debugger for further inconsistency identification.

This process will continue until there no more inconsistency

could be found in the designed FM.

Product P has three inconsistencies. Thus, the consistent

product can be gained after three steps of product debugging.

In the first step, AUFM finds that the domain analysts have

violated the Exclude constraint, which connects MP3 and MP4

features. Afterwards, the solution (which is MP3Rule≡ ∃has

MP3.MP3) for resolving this error would be recommended by

AUFM. This problematic axiom is found based on Reiter’s

algorithm. As discussed in Section III, to implement the Re-

iter’s algorithm, hitting set trees should be drawn and traversing

in the edge weighted tree can determine the valid solutions

for resolving inconsistencies. The drawn hitting set tree for

resolving the first inconsistency which is Exclude violation is

available at http://falcon.unb.ca/∼ j41z9/files.html. In order to

resolve this inconsistency, domain analysts need to remove this

axiom from the knowledge base. With regards to the meaning

of the feature model, MP3 should be removed from the product

P. In other words, domain analysts interpret the meaning of

the proposed solutions based on the semantics of the feature

model. In product P, MP3 and MP4 are related with an Ex-

clude constraint; in order to resolve this inconsistency, domain

analyst needs to omit one of them from the configured product

P. After domain analysts resolve the first error, they may ask

whether there is more inconsistency or not. This process will

continue until the second and third inconsistencies which are

Alternative and Exclude violation are resolved. At the end of

this interactive debugging process, product P is turned into a

TABLE V
THE CASE STUDY RESULTS (TIME IS BASED ON MINUTES)

Student Number of Number of Number of Number of Elapsed time

feature structural constraint integrity constraint inconsistency for debugging

st1 32 12 4 3 2.21

st2 27 10 6 7 5.10

st3 35 15 6 5 3.66

st4 30 11 3 4 2.45

consistent model. Table IV represents the inconsistencies and

corresponding recommended solutions which are provided by

AUFM.

V. EXPERIMENTAL EVALUATION

In this section, we report on a case study to investigate the

suitability of the proposed approach in terms of its usability.

Here the proposed framework is evaluated to find out whether

our approach can be practically helpful for domain analysts in

the case of feature model consistency checking and debugging.

In the following, we first describe the initialization process

for usability evaluation and then we present the results and

provide discussion in this regards.

Initialization process: In this case study four participants

were invited to comprehensively model a Smart Phone

domain and design corresponding feature models using our

tool, AUFM. Two of these participants were undergraduate

students which had little background about domain modeling.

The other two participants were graduate students which their

research areas were software product line engineering.

We recorded each participant’s activities based on some

metric criteria such as number of features, integrity constraints,

structural constraints, and inconsistencies in the Smart Phone

domain. Also, we recorded the elapsed time of the iterative

debugging process which mainly includes inconsistency

identification and inconsistency resolution process.

Result and discussion: The case study observations are

summarized in Table V.

As seen in Table V, students subjectively design Smart

Phone feature models with average 31 features and 17 con-

straints. Also, the number of inconsistencies that has been

discovered by AUFM varies between 3 to 7. In fact, the

source of this variation for inconsistency is twofold. First,

each individual participant has various levels of knowledge

about domain modeling and second, the number of features

and constraints that have been used by the students could affect

the number of inconsistencies. That is, the more features and

constraints, the more the designed model is susceptible to error.

The last column of Table V represents the elapsed time for

the debugging process. The debugging process begins once

the students send their initial inconsistent feature models to

AUFM feature model debugger. The process continues until

all the inconsistencies are resolved. In this case study, we have

observed that the debugging process is varying almost between

2 to 5 minutes. In fact, we noticed that for the experienced

users, the elapsed times are fairly acceptable for the feature

model with average 31 features. Although, by considering the

fact that st2 is the least experienced in comparison with the

others; 5 minute of debugging could be considered acceptable.

After evaluating the results and discussing with students, we

conclude that the AUFM tool is a user-friendly tool such that

students with different levels of knowledge could easily design

whatever they have in their minds. AUFM provides the means

for students to interactively identify the inconsistencies of their

designs and resolve them based on the recommended solutions.

However, some of the students pointed that the recommended

solution is at times ambiguous and it takes time to understand

them in some cases. The main reason for this problem is that

the recommended solutions are based on the DL language.

They suggest that, it would be more efficient, in terms of time,

if the users have this solution according to the feature modeling

language rather than DL. Thus, they would be able to just

concentrate on their design and directly correct their designed

domain.

VI. RELATED WORK

Since the advent of feature models in the early nineties

[10], a lot of work has been done in this area. Researchers

have devoted their efforts to various stages of software product

line engineering including works such as SAT-based feature

configuration [21], AHP-based model ranking and preference

elicitation [2] and machine learning-based external attributes

quality prediction [4].

Some attempts have also recently been made to to find

inconsistencies in feature models. Some of them have con-

centrated on the conversion of feature models to logical repre-

sentations to benefit from the reasoning capabilities that exist

in these domains [19], [5], [6], [8]. In [5], [6], feature mod-

els have been transformed into propositional logic and non-

functional domain attributes have been modeled with fuzzy

variables; and an semi-automated method uses propositional

logic feature selection approach to check the satisfaction of

domain’s constraints. The characteristics of First Order Logics

(FOL) and constraint programming have been applied to the

analysis of feature models in [7]. In [8], Description Logics has

been used to build an ontology for features and some external

services. Later on, using ontology matching algorithms, the

proper services can be bound to corresponding features. Then

using a DL-based reasoning engine the consistency validation

is applied on feature models. Most work that deal with

inconsistent feature models have focused on validity checking

or finding inconsistencies in feature models. There is the lack

of approaches to propose solutions to resolve inconsistencies

in feature models. The most important approach that suggests

solutions for inconsistency resolution in feature models is [19].

