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Abstract. In some real-world applications, it is time-consuming or ex-
pensive to collect much labeled data, while unlabeled data is easier to
obtain. Many semi-supervised learning methods have been proposed to
deal with this problem by utilizing the unlabeled data. On the other
hand, on some datasets, misclassifying different classes causes different
costs, which challenges the common assumption in classification that
classes have the same misclassification cost. For example, misclassifying
a fraud as a legitimate transaction could be more serious than misclassi-
fying a legitimate transaction as fraudulent. In this paper, we propose a
cost-sensitive self-training method (CS-ST) to improve the performance
of Naive Bayes when labeled instances are scarce and different misclas-
sification errors are associated with different costs. CS-ST incorporates
the misclassification costs into the learning process of self-training, and
approximately estimates the misclassification error to help select unla-
beled instances. Experiments on 13 UCI datasets and three text datasets
show that, in terms of the total misclassification cost and the number of
correctly classified instances with higher costs, CS-ST has better perfor-
mance than the self-training method and the base classifier learned from
the original labeled data only.

Keywords: self-training, cost-sensitive, Naive Bayes.

1 Introduction

In some real-world machine learning applications, the labeled data may be time-
consuming or expensive to collect, while the unlabeled data is relatively easy to
obtain. Learning classifiers based on a small number of labeled instances may
not result in good performance. Hence, researchers have utilized the information
contained in the large amount of unlabeled data to learn better classifiers. Semi-
supervised learning is one method to deal with the problem of insufficient labeled
data [3] [20]. Commonly used semi-supervised learning methods include genera-
tive models, self-training, co-training, semi-supervised support vector machines,
and graph-based methods. The general idea of self-training [19] is to iteratively
select a certain number of unlabeled instances according to a given criterion
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and use those selected instances (together with predicted labels) to expand the
training data to build a new classifier. A commonly used selection criterion is to
select the unlabeled instances having high prediction confidence. Some other se-
lection criteria are applied in self-training such as active learning that selects the
most informative unlabeled instances to ask their true labels from experts [13]
and the adapted Value Difference Metric method that does not depend on the
class prediction probabilities [17]. In [8], a data editing method is used in self-
training to remove the mislabeled self-labeled instances. In [7], it points out that
the original labeled data are more reliable than the self-labeled data, and an
ISBOLD selection strategy is applied to roughly prevent possible performance
degradation in self-training and co-training.

On the other hand, misclassifying different classes relate to different costs.
For example, in cancer diagnosis, the cost of wrongly classifying a person who
has cancer to be healthy is much higher than the cost of misclassifying a healthy
person to be cancerous. This kind of problem is called cost-sensitive learning. As
described in [6], the objective of cost-sensitive learning is to find the optimum
classification, that is, to classify each instance x as the class label i that has the
smallest value of conditional risk computed by the following equation:

L(i|x) =
∑

j

P (j|x)C(i, j) (1)

The conditional risk L(i|x) is the expected cost of predicting instance x to belong
to class i, where P (j|x) is the prediction probability of belonging to class j given
the instance x, C(i, j) is the cost of misclassifying an instance of class j as an
instance of class i. C(i, j) is 0 if i is equal to j. A common measure to evaluate
the performance of a cost-sensitive learning method is the total cost, computed
by the sum of misclassification costs for each class on a given testing dataset.
Another measure is the average misclassification cost, computed by dividing the
total cost by the number of instances in the testing dataset.

