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Abstract 

    In many practical applications, data mining results must be 

quickly delivered. To achieve the required efficiency, without 

sacrificing the quality of the results, practitioners are now looking 

at ways to parallelize the most computationally expensive steps of 

the data mining process. Realizing that a complete rewriting of 

existing sequential programs into parallel ones is often too 

tedious and expensive, we propose a framework which re-uses 

existing sequential programs to perform parallel data mining on a 

computer cluster. The proposed framework relies on the 

JavaParty system and can be used to parallelize both Java and 

non-Java programs. This paper details the framework, illustrates 

the implementation, and presents early experimental results 

showing the benefits of the approach.  

Keywords: Parallel Data Mining, Feature Extraction, Model 

Evaluation or Testing, JavaParty.                                                                                                 

1. Introduction 

   Real-world applications of data mining often require 

quick delivery of high quality results. To meet this need, 

practitioners are now looking at parallel programming to 

speed up the computationally expensive tasks. The 

hardware resources to run parallel programs are 

increasingly available. For example, several organizations 

already have access to computer clusters or could build one 

at relatively low cost. Distributed computing environments 

based on systems such as Condor 1  [14] are also 

inexpensive and can be used to simulate the hardware 

infrastructure. Unfortunately, practical software solutions 

                                                           
1  Condor is a specialized workload management system for 

providing the High-Performance Computing (HPC) 

environments. Such HPC environments provide a job queuing 

mechanism, scheduling policy, priority scheme, resource 

monitoring, and resource management.  

for parallel data mining are still not widely available. 

Although significant amounts of research are performed in 

the area of parallel data mining (e.g., [1][10][11][12]), the 

proposed solutions are often difficult to adopt; either 

because they do not rely on realistic hardware 

infrastructures or do not integrate well with the programs 

currently used in the organizations.      This short paper 

addresses this problem by introducing a software 

framework that helps practitioners parallelize 

computationally expensive data mining tasks while 

maximizing re-use of existing programs. The framework 

proposed has been developed and evaluated on a Beowulf 

computer cluster and relies on JavaParty, an open-source 

support library for computer cluster programming. 

Although developed in Java, it can integrate non-Java 

programs and is also adequate for other distributed 

computing environments such as Condor.  

 

 There are two broad approaches to parallelize data mining 

tasks [9]: algorithm-oriented and data-oriented approaches. 

Research on algorithm-oriented approach targets the 

development of parallel algorithms for existing machine 

learning techniques such as parallel decision trees [10], 

parallel genetic algorithms [11], and parallel neural 

networks [12]. The algorithm-oriented approach typically 

involves a significant rewrite of existing programs. The 

data-oriented approach tries to reduce the complexity of a 

given data mining task by splitting the datasets into several 

subsets, analyzing each subset independently, and then 

combining the partial results to form the final one. The 

infrastructure proposed in this paper provides support to 

implement this approach on a computer cluster. To 

maximize benefits, the architecture facilitates reuse of an 

existing program for the second step (the analysis of the 

subsets). Previous work on parallel data mining has mostly 

focused on model building. As we will show through an 

example, the proposed infrastructure could also be used for 

other data mining tasks such as feature extraction and 

model evaluation.  
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Figure 1. Overview of the proposed framework for parallel data mining. 
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The next section introduces the framework. Section 3 

details the implementation while Section 4 presents 

experimental results showing the feasibility of the 

approach. The last section draws conclusions and discusses 

future work.  

