
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez 

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous 
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

19th Canadian Conference on Artificial Intelligence [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=82701912-a9a3-4e63-a9ad-69279a1c30a5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=82701912-a9a3-4e63-a9ad-69279a1c30a5

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. 
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Unsupervised Named-Entity Recognition: Generating Gazetteers and 

Resolving Ambiguity
Nadeau, D.; Turney, Peter; Matwin, S.



National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  
 
 
 
 

 
 

Unsupervised Named-Entity Recognition: 

Generating Gazetteers and Resolving 

Ambiguity * 

 
Nadeau, D., Turney, P., and Matwin, S. 
June 2006 
 
 
 
 
 
 
 
 
 
* published at the 19th Canadian Conference on Artificial Intelligence. 

Québec City, Québec, Canada.  June 7, 2006. NRC 48727.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Copyright 2006 by 

National Research Council of Canada 

 

Permission is granted to quote short excerpts and to reproduce figures and tables 

from this report, provided that the source of such material is fully acknowledged.

 

 



1 

Unsupervised Named-Entity Recognition: 
Generating Gazetteers and Resolving Ambiguity 

David Nadeau1,2, Peter D. Turney1 and Stan Matwin2 

1 Institute for Information Technology 

National Research Council Canada 

Gatineau and Ottawa, Canada 

{david.nadeau, peter.turney}@nrc-cnrc.gc.ca 
  2 School of Information Technology and Engineering 

University of Ottawa 

{dnadeau, stan}@site.uottawa.ca 

Abstract. In this paper, we propose a named-entity recognition (NER) system that 

addresses two major limitations frequently discussed in the field. First, the system 

requires no human intervention such as manually labeling training data or creating 

gazetteers. Second, the system can handle more than the three classical named-entity 

types (person, location, and organization). We describe the system’s architecture and 

compare its performance with a supervised system. We experimentally evaluate the 

system on a standard corpus, with the three classical named-entity types, and also on 

a new corpus, with a new named-entity type (car brands). 

1 Introduction 

This paper builds on past work in unsupervised named-entity recognition (NER) by 

Collins and Singer [3] and Etzioni et al. [4]. Our goal is to create a system that can 

recognize named-entities in a given document without prior training (supervised learning) 

or manually constructed gazetteers. (We use the term gazetteer interchangeably with the 

term named-entity list.) 
Collins and Singer’s [3] system exploits a large corpus to create a generic list of proper 

names (named-entities of arbitrary and unknown types). Proper names are collected by 

looking for syntactic patterns with precise properties. For instance, a proper name is a 

sequence of consecutive words, within a noun phrase, that are tagged as NNP or NNPS by 

a part-of-speech tagger and in which the last word is identified as the head of the noun 

phrase. Like Collins and Singer, we use a large corpus to create lists of named-entities, 
but we present a technique that can exploit diverse types of text, including text without 

proper grammatical sentences, such as tables and lists (marked up with HTML). 

Etzioni et al. [4] refer to their algorithm as a named-entity extraction system. It is not 

intended for named-entity recognition. In other words, it is used to create large lists of 
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named-entities, but it is not designed for resolving ambiguity in a given document. The 

distinction between these tasks is important. It might seem that having a list of entities in 

hand makes NER trivial. One can extract city names from a given document by merely 
searching in the document for each city name in a city list. However, this strategy often 

fails because of ambiguity. For example, consider the words “It” (a city in Mississippi 

State and a pronoun) and “Jobs” (a person’s surname and a common noun). The task 

addressed by Etzioni et al. could be called automatic gazetteer generation. Without 

ambiguity resolution, their system cannot perform robust, accurate NER. This claim is 

supported by the experiments we present in Section 3. 
In this paper, we propose a named-entity recognition system that combines named-

entity extraction (inspired by Etzioni et al.[4]) with a simple form of named-entity 

disambiguation. We use some simple yet highly effective heuristics, based on the work of 

Mikheev [9], Petasis et al. [13], and Palmer and Day [12], to perform named-entity 

disambiguation. We compare the performance of our unsupervised system with that of a 

basic supervised system, using the MUC 7 NER corpus [1]. We also show that our 
technique is general enough to be applied to other named-entity types, such as car brands, 

or bridge names. To support this claim, we include an experiment with car brands. 

The paper is divided as follows. First, we present the system architecture in Section 2. 