In supervised learning scenario, many techniques, including sampling, en-
sembles, and thresholding, have been proposed to deal with the cost-sensitive
learning problem [2, 4, 6, 11, 15]. When semi-supervised learning meets different
misclassification costs, it becomes more complicated due to the insufficiency of
labeled training data. A few papers have considered using unlabeled data in
cost-sensitive learning. In [14], a decision tree classifier with smoothing is used
as the underlying classifier. An EM procedure is applied to iteratively assign
labels to the unlabeled instances and learn the classifier on the combination of
the labeled data and the updated unlabeled data. When assigning labels to the
unlabeled data, the estimated “optimum” label with the smallest conditional
risk is assigned to an unlabeled instance, and the corresponding conditional risk
is normalized and used as the weight of the unlabeled instance. In [9], a C4SVM
algorithm is presented, which incorporates misclassification costs into the opti-
mization function of a semi-supervised SVM using label means. Active learning is
applied on cost-sensitive learning and semi-supervised learning as well [5,10,12].
In [12], misclassification costs are added into the loss function of active learn-
ing to pick the most informative unlabeled instance and then labels are inquired
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from experts. In [10], in each iteration, uncertainty sampling is used to select un-
labeled instances, then a cost-sensitive classifier is built on the expanded labeled
data and all unlabeled instances with assigned labels. Donmez and Carbonell [5]
also use active learning method but propose a method to learn from multiple
imperfect oracles. The active learning methods require interaction with experts,
which might be difficult to apply if experts are not available.

In this paper, we focus on utilizing unlabeled data to deal with different
misclassification costs when Naive Bayes classifier is used as the base classifier
in self-training process. The proposed cost-sensitive self-training algorithm is
denoted as CS-ST. Expected cost is considered both when assigning labels and
also when selecting unlabeled instances to expand the training set. Moreover, in
each iteration, the average cost of the classifier is approximated on the original
labeled data to decide whether the selected unlabeled instances will be added to
the training set in the next iteration. CS-ST is compared with the self-training
method (SelfTrain) and the classifier learned on the original labeled data only
(SL) that do not consider misclassification costs in the training process. Binary
datasets are used for performance comparison. The results on 13 UCI datasets
and three text datasets show that, CS-ST generally gets lower misclassification
costs than the SelfTrain method and the SL method. Results also demonstrate
that CS-ST can correctly classify more instances from the class of higher cost
than those two methods do.

The rest of the paper is organized as follows. The new algorithm, CS-ST,
is described in Section 2. Section 3 demonstrates the experiments and result
analysis. Finally, Section 4 concludes and discusses future work.

2 A Cost-Sensitive Self-training algorithm

In standard self-training [10], initially, a classifier is built on the original labeled
data L0. Then it iterates as follows: firstly, the classifier is used to predict la-
bels for the unlabeled instances in the unlabeled dataset U ; then a number of
instances for which the current classifier has high prediction confidence are la-
beled and moved to enlarge the labeled data L, and a new classifier is built on
L.

In this section, a new cost-sensitive self-training method CS-ST is presented.
Here we focus on datasets with binary class. The main idea of CS-ST is to
consider the expected cost when selecting and labeling the unlabeled instances
so as to adapt the self-training algorithm to cost-sensitive learning problems. The
degree of change of the average misclassification cost is used as a further selection
criterion to decide whether to add the selected instances into the training data.

To clearly illustrate the idea, a cost matrix for binary-class datasets is shown
in Fig. 1. The class with lower misclassification cost is represented as positive
(P), and the class with higher misclassification cost as negative (N ). “CFP”
is the cost of wrongly classifying a negative instance to be positive. “CFN” is
the cost of misclassifying a positive instance to be negative. “CTP” and “CTN”
are the costs of correctly classifying a positive instance and a negative instance,
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respectively. Usually, CTP=CTN=0. We set CFN =1 and CFP > 1 because
misclassifying a negative instance is associated with a larger cost. The average
misclassification cost on a testing dataset with m instances can be formulated
as: AC =

∑m

i=1 C(predictedclassi, actualclassi)/m, where predictedclassi and
actualclassi are the predicted class label and the actual class label of the i-th
testing instance, respectively.

Fig. 1: Cost matrix for binary-class datasets

Input: labeled data L0 and unlabeled data U .
Output: a cost-sensitive classifier.

1. Set the iteration counter t to 0.
2. Build a Naive Bayes classifier C0 on the labeled data L0 only.

3. Compute ÃCt.
4. While the stopping criteria are not satisfied,

(a) Select m unlabeled instances from Ut that classifier Ct has the smallest ex-
pected cost.