2. A Data-driven Framework for 

Parallel Data Mining 

As mentioned above, the proposed framework follows the 

data-driven paradigm to parallelize data mining on a 

Beowulf computer cluster. A Beowulf [15] computer 

cluster is simply defined as a group of computers (named 

nodes) that work together as a unified system.  A parallel 

program in the proposed framework works as follow. First, 

it partitions the (potentially huge) initial dataset into 

multiple subsets. Then it creates a task for each subset and 

progressively dispatches the tasks to the various nodes 

until they are all completed. Finally, it combines the partial 

results to create the final one. The potential gain in 

performance over a sequential solution comes from the 

parallel execution of the multiple tasks. On the other hand, 

we note that this procedure includes operations that are not 

found in an equivalent sequential program: splitting of the 

initial dataset, creation and dispatch of tasks, and 

combination of the partial results. To achieve any gain in 

performance, we must ensure that the time taken by these 

extra operations does not exceed the amount of time saved 

through parallel execution of the tasks.  

 

Figure 1 illustrates the proposed framework which has five 

modules: main program, data partition, task management, 

task execution, and results fusion. The main program 

coordinates the overall process for the given data mining 

task. It also simplifies communications by providing inputs 

to the various modules of the framework and by collecting 

results. Before presenting an example of a main program 

(Section 3), let us discuss the other modules in some detail. 

2.1 Data Partition 
 

The data partition module partitions a dataset S into n non-

overlapping subsets noted ),...,......,,( 21 ni DDDD . It is 

the main program that specifies (through the input 

parameter partition_algo) how to partition the initial 
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dataset for that task at hand. Three commonly used 

partition methods are: random partitioning, sequential 

partitioning, and attribute-based partitioning. The random 

method constructs each subset through random sampling 

(without replacement) of the instances from the initial 

dataset. The sequential method simply selects the instances 

in the order that they appear in the initial dataset. These 

two methods create subsets of equal-size and by default 

they generate as many subsets as there are CPUs in the 

cluster. For example, if there are M computer nodes and 

each has m processors then these two methods will 

generate n= mM • subsets of equal-size. Equal-size 

partitioning is generally optimal as it distributes the work 

equally among the CPUs and simplifies the management of 

the tasks.  

 

The attribute-based partitioning method splits the initial 

dataset based on the values of one or more attributes. This 

method is useful when each instance from the initial 

dataset belongs to a particular group and all the instances 

from the same group need to be analyzed together. For 

example, when performing feature extraction from a time-

series dataset covering several entities of a given type (e.g., 

system, patient, stock), one would want all instances for a 

given entity to form a subset (e.g., a time-series). In such 

cases, attributes such as patient_id or 

system_serial_number would be used to perform the 

partitioning. In the case of attribute-based partitioning, the 

subsets may have different sizes and the number of subsets 

may not correspond to the number of CPUs in the cluster. 

There is therefore a potential for non-optimal use of the 

cluster; some of the nodes may be overloaded while others 

may be idle or have very little processing to perform. 

2.2 Task Management 
 

The task management module receives from the main 

program the list of subsets to be analyzed and the 

information on compute nodes that are going to participate 

in the computation. Given this information, it dispatches 

the tasks to the compute nodes. The process works as 

follows. When a CPU becomes idle (e.g., right after 

initialization or between two tasks), it sends a request to 

the task management module to receive a new task. The 

task management module responds by sending back a 

TaskSpec object which defines the task specific 

parameters, the task data, and a result container to store a 

partial result. The process stops when all subsets have been 

processed.  

2.3 Task Execution 
 

The actual execution of the tasks is done on local processes 

running on the various compute nodes. The main program 

launches these processes after initializing the task manager. 

As indicated in Fig 1, these processes take two input 

parameters at creation time. The first one (named 

taskMgr_ref) is a reference to the task manager which 

allows them to request new tasks when they are available. 

The second parameter (named TaskProg) specifies the 

program to run for the analysis along with any additional 

information required to execute this program. When the 

local processes receive a new TaskSpec object from the 

task manager, they execute the specified TaskProg on the 

subset defined in the TaskSpec. The TaskProg may directly 

refer to an existing application that is used for sequential 

data analysis, therefore maximizing re-use of existing 

code. For maximal benefits, the local processes need to 

know how to efficiently launch and control various types 

of applications. In our case, most of our sequential 

programs were written in Java. Accordingly, we decided to 

rely on a framework named JavaParty that allows tight 

interactions with Java programs. We have also interfaced 

our framework with the R2 statistical system in a tightly 

coupled-manner to ease integration of statistical routines. 

