
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and
Informatics (WMSCI 2005), 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=7fc04822-e48f-4a7c-aa10-6c38d4fc218e

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7fc04822-e48f-4a7c-aa10-6c38d4fc218e

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Practical Data-Driven Framework for Parallel Data Mining
Yang, Chunsheng; Létourneau, Sylvain

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

A Practical Data-Driven Framework for

Parallel Data Mining *

Yang, C., and Letourneau, S.
July 2005

* published in The Proceedings of the 9

th
 World Multi-Conference on Systemics,

Cybernetics and Informatics (WMSCI 2005), Orlando, Florida, USA. July 10-13, 2005.

NRC 47440.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

A Practical Data-driven Framework for Parallel Data Mining

Chunsheng Yang
National Research Council of Canada
Ottawa, Ontario, K1A 0R6, Canada

chunsheng.yang@nrc-cnrc.gc.ca

Sylvain Létourneau
National Research Council of Canada
Ottawa, Ontario, K1A 0R6, Canada

sylvain.letourneau@nrc-cnrc.gc.ca

Abstract

 In many practical applications, data mining results must be

quickly delivered. To achieve the required efficiency, without

sacrificing the quality of the results, practitioners are now looking

at ways to parallelize the most computationally expensive steps of

the data mining process. Realizing that a complete rewriting of

existing sequential programs into parallel ones is often too

tedious and expensive, we propose a framework which re-uses

existing sequential programs to perform parallel data mining on a

computer cluster. The proposed framework relies on the

JavaParty system and can be used to parallelize both Java and

non-Java programs. This paper details the framework, illustrates

the implementation, and presents early experimental results

showing the benefits of the approach.

Keywords: Parallel Data Mining, Feature Extraction, Model

Evaluation or Testing, JavaParty.

1. Introduction

 Real-world applications of data mining often require

quick delivery of high quality results. To meet this need,

practitioners are now looking at parallel programming to

speed up the computationally expensive tasks. The

hardware resources to run parallel programs are

increasingly available. For example, several organizations

already have access to computer clusters or could build one

at relatively low cost. Distributed computing environments

based on systems such as Condor 1 [14] are also

inexpensive and can be used to simulate the hardware

infrastructure. Unfortunately, practical software solutions

1 Condor is a specialized workload management system for

providing the High-Performance Computing (HPC)

environments. Such HPC environments provide a job queuing

mechanism, scheduling policy, priority scheme, resource

monitoring, and resource management.

for parallel data mining are still not widely available.

Although significant amounts of research are performed in

the area of parallel data mining (e.g., [1][10][11][12]), the

proposed solutions are often difficult to adopt; either

because they do not rely on realistic hardware

infrastructures or do not integrate well with the programs

currently used in the organizations. This short paper

addresses this problem by introducing a software

framework that helps practitioners parallelize

computationally expensive data mining tasks while

maximizing re-use of existing programs. The framework

proposed has been developed and evaluated on a Beowulf

computer cluster and relies on JavaParty, an open-source

support library for computer cluster programming.

Although developed in Java, it can integrate non-Java

programs and is also adequate for other distributed

computing environments such as Condor.

 There are two broad approaches to parallelize data mining

tasks [9]: algorithm-oriented and data-oriented approaches.

Research on algorithm-oriented approach targets the

development of parallel algorithms for existing machine

learning techniques such as parallel decision trees [10],

parallel genetic algorithms [11], and parallel neural

networks [12]. The algorithm-oriented approach typically

involves a significant rewrite of existing programs. The

data-oriented approach tries to reduce the complexity of a

given data mining task by splitting the datasets into several

subsets, analyzing each subset independently, and then

combining the partial results to form the final one. The

infrastructure proposed in this paper provides support to

implement this approach on a computer cluster. To

maximize benefits, the architecture facilitates reuse of an

existing program for the second step (the analysis of the

subsets). Previous work on parallel data mining has mostly

focused on model building. As we will show through an

example, the proposed infrastructure could also be used for

other data mining tasks such as feature extraction and

model evaluation.

 Chunsheng Yang and Sylvain Létourneau

Figure 1. Overview of the proposed framework for parallel data mining.