Then, we compare its performance with a supervised baseline system on the MUC 7 NER 

corpus in Section 3. Next, we show that the system can handle other type of entities, in 

addition to the classic three (person, location, and organization), in Section 4. We discuss 
the degree of supervision in Section 5. We conclude in Section 6 by arguing that our 

system advances the state-of-the-art of NER by avoiding the need for supervision and by 

handling novel types of named-entities. The system’s source code is available under the 

GPL license at http://balie.sourceforge.net. 

 2 Unsupervised Named-Entity Recognition System 

The system is made of two modules. The first one is used to create large gazetteers of 
entities, such as a list of cities. The second module uses simple heuristics to identify and 

classify entities in the context of a given document (i.e., entity disambiguation). 

2.1 Generating Gazetteers 

The task of automatically generating lists of entities has been investigated by several 

researchers. In Hearst [6], lexical patterns are studied that can be used to identify nouns 

from the same semantic class. For instance, a noun phrase that follows the pattern “the 

city of” is usually a city. In Riloff and Jones [14], a small set of lexical patterns and a 

small set of entities are grown using mutual bootstrapping. Finally, Lin and Pantel [7] 
show how to create large clusters of semantically related words using an unsupervised 



3 

technique. Their idea is based on examining words with similar syntactic dependency 

relationships. They show they can induce semantic classes such as car brands, drugs, and 

provinces. However, their technique does not discover the labels of the semantic classes, 
which is a common limitation of clustering techniques.  

The algorithm of Etzioni et al. [4] outperforms all previous methods for the task of 

creating a large list for a given type of entity or semantic class; the task of automatic 

gazetteer generation. Nadeau [11] shows that it is possible to create accurate lists of cities 

and car brands in a nearly unsupervised manner, limiting the supervision to a seed of four 

examples. In the remainder of this section, we summarize how to generate a list of 
thousands of cities from an initial seed of a few examples, in two steps (repeated if 

necessary).  

2.1.1 Retrieve Pages with Seed 
The first step is information retrieval from the Web. A query is created by conjoining a 

seed of k manually generated entities (e.g., “Montreal” AND “Boston” AND “Paris” AND 
“Mexico City”). In our experience, when k is set to 4 (as suggested by Etzioni et al. [4]) 

and the seed entities are common city names, the query typically retrieves Web pages that 

contain many names of cities, in addition to the seed names. The basic idea of the 

algorithm is to extract these additional city names from each retrieved Web page. 

2.1.2 Apply Web Page Wrapper 
For each page found in 2.1.1, a Web page wrapper is trained on the k positive examples 

that are known to appear in the page, but only if they are strictly contained in an HTML 

node (e.g., <td> Boston </td>) or surrounded by a small amount of text inside an HTML 

node (e.g., <td> Boston hotel </td>). The remaining HTML nodes in the page are treated 

as if they were negative examples, but we only include in the negative set the nodes with 

the same HTML tags as the positive examples [11]. For instance, if the k positive nodes 
are tagged as bold (i.e., “<b>”), then the negative examples will be restricted to the 

remaining bold text in the Web page. The Web page wrapper we used is similar to Cohen 

and Fan’s [2] wrapper, in terms of the learning algorithm and the feature vector. 

As described above, Web page wrapping is a classification problem. A supervised 

learning algorithm is used to classify unknown entities in the current Web page. In this 

application, the training set and the testing set are the same. The learning algorithm is 
trained on the given Web page and then the learned model is applied to reclassify the text 

in the same Web page. Two main problems make this task difficult. First, there is noise in 

the class labels in the training data, because everything except the seed words are initially 

labeled as negative. If the page contains more than k entities of the desired type, the very 

nodes we want to extract were labeled as negative. The second problem is the class 

imbalance in the data. Along with the k positive examples, there are usually hundreds or 
thousands of negative examples. These two problems are handled by noise filtering and 

cost-sensitive classification, respectively. 
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At this point, our technique goes beyond the system of Etzioni et al. [4], which uses a 

simple Web page wrapper, consisting of hand-crafted rules. To handle the problem of 

noise in the class labels, we use a filtering approach inspired by Zhu et al. [16]. The noise 
filtering strategy is to simply remove any instance similar to a positive instance. We say 

that two nodes are similar when their feature vectors are identical, except for the text 

length feature. (Refer to Cohen and Fan [2] for a description of the Web page wrapper’s 

features.) Using this filter, an average of 42% of the examples that are initially labeled as 

negative are removed from the training set. These examples are left in the (unlabeled) 

testing set. When the trained model is later applied to the testing set, some of the removed 
examples may be classified as positive and some may be classified as negative. 