Finally, the framework can also run any command line 

programs through an exec call to the underlying operating 

system.  

2.4 Result Fusion 
 

The result fusion module takes the partial results 

computed during the task execution step and generates the 

final result. Although not illustrated in Fig.1, this module 

can send partial results to the remote processes to allow re-

use of previous results during computation of new ones if 

needed. 

3. JavaParty-based Implementation 

This section discusses the implementation of the proposed 

framework and presents an example of a main parallel 

program for a key data mining task: feature extraction. 

Traditional MPI (Message Parsing Interface) [4] and PVM 

(Parallel Virtual Machine) [5] approaches could be used to 

implement the framework. However, both MPI and PVM 

were designed for C/C++ programs and cannot easily work 

                                                           
2 R is a statistical tool and requires the R-Java interface to 

interact between the Java application and the R system. 
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with existing Java programs.  Recent works such as 

JPVM [8] try to address this problem by developing Java 

libraries for MPI and PVM. These libraries provide a Java 

interface allowing Java programs to interact with MPI or 

PVM. Java itself could be another solution to implement 

the framework, since it provides distributed programming 

support [7] such as Threads, RMI and CORBA. But these 

are low-level mechanisms with no support for cluster 

computing. After evaluating various open-source 

alternatives, we decided to use JavaParty [2][3] to 

implement the proposed framework. JavaParty provides a 

distributed Java virtual machine on top of a set of regular 

Java virtual machines cooperating on a common task in the 

computer cluster. JavaParty has two main features. Firstly, 

JavaParty allows the various programs to access remote 

information just like they access local ones; addressing 

issues, communications, and network exceptions are all 

taken care of by JavaParty internally. This feature, named 

location transparent environment, greatly reduces the level 

of details that the programmers need to take into account.  

Secondly, JavaParty supports object migration to help 

developers optimize communications.  JavaParty 

implements the location transparent environment by adding 

remote objects to Java. The modifier "remote" is the only 

extension of the Java language. By declaring a class to be 

"remote” and instantiating it, JavaParty will automatically 

and transparently distribute the tasks to remote computer 

nodes. We use “remote” classes to define data subsets and 

the parallel processes. 

 

Figure 2 illustrates the use of the proposed framework to 

parallelize feature extraction. The figure shows pseudo 

Java code to implement the main parallel program that 

performs parallel Fast Fourier Transforms (FFT) of a time-

series dataset. The FFT for the subsets are computed using 

an existing R routine. The parallel program (named 
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Class ParallelFeatureExtractionFFT { 
// remote classes 
TaskManager taskManager;            
RemoteParallelTask[] rTask;  
// local classes 
DataPartition dataPartition; 
ResultCollection rst; 
ResultSet [] rstSubSet; 
      
//   other staff 
…… 
 
Public static main() { 
  // to partition data into subsets  
  SequentialDB db = new SequentialDB(); 
  CriteriaDP   criteria = new CriteriaDB(); 
  dataPartition = new  
                DataPartition(DB,Criteria); 
  DataSet[] subset = dataPartition.subsets(); 
  
  // to create a remote taskManager, M is the  
  // number of nodes in computer cluster, 
  // and m is the number of CPUs 
  taskManager = new  TaskManager(subset,M,m); 
 
  TaskProg taskProg = new TaskProg(  
           ”FastFourierTransform.class”); 
 
  // to launch M remote tasks for each node  
  for(int i=0; i<M; i++) { 
     rTask[i] = new  
  RemoteParalleTask(taskManager);  
     // to create m local tasks on each node  
     // for “FastFourierTransfer” task 
     rTask[i].CreateLocalTask(taskProg, m); 
     // to run local task  
     rstSubSet[i] = rTask[i].ExecuteTaskProg 

       (taskManager); 
  } 
 
  // to combine results 
  rst = new ResultCombination() 
  rst.fusion(rstSubSet) 

} 

Figure 2.  An example of a main program for parallelizing feature extraction. 