Data Partition

).,...,......,,(21 ni ssssS ⊇

D1 D2 Di
Dn

Results Fusion

M
a

in
 P

a
ra

llel P
ro

g
ra

m

Task Management

 Node 1 ... Node M

Task Execution

Request TaskSpec Request TaskSpec

subsets (D1 … Dn)

partition_algo, S

subsets, node_info

taskMgr_ref

taskMgr_ref, taskProg

subset_results

subset_results

final_result

The next section introduces the framework. Section 3

details the implementation while Section 4 presents

experimental results showing the feasibility of the

approach. The last section draws conclusions and discusses

future work.

2. A Data-driven Framework for

Parallel Data Mining

As mentioned above, the proposed framework follows the

data-driven paradigm to parallelize data mining on a

Beowulf computer cluster. A Beowulf [15] computer

cluster is simply defined as a group of computers (named

nodes) that work together as a unified system. A parallel

program in the proposed framework works as follow. First,

it partitions the (potentially huge) initial dataset into

multiple subsets. Then it creates a task for each subset and

progressively dispatches the tasks to the various nodes

until they are all completed. Finally, it combines the partial

results to create the final one. The potential gain in

performance over a sequential solution comes from the

parallel execution of the multiple tasks. On the other hand,

we note that this procedure includes operations that are not

found in an equivalent sequential program: splitting of the

initial dataset, creation and dispatch of tasks, and

combination of the partial results. To achieve any gain in

performance, we must ensure that the time taken by these

extra operations does not exceed the amount of time saved

through parallel execution of the tasks.

Figure 1 illustrates the proposed framework which has five

modules: main program, data partition, task management,

task execution, and results fusion. The main program

coordinates the overall process for the given data mining

task. It also simplifies communications by providing inputs

to the various modules of the framework and by collecting

results. Before presenting an example of a main program

(Section 3), let us discuss the other modules in some detail.

2.1 Data Partition

The data partition module partitions a dataset S into n non-

overlapping subsets noted),...,......,,(21 ni DDDD . It is

the main program that specifies (through the input

parameter partition_algo) how to partition the initial

A Practical Data-driven Framework for Parallel Data Mining

dataset for that task at hand. Three commonly used

partition methods are: random partitioning, sequential

partitioning, and attribute-based partitioning. The random

method constructs each subset through random sampling

(without replacement) of the instances from the initial

dataset. The sequential method simply selects the instances

in the order that they appear in the initial dataset. These

two methods create subsets of equal-size and by default

they generate as many subsets as there are CPUs in the

cluster. For example, if there are M computer nodes and

each has m processors then these two methods will

generate n= mM • subsets of equal-size. Equal-size

partitioning is generally optimal as it distributes the work

equally among the CPUs and simplifies the management of

the tasks.

The attribute-based partitioning method splits the initial

dataset based on the values of one or more attributes. This

method is useful when each instance from the initial

dataset belongs to a particular group and all the instances

from the same group need to be analyzed together. For

example, when performing feature extraction from a time-

series dataset covering several entities of a given type (e.g.,

system, patient, stock), one would want all instances for a

given entity to form a subset (e.g., a time-series). In such

cases, attributes such as patient_id or

system_serial_number would be used to perform the

partitioning. In the case of attribute-based partitioning, the

subsets may have different sizes and the number of subsets

may not correspond to the number of CPUs in the cluster.

There is therefore a potential for non-optimal use of the

cluster; some of the nodes may be overloaded while others

may be idle or have very little processing to perform.

2.2 Task Management

The task management module receives from the main

program the list of subsets to be analyzed and the

information on compute nodes that are going to participate

in the computation. Given this information, it dispatches

the tasks to the compute nodes. The process works as

follows. When a CPU becomes idle (e.g., right after

initialization or between two tasks), it sends a request to

the task management module to receive a new task. The

task management module responds by sending back a

TaskSpec object which defines the task specific

parameters, the task data, and a result container to store a

partial result. The process stops when all subsets have been

processed.

2.3 Task Execution

The actual execution of the tasks is done on local processes

running on the various compute nodes. The main program

launches these processes after initializing the task manager.

As indicated in Fig 1, these processes take two input

parameters at creation time. The first one (named

taskMgr_ref) is a reference to the task manager which

allows them to request new tasks when they are available.