(b) Assign each selected unlabeled instance an “optimum” label with the smallest
the conditional risk computed by Equation 1.

(c) Form Lt+1 as the union of Lt and the selected instances.
(d) Form Ut+1 by deleting the selected instances from Ut.
(e) Build a Naive Bayes classifier Ct+1 on Lt+1.

(f) Compute ÃCt+1.

(g) If ÃCt+1 > ÃCt, Lt+1 = Lt and Ct+1 = Ct.
(h) Increase t by 1.

5. Return the final classifier.

Fig. 2: CS-ST Algorithm

The algorithm is given in Figure 2. Initially, a Naive Bayes classifier C0 is
learned from L0. In iteration t, Lt is updated and a new Naive Bayes classifier
Ct is built from Lt. The unlabeled instances are selected and labeled according
to the expected costs. The change of the average misclassification cost is used to
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further decide whether to use the selected instances to expand the training data.
Since the real labels of the unlabeled data are unknown to the algorithm, it is
not feasible to compute the actual misclassification cost of the each classifier in
each iteration. Therefore, we estimate the average misclassification cost of Ct on
a small dataset with real labels (L0) in iteration t, denoted as ÃCt. ÃC0 is the
average misclassification cost of C0 computed from L0. The stopping criterion
is that the maximum number of iterations is reached or there is no unlabeled
instances left in U .

Compared to the standard self-training, the misclassification cost is consid-
ered in three places:

– Selection (step 4(a)): after current classifier Ct produces the prediction prob-
ability for each unlabeled instance, the conditional risk is computed using
Equation 1. The m unlabeled instances with the smallest expected cost will
be selected.

– Labeling (step 4(b)): for each of the m selected instance, assign it the “op-
timum” class that has the smallest expected cost.

– Whether to accept the m instances to expand the labeled data in the next
iteration (steps 4(e-f)): if ÃCt+1 > ÃCt, discard the m selected instances;
otherwise, use them in the next iteration.

3 Experiments and Results

In this section, CS-ST is compared with following approaches:

(1) SelfTrain it is the standard self-training method using Naive Bayes as the
base classifier.

(2) SL it is a Naive Bayes classifier trained on the original labeled data only.

For each method, after the classifier is built, testing instances are assigned labels
according to the predicted probabilities of the classifier, and the average mis-
classification cost is computed thereafter based on the number of misclassified
instances and the corresponding costs.

3.1 Datasets

Two kinds of datasets are used to compare the performance of the methods.
The first set is 13 datasets that appear in many papers about cost-sensitive
learning [4] [15] [5] [14] [16]. They can be downloaded from UCI repository [1].
In our experiments, the datasets are pre-processed in Weka [18]. Missing values
are replaced by the “ReplaceMissing” filter. Numeric values are discretized by the
ten-bin discretization filter. The dataset “hypothyroid” is changed to a binary
class dataset by selecting the two most frequent class values. The second set is
three text datasets “oh0”, “oh5”, and “oh10” that are used in Qin [14].

To be consistent, the order of class values in some datasets are changed
so that the majority (positive) class is the first class value while the minority
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Table 1: Experimental Datasets
Dataset Size #Attr #Pos #Neg %Neg #Pos/#Neg
breast-cancer 286 10 201 85 29.72% 2.4
breast-w 699 10 458 241 34.48% 1.9
bupa 345 7 200 145 42.03% 1.4
clean1 476 167 269 207 43.49% 1.3
credit-g 1000 21 700 300 30.00% 2.3
hypothyroid 3675 30 3481 194 5.28% 17.9
kr-vs-kp 3196 37 1669 1527 47.78% 1.1
pima-indians 768 9 500 268 34.90% 1.9
sick 3772 30 3541 231 6.12% 15.3
tic-tac-toe 958 10 626 332 34.66% 1.9
vote 435 17 267 168 38.62% 1.6
wdbc 569 31 357 212 37.26% 1.7
spambase 4601 58 2788 1813 39.40% 1.5
oh0 1003 3183 809 194 19.34% 4.2
oh5 918 3013 769 149 16.23% 5.2
oh10 1050 3239 885 165 15.71% 5.4

(negative) class is the second class value. The modified datasets include “tic-tac-
toe”, “bupa”, “breast-cancer”, “breast-w”, and “vote”.