To handle the class imbalance problem, we use a cost-sensitive supervised learning 

system. Using the original unbalanced dataset, the wrapper is almost incapable of 

extracting new entities. It mainly guesses the majority class (negative) and only extracts 

the initial seed from Web pages. To discourage the learning algorithm from using the 

trivial solution of always guessing the majority class, a high cost is assigned to 
misclassification errors in which a positive example is classified as negative. This cost-

sensitive approach over-samples the positive examples to rebalance the dataset. This 

rebalancing must be done for each individual Web page, to take into account the 

imbalance ratio of each wrapper.  

Past research suggests that supervised learning algorithms work best when the ratio of 

positive to negative examples is near 1:1 [8]. We hypothesized that the wrapper would 
work best when we rebalanced the dataset by duplicating positive instances until the ratio 

reached 1:1. To verify this hypothesis, we studied the behavior of the wrapper with 

different ratios on a set of 40 Web pages. As expected, we found that the wrapper 

performance is optimal when the ratio is approximately 1:1. We therefore use this ratio in 

the experiments in Sections 3 and 4. 

2.1.3 Repeat 
The two steps above (2.2.1, 2.2.2) are repeated as needed. Each iteration brings new 

entities that are added to the final gazetteer. At each iteration, k new randomly chosen 

entities are used to refresh the seed for the system. Entities are chosen from the gazetteer 

under construction. Preference is given to seed entities that are less likely to be noise, such 

as those appearing in multiple Web pages.  

2.2 Resolving Ambiguity  

The list lookup strategy is the method of performing NER by scanning through a given 
input document, looking for terms that match a list entry. The list lookup strategy suffers 

from three main problems: (1) entity-noun ambiguity errors, (2) entity boundary detection 

errors, and (3) entity-entity ambiguity errors. Due to these three problems, the gazetteer 

generating module presented in Section 2.1 is not adequate, by itself, for reliable named-

entity recognition. We found heuristics in the literature to tackle each of these problems. 
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2.2.1 Entity-Noun Ambiguity 
Entity-noun ambiguity occurs when an entity is the homograph of a noun. The plural word 

“jobs” and the surname “Jobs” is an example of this problem. To avoid this problem, 
Mikheev [9] proposes the following heuristic: In a given document, assume that a word or 

phrase with initial capitals (e.g., “Jobs”) is a named-entity, unless (1) it sometimes appears 

in the document without initial capitals (e.g., “jobs”),  (2) it only appears at the start of a 

sentence or at the start of a quotation (e.g., “Jobs that pay well are often boring.”), or (3) it 

only appears inside a sentence in which all words with more than three characters start 

with a capital letter (e.g., a title or section heading).  

2.2.2 Entity Boundary Detection 
A common problem with the list lookup strategy is errors in recognizing where a named-

entity begins and ends in a document (e.g., finding only “Boston” in “Boston White 

Sox”). This can happen when a named-entity is composed of two or more words (e.g., 

“Jean Smith”) that are each listed separately (e.g., “Jean” as a first name and “Smith” as a 
last name). It can also happen when an entity is surrounded by unknown capitalized words 

(e.g., “New York Times” as an organization followed by “News Service” as an unlisted 

string). Palmer and Day [12] propose the longest match strategy for these cases. 

Accordingly, we merge all consecutive entities of the same type and every entity with any 

adjacent capitalized words. We did not, however, merge consecutive entities of different 

types, since we would not have known the resulting type. 
The rule above is general enough to be applied independently of the entity type. We 

found that other merging rules could improve the precision of our system, such as “create 

a new entity of type organization by merging a location followed by an organization”. 

However, we avoided rules like this, because we believe that this type of manual rule 

engineering results in brittle, fragile systems that do not generalize well to new data. Our 

goal is to make a robust, portable, general-purpose NER system, with minimal embedded 
domain knowledge.  

2.2.3 Entity-Entity Ambiguity 
Entity-entity ambiguity occurs when the string standing for a named-entity belongs to 

more than one type. For instance, if a document contains the named-entity “France”, it 

could be either the name of a person or the name of a country. For this problem, Petasis et 
al. [13], among others, propose that at least one occurrence of the named-entity should 

appear in a context where the correct type is clearly evident. For example, in the context 

“Dr. France”, it is clear that “France” is the name of a person.  