The second parameter (named TaskProg) specifies the

program to run for the analysis along with any additional

information required to execute this program. When the

local processes receive a new TaskSpec object from the

task manager, they execute the specified TaskProg on the

subset defined in the TaskSpec. The TaskProg may directly

refer to an existing application that is used for sequential

data analysis, therefore maximizing re-use of existing

code. For maximal benefits, the local processes need to

know how to efficiently launch and control various types

of applications. In our case, most of our sequential

programs were written in Java. Accordingly, we decided to

rely on a framework named JavaParty that allows tight

interactions with Java programs. We have also interfaced

our framework with the R2 statistical system in a tightly

coupled-manner to ease integration of statistical routines.

Finally, the framework can also run any command line

programs through an exec call to the underlying operating

system.

2.4 Result Fusion

The result fusion module takes the partial results

computed during the task execution step and generates the

final result. Although not illustrated in Fig.1, this module

can send partial results to the remote processes to allow re-

use of previous results during computation of new ones if

needed.

3. JavaParty-based Implementation

This section discusses the implementation of the proposed

framework and presents an example of a main parallel

program for a key data mining task: feature extraction.

Traditional MPI (Message Parsing Interface) [4] and PVM

(Parallel Virtual Machine) [5] approaches could be used to

implement the framework. However, both MPI and PVM

were designed for C/C++ programs and cannot easily work

2 R is a statistical tool and requires the R-Java interface to

interact between the Java application and the R system.

 Chunsheng Yang and Sylvain Létourneau

with existing Java programs. Recent works such as

JPVM [8] try to address this problem by developing Java

libraries for MPI and PVM. These libraries provide a Java

interface allowing Java programs to interact with MPI or

PVM. Java itself could be another solution to implement

the framework, since it provides distributed programming

support [7] such as Threads, RMI and CORBA. But these

are low-level mechanisms with no support for cluster

computing. After evaluating various open-source

alternatives, we decided to use JavaParty [2][3] to

implement the proposed framework. JavaParty provides a

distributed Java virtual machine on top of a set of regular

Java virtual machines cooperating on a common task in the

computer cluster. JavaParty has two main features. Firstly,

JavaParty allows the various programs to access remote

information just like they access local ones; addressing

issues, communications, and network exceptions are all

taken care of by JavaParty internally. This feature, named

location transparent environment, greatly reduces the level

of details that the programmers need to take into account.

Secondly, JavaParty supports object migration to help

developers optimize communications. JavaParty

implements the location transparent environment by adding

remote objects to Java. The modifier "remote" is the only

extension of the Java language. By declaring a class to be

"remote” and instantiating it, JavaParty will automatically

and transparently distribute the tasks to remote computer

nodes. We use “remote” classes to define data subsets and

the parallel processes.

Figure 2 illustrates the use of the proposed framework to

parallelize feature extraction. The figure shows pseudo

Java code to implement the main parallel program that

performs parallel Fast Fourier Transforms (FFT) of a time-

series dataset. The FFT for the subsets are computed using

an existing R routine. The parallel program (named

p
u
b
l
i
c

r
e
m
o
t
e

c
l
a
s
s

T
a
s
k
M
a
n
a
g
e
r

{

…
…

/
/
/
/

T
h
i
s

i
s

J
a
v
a
P
a
r
t
y

…
…

/
/
/

R
E
M
O
T
E

C
l
a
s
s

/
/
/
d
e
f
i
n
i
t
i
o
n

}

/
/

T
h
e

o
b
j
e
c
t

o
f

t
h
i
s

/
/
c
l
a
s
s

w
i
l
l

b
e

r
u
n

o
n

/
/
r
e
m
o
t
e

n
o
d
e

p
u
b
l
i
c

r
e
m
o
t
e

c
l
a
s
s

R
e
m
o
t
e
P
a
r
a
l
l
e
l
T
a
s
k

{

…
/
/
/
/

T
h
i
s

i
s

J
a
v
a
P
a
r
t
y

…

/
/
/

R
E
M
O
T
E

C
l
a
s
s

…
.