The details of the data sets are displayed in Table 1. “#Attr” is the number
of attributes in each dataset. Columns “#Pos” and “#Neg” show the number
of instances belong to positive class and negative class, respectively, in each
dataset. Column “%Neg” depicts the percentage of negative instances in each
dataset. And column “#Pos/#Neg” is the ratio of positive instances to negative
instances in each dataset.

3.2 Experimental settings

On each dataset, ten runs of five-fold cross-validation are conducted and the
average results are reported. The labeled percentage l% is set to be 1%. Hence,
in each fold, 20% data is kept as the testing set, and the other 80% data is then
randomly split into labeled data L0 (1% of the 80% data) and unlabeled data
U (99% of the 80% data). The class distribution in the labeled data is kept the
same as that in the whole dataset.

We implemented CS-ST and self-training in Weka, and utilized the code
for NaiveBayes and NaiveBayesMultinomial in Weka. For the 13 UCI datasets,
NaiveBayes is used as the base classifier in all the methods. For the three text
datasets, NaiveBayesMultinomial classifier is used as the base classifier because
it is suitable for dealing with text datasets.

The cost of misclassifying a negative instance to be positive (CFP ) is set
to 2, 5, and 10, respectively, in some cost-sensitive papers [4] [9] [16]. In our
experiments, the same values are set to CFP to observe the performance of the
three methods in different situations. The average misclassification cost is used
as the performance measurement.
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Table 2: Average results of the average misclassification cost on 13 UCI datasets
(a) CFP=2

Dataset CS-ST SelfTrain SL
breast-cancer 0.54 ± 0.15 0.53 ± 0.16 0.57 ± 0.12
breast-w 0.03 ± 0.01 0.03 ± 0.01 0.22 ± 0.06 •

bupa 0.69 ± 0.12 0.70 ± 0.11 0.72 ± 0.13
clean1 0.70 ± 0.10 0.68 ± 0.15 0.67 ± 0.12
credit-g 0.57 ± 0.05 0.56 ± 0.05 0.58 ± 0.04
hypothyroid 0.17 ± 0.03 0.17 ± 0.01 0.11 ± 0.00 ◦

kr-vs-kp 0.50 ± 0.11 0.73 ± 0.03 • 0.44 ± 0.08
pima-indians 0.51 ± 0.12 0.51 ± 0.12 0.61 ± 0.06
sick 0.13 ± 0.06 0.15 ± 0.06 0.12 ± 0.00
tic-tac-toe 0.65 ± 0.08 0.64 ± 0.10 0.60 ± 0.08
vote 0.17 ± 0.05 0.19 ± 0.16 0.18 ± 0.12
wdbc 0.14 ± 0.17 0.13 ± 0.16 0.33 ± 0.09 •

spambase 0.28 ± 0.03 0.29 ± 0.11 0.78 ± 0.01 •

Mean 0.39 0.41 0.46
CS-ST: w/t/l - 1/12/0 3/9/1

(b) CFP=5

Dataset CS-ST SelfTrain SL
breast-cancer 0.97 ± 0.30 1.04 ± 0.30 1.16 ± 0.20 •

breast-w 0.04 ± 0.03 0.04 ± 0.02 0.52 ± 0.15 •

bupa 1.16 ± 0.34 1.29 ± 0.31 • 1.43 ± 0.40 •

clean1 1.32 ± 0.29 1.24 ± 0.43 1.32 ± 0.35
credit-g 1.13 ± 0.13 1.18 ± 0.10 • 1.35 ± 0.11 •

hypothyroid 0.33 ± 0.03 0.33 ± 0.01 0.26 ± 0.00 ◦

kr-vs-kp 0.88 ± 0.24 1.44 ± 0.08 • 0.92 ± 0.21
pima-indians 0.95 ± 0.27 1.00 ± 0.25 1.38 ± 0.15 •