Internal Communications 
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ParallelFeatureExtractionFFT) first reads the full dataset 

and partitions it using the given criteria. Secondly, the 

program instantiates an instance of the remote class 

TaskManager. Thirdly, the program iteratively launches M 

remote tasks on the compute nodes by instantiating the 

remote class RemoteParallelTask. These parallel tasks will 

be executed on the compute nodes automatically and 

transparently. Meanwhile, the program lets each remote 

task fork m local tasks by executing the method, 

CreateLocalTask(taskProg, m), where taskProg specifies 

the program for the data mining task (in this example, it is 

the Fast Fourier Transform program named 

FastFourierTransform.class ) and m is the number of 

CPUs on each remote node. All of these local tasks will 

execute the specified task program by calling the method, 

ExecuteTaskProg(taskManager), where taskManager is 

the reference to the remote task manager object. Through 

communication with taskManager, each local task will get 

a taskSpec object specifying the dataset to be processed. 

Finally, the program combines the results from all parallel 

tasks and generates the final result which contains the FFT 

for all observations in the initial dataset. We do not detail 

the remote classes TaskManager and RemoteParallelTask 

since they are as described in Section 2.2 (Task 

Management) and Section 2.3 (Task Execution), 

respectively. 

4. Experimental Results 

To illustrate the efficiency of the proposed framework, we 

report on experiments to parallelize the model evaluation 

task in a real-world application. The implementation is 

identical to the one described above except that we 

replaced the task program FastFourierTransform.class by 

one for model evaluation (named ModelEvaluation.class). 

We first constructed a high performance Beowulf 

computer cluster using the NPACI Rocks software [13] on 

the Linux operating system. Each computer node is 

configured with same hardware and software. This means 

that the nodes should have the same performance. The data 

comes from the WILDMiner project3.  The training and 

testing datasets used contain 22083 and 2190980 instances, 

respectively.  Using the training data and the WEKA 

system, we built four models: one NaiveBayes, one 

Decision Tree, and two Instance Based models (k=2,3).  

We then used our parallel framework to evaluate each of 

these models on the full testing dataset. For comparison, 

we performed the evaluation on a single computer, a 6 

                                                           
3 More information on the WILDMiner project is available at 

http://iit-iti.nrc-cnrc.gc.ca/projects-projets/wildminer_e.html 

nodes computer cluster, and a 12 nodes cluster. Table 1 

shows the experimental results.  

 

 
Table 1. The performance of parallel model evaluation 

 (in seconds) 

 

 
Single 

Node 
6 Nodes 12 Nodes 

NaiveBayes 548 96 54 

Decision Trees 453 80 44 

IBk (k=2) 420844 64954 35051 

IBk (k=3) 415760 64932 34795 

 

 

As we increase the number of nodes, we observe an almost 

linear decrease in computation time. This near optimal 

performance clearly shows the potential of the approach 

and the appropriateness of JavaParty to realize the 

implementation. 

5. Conclusions and Future Work 

In this paper, we proposed a practical data-driven 

framework to parallelize data mining processes on a 

computer cluster. The framework capitalizes on readily 

available resources by allowing re-use of existing 

sequential programs. This characteristic should benefit 

organizations already involved in data mining that are in 

need of greater efficiency. We illustrated the 

implementation of the framework through a simple 

example and reported highly convincing experimental 

results. In short, the proposed framework provides a simple 

and effective way for programmers to implement parallel 

data mining processes that can significantly speed up the 

data mining process. We did not compare the performance 

of our implementation with other parallel programming 

techniques such as MPI, PVM and JPVM. This is part of 

our future work. Finally, we also want to explore 

specializations of the framework for particular data mining 

tasks. Hopefully, these will further increase applicability 

and performance. 
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