/
/
/

d
e
f
i
n
i
t
i
o
n

}

/
/
/
T
h
e

o
b
j
e
c
t

o
f

t
h
i
s

/
/
c
l
a
s
s

w
i
l
l

b
e

r
u
n

o
n

/
/
r
e
m
o
t
e

n
o
d
e

Class ParallelFeatureExtractionFFT {
// remote classes
TaskManager taskManager;
RemoteParallelTask[] rTask;
// local classes
DataPartition dataPartition;
ResultCollection rst;
ResultSet [] rstSubSet;

// other staff
……

Public static main() {
 // to partition data into subsets
 SequentialDB db = new SequentialDB();
 CriteriaDP criteria = new CriteriaDB();
 dataPartition = new
 DataPartition(DB,Criteria);
 DataSet[] subset = dataPartition.subsets();

 // to create a remote taskManager, M is the
 // number of nodes in computer cluster,
 // and m is the number of CPUs
 taskManager = new TaskManager(subset,M,m);

 TaskProg taskProg = new TaskProg(
 ”FastFourierTransform.class”);

 // to launch M remote tasks for each node
 for(int i=0; i<M; i++) {
 rTask[i] = new
 RemoteParalleTask(taskManager);
 // to create m local tasks on each node
 // for “FastFourierTransfer” task
 rTask[i].CreateLocalTask(taskProg, m);
 // to run local task
 rstSubSet[i] = rTask[i].ExecuteTaskProg

 (taskManager);
 }

 // to combine results
 rst = new ResultCombination()
 rst.fusion(rstSubSet)

}

Figure 2. An example of a main program for parallelizing feature extraction.

Internal Communications

A Practical Data-driven Framework for Parallel Data Mining

ParallelFeatureExtractionFFT) first reads the full dataset

and partitions it using the given criteria. Secondly, the

program instantiates an instance of the remote class

TaskManager. Thirdly, the program iteratively launches M

remote tasks on the compute nodes by instantiating the

remote class RemoteParallelTask. These parallel tasks will

be executed on the compute nodes automatically and

transparently. Meanwhile, the program lets each remote

task fork m local tasks by executing the method,

CreateLocalTask(taskProg, m), where taskProg specifies

the program for the data mining task (in this example, it is

the Fast Fourier Transform program named

FastFourierTransform.class) and m is the number of

CPUs on each remote node. All of these local tasks will

execute the specified task program by calling the method,

ExecuteTaskProg(taskManager), where taskManager is

the reference to the remote task manager object. Through

communication with taskManager, each local task will get

a taskSpec object specifying the dataset to be processed.

Finally, the program combines the results from all parallel

tasks and generates the final result which contains the FFT

for all observations in the initial dataset. We do not detail

the remote classes TaskManager and RemoteParallelTask

since they are as described in Section 2.2 (Task

Management) and Section 2.3 (Task Execution),

respectively.

4. Experimental Results

To illustrate the efficiency of the proposed framework, we

report on experiments to parallelize the model evaluation

task in a real-world application. The implementation is

identical to the one described above except that we

replaced the task program FastFourierTransform.class by

one for model evaluation (named ModelEvaluation.class).

We first constructed a high performance Beowulf

computer cluster using the NPACI Rocks software [13] on

the Linux operating system. Each computer node is

configured with same hardware and software. This means

that the nodes should have the same performance. The data

comes from the WILDMiner project3. The training and

testing datasets used contain 22083 and 2190980 instances,

respectively. Using the training data and the WEKA

system, we built four models: one NaiveBayes, one

Decision Tree, and two Instance Based models (k=2,3).

We then used our parallel framework to evaluate each of

these models on the full testing dataset. For comparison,

we performed the evaluation on a single computer, a 6

3 More information on the WILDMiner project is available at

http://iit-iti.nrc-cnrc.gc.ca/projects-projets/wildminer_e.html

nodes computer cluster, and a 12 nodes cluster. Table 1

shows the experimental results.

Table 1. The performance of parallel model evaluation

 (in seconds)

Single

Node
6 Nodes 12 Nodes

NaiveBayes 548 96 54

Decision Trees 453 80 44

IBk (k=2) 420844 64954 35051

IBk (k=3) 415760 64932 34795

As we increase the number of nodes, we observe an almost

linear decrease in computation time. This near optimal

performance clearly shows the potential of the approach

and the appropriateness of JavaParty to realize the

implementation.