sick 0.21 ± 0.12 0.28 ± 0.11 • 0.31 ± 0.00 •

tic-tac-toe 1.24 ± 0.20 1.30 ± 0.21 1.18 ± 0.19
vote 0.31 ± 0.21 0.36 ± 0.31 0.29 ± 0.25
wdbc 0.24 ± 0.32 0.21 ± 0.31 0.77 ± 0.24 •

spambase 0.55 ± 0.06 0.63 ± 0.23 • 1.94 ± 0.03 •

Mean 0.72 0.80 0.99
CS-ST: w/t/l - 5/8/0 8/4/1

(c) CFP=10

Dataset CS-ST SelfTrain SL
breast-cancer 1.58 ± 0.56 1.88 ± 0.55 • 2.14 ± 0.41 •

breast-w 0.07 ± 0.05 0.06 ± 0.04 1.04 ± 0.30 •

bupa2 1.80 ± 0.59 2.28 ± 0.64 • 2.62 ± 0.87 •

clean1 2.36 ± 0.63 2.18 ± 0.89 2.39 ± 0.76
credit-g 1.99 ± 0.25 2.20 ± 0.19 • 2.62 ± 0.25 •

hypothyroid 0.57 ± 0.04 0.58 ± 0.02 0.53 ± 0.01 ◦

kr-vs-kp 1.53 ± 0.44 2.62 ± 0.15 • 1.70 ± 0.44 •

pima-indians 1.51 ± 0.52 1.82 ± 0.48 • 2.67 ± 0.31 •

sick 0.33 ± 0.23 0.51 ± 0.19 • 0.61 ± 0.01 •

tic-tac-toe 2.17 ± 0.42 2.40 ± 0.41 • 2.15 ± 0.41
vote 0.45 ± 0.23 0.64 ± 0.58 • 0.49 ± 0.46
wdbc 0.40 ± 0.58 0.34 ± 0.57 1.51 ± 0.49 •

spambase 1.00 ± 0.14 1.18 ± 0.43 • 3.88 ± 0.06 •

Mean 1.21 1.44 1.87
CS-ST: w/t/l - 9/4/0 9/3/1
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3.3 Results on 13 UCI datasets

Comparison results of the methods when using different CFP values are shown
in the sub-tables of Table 2. Each value in front of “±” is the average value of
the average misclassification costs computed in the ten runs of five-fold cross-
validation, followed by the corresponding standard deviation after “±”. Row
“Mean” depicts the mean value of the average misclassification cost computed
over all the datasets of the corresponding column. Row “CS-ST: w/t/l” repre-
sents that CS-ST wins on w datasets (marked by •), ties on t datasets, and loses
on l datasets (marked by ◦) against the corresponding method, under a two-
tailed pair-wise t-test at 95% significance level. Please note that, lower average
cost implies better performance.

It can be seen that, CS-ST always gets smaller average misclassification cost
than SelfTrain when CFP changes from 2 to 10. It significantly outperforms
self-train on nine datasets when CFP is 10. Moreover, CS-ST generally obtain
much smaller average cost than SL except on the “hypothyroid” dataset. The
advantage of CS-ST over SL is more obvious when CFP is 5 and 10.

To compare the classifiers’s ability to identify negative instances, the com-
parison results on True Negative Rate (TNR) are shown in Table 3. TNR is the
ratio of the number of correctly classified negative instances over the total num-
ber of negative instances. Higher TNR means that the classifier can identify more
negative instances, which is beneficial to reduce the misclassifying cost. Because
SelfTrain does not consider misclassification cost during classifier learning pro-
cess, the classifier is the same when CFP changes and hence TNR values are
not affected by using different CFP values. The situation is the same for SL.It
can be observed from the table that, when CFP is small, CS-ST can win the
other two methods on three or nine datasets while lose on two or one datasets.
However, when CFP is 5 or 10, CS-ST significantly outperforms SelfTrain and
SL on nine or ten datasets in terms of TNR.