We could have used cues, such as professional titles (e.g., farmer), organizational 

designators (e.g., Corp.), personal prefixes (e.g., Mr.) and personal suffixes (e.g., Jr.), but 

as discussed in the preceding section, we avoided this kind of manual rule engineering.  
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Fig. 1. Simple alias resolution algorithm 

Instead, we applied a simple alias resolution algorithm, presented in Figure 1. When an 

ambiguous entity is found, its aliases are used in two ways. First, if a member of an alias 

set is unambiguous, it can be used to resolve the whole set. For instance, “Atlantic ocean” 

is clearly a location but “Atlantic” can be either a location or an organization. If both 

belong to the same alias set, then we assume that the whole set is of type location. A 
second way to use the alias resolution is to include unknown words in the model. 

Unknown words are typically introduced by the heuristic in Section 2.2.2. If an entity 

(e.g., “Steve Hill”) is formed from a known entity (e.g., “Steve”) and an unknown word 

(e.g., “Hill”), we allow occurrences of this unknown word to be added in the alias group.  

Definitions: 
D  = a given input document. 

},...,{ 1 naaA =  = the set of all sets of aliases in the document D . 

},...,{ 1 mi eea =  = a set of aliases = a set of different entity instances, referring to 

the same actual entity in the world. 

psDe ,,=  = a unique instance of a named-entity, consisting of a string s  in 

document D  at position p . 

),(overlap ji ee  = a Boolean function; returns true when iii psDe ,,=  and 

jjj psDe ,,=  and the strings is  and js  share at least one word with more 

than three characters; returns false otherwise. 

 

Algorithm: 
Let {}=A . 

For each instance of a named-entity e  in document D : 

If  there is exactly one alias set ia  with a member je  such that 

),(overlap jee , then modify A  by adding e  to ia . 

If there are two or more alias sets ia , ja  with members ke , le  such that 

),(overlap kee  and ),(overlap lee , then modify A  by creating a new 

alias group pa  that is the union of ia , ja , and }{e , add pa  to A , and 

remove ia  and ja  from A . 

Otherwise, create a new alias set  qa , consisting of }{e , and add qa  to A . 
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3 Evaluation with the MUC-7 Enamex Corpus 

In the Message Understanding Conferences (MUC), the Named-Entity Recognition 

(NER) track focuses on the three classical types of named-entities: person, location, and 

organization. These three types of named-entities are collectively called Enamex. In this 

section, we compare the performance of our system with a baseline supervised system, 

using the Enamex corpus from MUC-7. For this experiment, a portion of the corpus is 
given to the supervised system in order to train it. Our unsupervised system simply 

ignores this portion of corpus.  

The same baseline experiment was conducted on MUC-6 and MUC-7 by Palmer and 

Day [12] and Mikheev et al. [10] respectively. Their systems work as follows. A training 

corpus is read and the tagged entities are extracted and listed. Given a testing corpus, the 

lists are used in a simple lookup strategy, so that any string that matches a list entry is 
classified accordingly. 

Table 1 presents the results of Mikheev on MUC-7 (in the “Learned lists” columns). 

There is also a comparison with a system that uses hand-made lists of common entities (in 

the “Common lists” columns).  The “Combined lists” columns are based on a combination 

of both approaches. In Table 1, “re” is the recall, “pr” is the precision, and “f” is the 

f-measure (the harmonic mean of precision and recall), expressed as percentages.  

Table 1. Results of a supervised system on MUC-7 

 Learned lists  Common lists  Combined lists 

 re pr f  re pr f  re pr f 

organization 49 75 59  3 51 6  50 72 59 

person 26 92 41  31 81 45  47 85 61 
location 76  93 84  74 94 83  86 90 88 

 

For the purpose of comparison, we ran our system on MUC-7 using gazetteers that we 

generated as described in Section 2.1. We generated gazetteers for some of the subtypes 

of named-entities given by Sekine [15]. The generated gazetteers are described in Table 2. 
We also used a special list of the months of the year, because we noticed they were an 

abnormally important source of noise on the development (dry run) set.1 Many months are 

also valid as personal first names.  