5. Conclusions and Future Work

In this paper, we proposed a practical data-driven

framework to parallelize data mining processes on a

computer cluster. The framework capitalizes on readily

available resources by allowing re-use of existing

sequential programs. This characteristic should benefit

organizations already involved in data mining that are in

need of greater efficiency. We illustrated the

implementation of the framework through a simple

example and reported highly convincing experimental

results. In short, the proposed framework provides a simple

and effective way for programmers to implement parallel

data mining processes that can significantly speed up the

data mining process. We did not compare the performance

of our implementation with other parallel programming

techniques such as MPI, PVM and JPVM. This is part of

our future work. Finally, we also want to explore

specializations of the framework for particular data mining

tasks. Hopefully, these will further increase applicability

and performance.

Acknowledgements

Many thanks go to Bob Orchard for his comments on

earlier drafts of this paper. Special thank is for Marc

Leveille for his support on computer cluster and Silvain

Bériault for his work on this project during a student coop

 Chunsheng Yang and Sylvain Létourneau

term at the National Research Council. We are also

grateful to Bernhard Haumacher for the JavaParty system

and for his technical support.

References

[1] Omer Rana, David Walker, Maozhen Li, Steven Lynden, and

Mike Ward, “PaDDMAS: Parallel and Distributed Data

Mining Application Suite”, Proc. Of the Fourteen Inte’l

Parallel and Distributed Processing Symposium, 2000, pp.387-

392

[2] Michael Philippsen and Matthias Zenger, “JavaParty—

Transparent Remote Objects in Java”, Concurrency: Practice

& Experience, Vol. 9, No. 11, 1997, pp.1225-1242

[3] Bernhard Haumacher and Michael Philippsen, “Exploiting

Object Locality in JavaParty—A Distributed Computing

Environment for Workstation Cluster”, 2000,

http://wwwipd.ira.uka.de/JavaParty

[4] Message Parsing Interface Forum: MPI: a Message-Parsing

Interface Standard. University of Tenessee, Knoxville, TN.

http://www.mcs.anl.gov/mpi.

[5] PVM: Parallel Virtual Machine, http://www.netlib.org/pvm3.

[6] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang

Lim, “Object Serialization for marshaling data in java

interface to MPI”, Concurrency: Practice and Experience, Vol.

12 No.7, 2000, pp.539-553

[7] Matthias Gimbel, et al, “Java as a Basis for Parallel Data

Mining in Workstation Clusters”, in the Proceedings of 7th

International Conference on High Performance Computing

and Networking HPCN Europe, April, 1999, Amsterdam, The

Netherlands.

[8] Adam J. Ferrari, “JPVM: Network Parallel Computing in

Java”, ACM 1988 Workshop on Java for High-performance

Networking Computing, February 1998, pp. 11-13

[9] Alex A. Freitas, “Mining Very Large Databases with Parallel

Processing”, pressed by Kluwer Academic Publishers, 1998

 [10] R.A. Perrson, “A Coarse-grained Parallel Induction

Heuristic: in “ Parallel Processing for Artificial Intelligence”

Edited by H. Kitano et al, Elsevier Science, 1994, Vol. 2,

pp.207-226

[11] I. W. Flockhart and N.J. Radcliffe, “ GA-MINER: Parallel

Data Mining with Hierarchical Genetic Algorithm”,

EPCC_AIKMS-GA-MINER report1.0, University of

Edinburgh, 1995

[12] S.K. Foo et al, “Parallel Implementation of Backpropagation

Neural Networks”, IEEE Trans. Systems, Man and Cybern –

Part B: Cybern, Vol. 27(1), pp. 118-126, 1997

[13] P. M. Papadopoulos, et al, “NPACI Rocks: Tools and

Techniques for Easily Deploying Manageable Linux

Clusters”, Concurrency and Computation: Practice and

Experience, 2002

[14] “Condor – High Throughput Computing”,

http://www.cs.wisc.edu/condor/description.html

[15] “A Beowulf Overview” --http://www.beowulf.org/overview/

index.html