To summarize the analysis, on the 13 UCI datasets, CS-ST generally has
much better performance than SelfTrain and SL on most of the datasets con-
cerning the average misclassification cost and the true negative rate, when CFP
is 2, 5 or 10.

3.4 Results on three text datasets

In [14], compared to a decision tree classifier built on the labeled data only
and a direct-EM method, the presented method CS-EM shows better average
misclassification cost only on “oh0” while obtaining similar results on ‘oh5”
and “oh10”, when different CFP values are used. Here, we use the three text
datasets to examine the performance of CS-ST. The comparison results on the
average misclassification cost are shown in Table 4, when CFP is 2, 5, and 10,
respectively.

It can be observed that, when CFP is 2, CS-ST significantly outperforms
SelfTrain on all the three dataset. When CFP is larger, CS-ST significantly
outperforms SelfTrain on one to two datasets, while having equal performance
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Table 3: Average results of True Negative Rate on 13 UCI datasets
(a) CFP=2

Dataset CS-ST SelfTrain SL

breast-cancer 0.46 ± 0.18 0.44 ± 0.17 0.34 ± 0.15 •

breast-w 0.99 ± 0.01 0.99 ± 0.01 0.70 ± 0.09 •

bupa 0.56 ± 0.16 0.53 ± 0.16 0.43 ± 0.23 •

clean1 0.51 ± 0.16 0.57 ± 0.22 ◦ 0.50 ± 0.19
credit-g 0.32 ± 0.08 0.32 ± 0.06 0.15 ± 0.09 •

hypothyroid 0.06 ± 0.07 0.03 ± 0.03 • 0.00 ± 0.01 •

kr-vs-kp 0.69 ± 0.09 0.51 ± 0.03 • 0.67 ± 0.10
pima-indians 0.55 ± 0.13 0.53 ± 0.13 0.26 ± 0.10 •

sick 0.49 ± 0.34 0.25 ± 0.28 • 0.00 ± 0.01 •

tic-tac-toe 0.38 ± 0.12 0.37 ± 0.12 0.44 ± 0.13 ◦

vote 0.89 ± 0.07 0.86 ± 0.14 0.90 ± 0.11
wdbc 0.91 ± 0.14 0.93 ± 0.14 ◦ 0.60 ± 0.14 •

spambase 0.74 ± 0.04 0.72 ± 0.10 0.02 ± 0.01 •

Mean 0.58 0.54 0.39
CS-ST: w/t/l - 3/8/2 9/3/1

(b) CFP=5

Dataset CS-ST SelfTrain SL
breast-cancer 0.50 ±0.17 0.44 ±0.17 • 0.34 ±0.15 •

breast-w 0.99 ±0.01 0.99 ±0.01 0.70 ±0.09 •

bupa 0.62 ±0.18 0.53 ±0.16 • 0.43 ±0.23 •

clean1 0.52 ±0.15 0.57 ±0.22 0.50 ±0.19
credit-g 0.38 ±0.09 0.32 ±0.06 • 0.15 ±0.09 •

hypothyroid 0.06 ±0.08 0.03 ±0.03 • 0.00 ±0.01 •

kr-vs-kp 0.73 ±0.10 0.51 ±0.03 • 0.67 ±0.10 •

pima-indians 0.58 ±0.14 0.53 ±0.13 • 0.26 ±0.10 •

sick 0.55 ±0.35 0.25 ±0.28 • 0.00 ±0.01 •

tic-tac-toe 0.42 ±0.12 0.37 ±0.12 • 0.44 ±0.13
vote 0.88 ±0.11 0.86 ±0.14 0.90 ±0.11
wdbc 0.91 ±0.14 0.93 ±0.14 0.60 ±0.14 •