                                                           
1 It can be argued that the month list is a form of manual rule engineering, contrary to the principles 

discussed in Section 2.2.2. We decided to use it because most of the noise was clearly corpus-

dependant, since each article contains a date header. For results without the month list, subtract 

5% from the precision for the person type. 
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Table 2. Type and size of gazetteers built using Web page wrapper 

Gazetteer Size 

Location: city 14,977 

Location: state / province 1,587 

Location: continent / country / island 781 
Location: waterform 541 

Location: astral body 85 

Organization: private companies 20,498 

Organization: public services 364 

Organization: schools 3,387 

Person: first names 35,102 
Person: last names 3,175 

Person: full names 3,791 

Counter-examples: months 12 

 

List size depends on the performance of the Web page wrapper at extracting entities. 
Nadeau [11] showed that lists have a precision of at least 90%. We did not restrict the web 

mining to a specific geographic region and we did not enforce strict conditions for the list 

elements. As a result, the “state / province” list contains elements from around the world 

(not only Canada and the U.S.) and the “first name” list contains a multitude of 

coumpound first names, although our algorithm is designed to capture them by merging 

sequences of first names, as explained in Section 2.2.2. 
Table 3 shows the result of a pure list lookup strategy, based on our generated 

gazetteers (in the “Generated lists” columns). For comparison, Table 3 also shows the best 

supervised results from Table 1 (in the “Mikheev combined lists” columns). The results 

we report in Tables 1, 3, 4, and 5 are all based on the held-out formal corpus of MUC-7. 

Table 3. Supervised list creation vs. unsupervised list creation techniques 

 Mikheev combined lists  Generated lists 

 re pr f  re pr f 

organization 50 72 59  70 52 60 

person 47 85 61  59 20 30 

location 86 90 88  83 31 45 

 

We believe the comparison in Table 3 gives a good sense of the characteristics of both 

approaches. The supervised approach is quite precise but its recall is lower, since it cannot 

handle rare entities. The unsupervised approach benefits from large gazetteers, which 

enable higher recall at the cost of lower precision.  

The case of locations is interesting. There is evidence that there is a substantial 
vocabulary transfer between the training data and the testing data, which allows the 

supervised method to have an excellent recall on the unseen texts. Mikheev’s lists get a 
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high recall with a list of only 770 locations. The supervised method benefits from highly 

repetitive location names in the MUC corpus. 

These results are slightly misleading. The MUC scoring software that produces these 
measures allows partial matching. That means, if a system tags the expression “Virgin 

Atlantic” when the official annotated key is “Virgin Atlantic Group”, it will be credited 

with a success. In Table 4, we provide another view of the system’s performance, which 

may be less misleading. Table 4 gives, for our system, the precision and recall of all entity 

types at the level of tokens (i.e., performance at finding exact string matches) and types 
(i.e., performance at correctly classifying the entity types).  

Table 4. Generated list performance on text and type matching 

Generated lists  

re pr f 

tokens 61 29 39 

types 72 34 46 

 

The next step in our evaluation consists in adding the heuristics presented in Sections 

2.2.1 to 2.2.3. These heuristics are designed to be unsupervised; that is, they require no 

training (unlike n-gram contexts, for example) and they are not deduced from our domain 

knowledge about a specific entity type. Table 5 shows the contribution of each heuristic. 
The “Generated lists” columns are copied from Tables 3 and 4, to show the performance 

of the list lookup strategy without disambiguation (i.e., Section 2.1 without Section 2.2).   

Table 5. Performance of heuristics to resolve named-entity ambiguity 

  

Generated lists 

 H1 (Entity-noun 

ambiguity)  

 H1 + H2 (Entity 

boundary) 

 H1 + H2 + H3 

(Entity-entity 

ambiguity) 

 re pr f  re pr f  re pr f  re pr f 

org. 70 52 60  69 73 71  69 74 71  71 75 73 

per. 59 20 30  58 53 55  66 63 64  83 71 77 

loc. 83 31 45  82 69 75  81 77 79  80 77 78 

tok. 61 29 39  61 57 59  72 72 72  74 72 73 

type 72 34 46  71 67 69  72 73 72  77 75 76 

 

The contribution of each heuristic (H1, H2, H3) is additive. H1 (Section 2.2.1) procures 

a dramatic improvement in precision with negligible loss of recall. The main source of 

ambiguity is clearly, then, entity-noun homographs such as jobs, gates, and bush. 