Wang et al in [19] have extended an incremental algorithm,

called SkyBlue. They propose a dynamic approach to prioritize

constraints in a feedback control system that adjusts itself

based the opinions of the domain analysts. In contrast to [19],

we have transformed feature models into Description Logic

(OWL-DL) to utilize the strength of DL reasoning approaches

for solving inconsistency in feature models. Furthermore, by

employing Reiter’s algorithm the proper solution is provided

to the domain analysts.

VII. CONCLUSION AND FUTURE WORK

In this work, we strive to design and implement a frame-

work to identify and resolve inconsistencies in feature models

based on DL reasoning. In our approach, feature models can

be automatically converted into OWL-DL in order to perform

reasoning and check the consistency of the models. We have

seamlessly integrated Pellet as a plug-in into our AUFM tool

to discover inconsistencies in the feature model. Based on

the proposed solutions, domain analysts can simply remove

or keep the inconsistent features. Our preliminary evaluations

demonstrate that our framework can help a domain analyst

model and correct the desired domain dynamically.

One of the main contributions of our work is that we provide

a correspondence between feature model representations and

Description Logic knowledge bases and benefit from formal

DL reasoning for identifying and resolving inconsistencies in

feature models. Given the clear semantics of DL revisions,

we have been able to guarantee meaningful revisions in fea-

ture models through DL based semi-automatic inconsistency

resolution algorithms. For future work, we believe that our

tool support, AUFM, needs more evaluations in terms of

scalability testing. It is required to examine what would be

the performance of AUFM and basically DL based reasoning

methods for handling a feature model with large number of

features. In addition, based on the feedback we obtained from

the case study participants, we find that the resolution process

would be more efficient if AUFM provides recommended

solutions in FM language rather than in pure DL. So, we also

need to think about this matter and improve the usability of

AUFM at this point.

ACKNOWLEDGMENTS

The authors would like to acknowledge the work of Mostafa

Karami Bekr and his contributions to AUFM.

REFERENCES

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter Patel-Schneider. The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge University Press, 2003.

[2] Ebrahim Bagheri, Mohsen Asadi, Dragan Gasevic, and Samaneh Soltani.
Stratified analytic hierarchy process: Prioritization and selection of
software features. In The 14th International Software Product Line

Conference. Springer, 2010.

[3] Ebrahim Bagheri and Faezeh Ensan. Evidential reasoning for the
treatment of incoherent terminologies. In Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ’10, pages 1381–1387, New
York, NY, USA, 2010. ACM.

[4] Ebrahim Bagheri and Dragan Gasevic. Assessing the maintainability of
software product line feature models using structural metrics. In Software

Quality Journal. Springer, 2010.

[5] Ebrahim Bagheri, Tommaso Di Noia, Dragan Gasevic, and Azzurra
Ragone. Formalizing interactive staged feature model configuration. In
Journal of Software Maintenance and Evolution: Research and Practice.
Wiley, 2010.

[6] Ebrahim Bagheri, Tommaso Di Noia, Azzurra Ragone, and Dragan
Gasevic. Configuring software product line feature models based on
stakeholders’ soft and hard requirements. In The 14th International

Software Product Line Conference. Springer, 2010.
[7] D. Benavides, Ruiz A. Cortés, and P. Trinidad. Using Constraint

Programming to Reason on Feature Models. In The Seventeenth Interna-

tional Conference on Software Engineering and Knowledge Engineering

(SEKE’05), July 2005.
[8] Marko Boskovic, Ebrahim Bagheri, Dragan Gasevic, Bardia Mohabbati,

Nima Kaviani, and Marek Hatala. Automated staged configuration
with semantic web technologies. In International Journal of Software

Engineering and Knowledge Engineering, volume 20, pages 459–484.
World Scientific, 2010.

[9] Volker Haarslev and Ralf Möller. Racer system description. In
Proceedings of the First International Joint Conference on Automated

Reasoning, IJCAR ’01, pages 701–706, London, UK, 2001. Springer-
Verlag.

[10] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. 1990.
[11] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented

product line engineering. IEEE Software, 19:58–65, 2002.
[12] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software

Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[13] R Reiter. A theory of diagnosis from first principles. Artif. Intell.,
32:57–95, April 1987.

[14] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank van
Harmelen. Debugging incoherent terminologies. Journal of Automated

Reasoning, 39:317–349, 2007. 10.1007/s10817-007-9076-z.
[15] Richard W. Selby. Enabling reuse-based software development of large-

scale systems. IEEE Transactions on Software Engineering, 31:495–510,
2005.

[16] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semantics:

Science, Services and Agents on the World Wide Web, 5(2):51 – 53, 2007.
Software Engineering and the Semantic Web.

[17] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner:
System description. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 4130 LNAI:292–297, 2006.
[18] T. von der Maen and H. Lichter. Deficiencies in feature models. In

Proceedings of SPLC’04 Workshop on Software Variability Management

for Product Derivation, 2004.
[19] Bo Wang, Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Wei Zhang, and

Hong Mei. A dynamic-priority based approach to fixing inconsistent
feature models. In Model Driven Engineering Languages and Systems,
volume 6394, pages 181–195. Springer, 2010.

[20] Hai H. Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan.
Verifying feature models using owl. Web Semant., 5:117–129, June 2007.

[21] Jules White, Brian Dougherty, Douglas C. Schmidt, and David Bena-
vides. Automated reasoning for multi-step feature model configuration
problems. In SPLC, pages 11–20, 2009.