spambase 0.77 ±0.04 0.72 ±0.10 • 0.02 ±0.01 •

Mean 0.61 0.54 0.39
CS-ST: w/t/l - 9/4/0 10/3/0

(c) CFP=10

Dataset CS-ST SelfTrain SL
breast-cancer 0.56 ±0.18 0.44 ±0.17 • 0.34 ±0.15 •

breast-w 0.99 ±0.01 0.99 ±0.01 0.70 ±0.09 •

bupa 0.66 ±0.15 0.53 ±0.16 • 0.43 ±0.23 •

clean1 0.52 ±0.15 0.57 ±0.22 0.50 ±0.19
credit-g 0.41 ±0.09 0.32 ±0.06 • 0.15 ±0.09 •

hypothyroid 0.07 ±0.09 0.03 ±0.03 • 0.00 ±0.01 •

kr-vs-kp 0.73 ±0.09 0.51 ±0.03 • 0.67 ±0.10 •

pima-indians 0.64 ±0.14 0.53 ±0.13 • 0.26 ±0.10 •

sick 0.60 ±0.35 0.25 ±0.28 • 0.00 ±0.01 •

tic-tac-toe 0.45 ±0.13 0.37 ±0.12 • 0.44 ±0.13
vote 0.91 ±0.06 0.86 ±0.14 • 0.90 ±0.11
wdbc 0.91 ±0.14 0.93 ±0.14 0.60 ±0.14 •

spambase 0.77 ±0.04 0.72 ±0.10 • 0.02 ±0.01 •

Mean 0.63 0.54 0.39
CS-ST: w/t/l - 10/3/0 10/3/0



10 Cost-Sensitive Self-training

Table 4: Average results of the average misclassification cost on three text
datasets

(a) CFP=2

Dataset CS-ST SelfTrain SL
oh0 0.08 ± 0.08 0.23 ± 0.11 • 0.21 ± 0.06 •

oh5 0.37 ± 0.22 0.49 ± 0.11 • 0.30 ± 0.08 ◦

oh10 0.26 ± 0.09 0.30 ± 0.08 • 0.27 ± 0.05

Mean 0.24 0.34 0.26
CS-ST:w/t/l - 3/0/0 1/1/1

(b) CFP=5

Dataset CS-ST SelfTrain SL
oh0 0.12 ± 0.15 0.28 ± 0.16 • 0.38 ± 0.15 •

oh5 0.56 ± 0.38 0.69 ± 0.22 • 0.58 ± 0.14
oh10 0.31 ± 0.19 0.35 ± 0.18 0.54 ± 0.14 •

Mean 0.33 0.44 0.50
CS-ST:w/t/l - 2/1/0 2/1/0

(c) CFP=10

Dataset CS-ST SelfTrain SL
oh0 0.19 ± 0.27 0.36 ± 0.28 • 0.64 ± 0.31 •

oh5 0.88 ± 0.67 1.00 ± 0.44 1.04 ± 0.27
oh10 0.40 ± 0.37 0.42 ± 0.36 1.00 ± 0.29 •

Mean 0.49 0.60 0.89
CS-ST:w/t/l - 1/2/0 2/1/0

on the other datasets. While CS-ST wins on one dataset and loses on one dataset
over SL when CFP is 2, the former significantly outperforms the latter on two
datasets and ties on one dataset when CFP is 5 and 10. In other words, when
CFP is larger, CS-ST can have more effect to reduce the misclassification cost
than the other two methods.

In each row, the lowest average misclassification cost obtained on the dataset
is shown in bold font. It is observed that, CS-ST generally obtains the lowest
average misclassification cost among the four methods except on “oh5” when
CFP is 2. Moreover, CS-ST has much lower mean values on the three datasets
than the other two methods. The difference is more obvious when CFP is 10.

Therefore, on the three text datasets, CS-ST also generally outperforms Self-
Train and SL on the average misclassification cost when CFP is 2, 5 or 10. The
superior performance is obviously observed when CFP is larger.