Heuristic H2 (Section 2.2.2) gives almost no change in precision and a small gain in 
the recall of individual entity types (the first three rows in Table 5). As explained, these 

scores are misleading because they count partial matches and thus these scores are not 

sensitive to the boundary detection errors that are corrected by H2. However, the 
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performance of token matching is greatly improved (fourth row in Table 5). We noticed 

that most corrected boundaries are attributable to person entities composed of a known 

first name and an unlisted capitalized string standing, presumably, for the surname. 
H3 (Section 2.2.3) mainly increases precision and recall for named-entities of the 

person type, due to the the alias resolution algorithm. An occurence of a full person name 

is usually unambiguous and thus can help with annotating isolated surnames, which are 

often either ambiguous (they can be confused with organization names) or simply unlisted 

strings. Since this heuristic is about resolving ambiguity in named-entity types, the 

expected result is an improvement in classification of types, and it can indeed be observed 
in the fifth row. 

4 Evaluation with Car Brands 

There are many more types of named-entities than the three classical types in Enamex. 

Sekine et al. [15] propose a hierarchy of 200 types of named-entities. Evans [5] proposes 

a framework to handle such wide variety. His approach is based on lexical patterns, 
inspired by Hearst [6]. He paired this technique with a heuristic for handling ambiguity in 
capitalized words. Our system is similar, but it is based on a method proven to give better 

recall at finding entities [4].  

In this section, we show how the system performs on the task of recognizing car 

brands. Intuitively, it may appear this type is easier to handle than a type such as persons 

that has an almost infinite extension. However, recognizing car brands poses many 

difficulties. Car brands can be confused with common nouns (e.g., Focus, Rendez-Vous, 
Matrix, Aviator) and with company names (e.g., “Ford” versus “Ford Motor Company”). 

Another difficulty is the fact that new car brands are created every year, so keeping a 

gazetteer of car brands up-to-date is challenging. 

We created a small pilot corpus composed of news specifically about cars from some 

popular news feeds (CanWest, National Post, and The Associated Press). We use eight 

documents, for a total of 5,570 words and 196 occurrences of car brands.  
The Web-page wrapper technique was used to generate a list of 5,701 car brands and 

the heuristics of sections 2.2.1 to 2.2.3 were applied without any modifications. Table 6 

reports the results. 

Table 6. System performance for car brand recognition 

 Generated list  H1, H2 and H3 

 re pr f  re pr f 

cars 86 42 56  85 88 86 

tokens 71 34 46  79 83 81 

types 86 42 56  85 88 86 
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The performance on this task is comparable to the Enamex task. Without ambiguity 

resolution (in the “Generated list” columns), the precision is low, typically under 50%. 

This is the impact of frequent and ambiguous words like “will” (Toyota Will) and noise in 
our list (e.g., new, car, fuel). The ambiguity resolution algorithms (in the “H1, H2, and 

H3” columns) raise the precision above 80%. The remaining recall errors are due to rare 

car brands (e.g., “BMW X5 4.8is” or “Ford Edge”). The remaining precision errors are 

due to organization-car ambiguity (e.g., “National” as in “National Post” versus 

“Chevrolet National”) and noise in the list (e.g., Other, SUV). We believe that the good 

performance of gazetteer generation combined with ambiguity resolution on an entirely 
new domain emphasizes their domain-independent character and shows the strength of the 

unsupervised approach. 

5 Supervised versus Unsupervised 

We describe our system as unsupervised, but the distinction between supervised and 

unsupervised systems is not always clear. In some systems that are apparently 

unsupervised, it could be argued that the human labour of generating labeled training data 
has merely been shifted to embedding clever rules and heuristics in the system.  

In our gazetteer generator (Section 2.1), the supervision is limited to a seed of four 

entities per list. In our ambiguity resolver (Section 2.2), we attempt to minimize the use of 

domain knowledge of specific entity types. Our system exploits human-generated HTML 

markup in Web pages to generate gazetteers. However, because Web pages are available 

in such a quantity and because the creation of Web pages is now intrinsic to the workflow 
of most organization and individuals, we believe this annotated data comes at a negligible 

cost. For these reasons, we believe it is reasonable to describe our system as unsupervised.  

6 Conclusion 

In this paper, we presented a named-entity recognition system that advances the state-of-

the-art of NER by avoiding the need for supervision and by handling novel types of 

named-entities. In a comparison on the MUC corpus, our system outperforms a baseline 
supervised system but it is still not competitive with more complex supervised systems. 

There are (fortunately) many ways to improve our model. One interesting way would be 

to generate gazetteers for a multitude of named-entity types (e.g., all 200 of Sekine’s 

types) and use list intersection as an indicator of ambiguity. This idea would not resolve 

the ambiguity itself but would clearly identify where to invest further efforts.  
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