4 Conclusions and Future Work

In this paper, we present a cost-sensitive self-training method CS-ST to deal
with the situation that the number of labeled data is small and different mis-
classification errors incur different costs. Naive Bayes is used as the underlying
classifier. The expected cost is considered when selecting and labeling unlabeled



Yuanyuan Guo, Harry Zhang, Bruce Spencer 11

instances in each iteration of self-training. In order to prevent possible perfor-
mance degradation, the change of performance on average misclassification cost
on the original labeled data is applied to decide whether to add the selected in-
stances to expand the training data. Our experimental results on 13 UCI datasets
and three text datasets show that, with different misclassification costs, CS-ST
generally outperforms two base methods in terms of the average misclassification
cost and the true negative rate. The advantage of CS-ST is more obvious when
the misclassification cost increases.

In the future, we will try ensemble learning, sampling, or threshold strategies
in semi-supervised learning to further improve the performance on average cost
on the UCI datasets. The method may also be extended to apply on multi-class
datasets.

References

1. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/datasets.
html

2. Abe, N., Zadrozny, B., Langford, J.: An iterative method for multi-class cost-
sensitive learning. In: Proc. 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 3–11 (2004)

3. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised learning. MIT Press,
Cambridge, MA (2006)

4. Domingos, P.: MetaCost: A general method for making classifiers cost-sensitive.
In: Proc. 5th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 155–164 (1999)

5. Donmez, P., Carbonell, J.G.: Proactive learning: Cost-sensitive active learning with
multiple imperfect oracles. In: Proc. 17th ACM Conference on Information and
Knowledge Management (2008)

6. Elkan, C.: The foundations of cost-sensitive learning. In: Proc. 17th International
Joint Conference on Artificial Intelligence. pp. 973–978 (2001)

7. Guo, Y., Zhang, H., Liu, X.: Instance selection in semi-supervised learning. In:
Proc. 24th Canadian Conference on Artificial Intelligence. pp. 158–169 (2011)

8. Li, M., Zhou, Z.H.: SETRED: self-training with editing. In: Proc. Advances in
Knowledge Discovery and Data Mining. pp. 611–621 (2005)

9. Li, Y.F., Kwok, J.T., Zhou, Z.H.: Cost-sensitive semi-supervised support vector
machine. In: Proc. 24th AAAI Conference on Artificial Intelligence. pp. 500–505
(2010)

10. Liu, A., Jun, G., Ghosh, J.: A self-training approach to cost sensitive uncertainty
sampling. Machine Learning 76, 257–270 (2009)

11. Liu, X.Y., Zhou, Z.H.: The influence of class imbalance on cost-sensitive learning:
An empirical study. In: Proc. 6th IEEE International Conference on Data Mining.
pp. 970–974 (2006)

12. Margineantu, D.D.: Active cost-sensitive learning. In: Proc. 19th International
Joint Conference on Artificial Intelligence (2005)

13. Muslea, I., Minton, S., Knoblock, C.A.: Active + semi-supervised learning = robust
multi-view learning. In: Proc. 19th International Conference on Machine Learning
(2002)



12 Cost-Sensitive Self-training

14. Qin, Z., Zhang, S., Liu, L., Wang, T.: Cost-sensitive semi-supervised classifica-
tion using CS-EM. In: Proc. 8th IEEE International Conference on Computer and
Information Technology. pp. 131–136 (2008)

15. Sheng, V.S., Ling, C.X.: Thresholding for making classifiers cost-sensitive. In: Proc.
21st National Conference on Artificial Intelligence (AAAI-06) (2006)

16. Ting, K.M.: A comparative study of cost-sensitive boosting algorithms. In: Proc.
17th International Conference on Machine Learning. pp. 983–990 (2000)

17. Wang, B., Spencer, B., Ling, C.X., Zhang, H.: Semi-supervised self-training for
sentence subjectivity classification. In: 21st Canadian Conference on Artificial In-
telligence. pp. 344–355 (2008)

18. Witten, I.H., Frank, E. (eds.): Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2nd edn. (2005)

19. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised meth-
ods. In: Proc. 33rd Annual Meeting of the Association for Computational Linguis-
tics. pp. 189–196 (1995)

20. Zhu, X.: Semi-supervised learning literature survey (2008)


