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Abstrat. This paper presents a parallel implementation of a hybrid

data mining tehnique for multivariate heterogeneous time varying pro-

esses based on a ombination of neuro-fuzzy tehniques and geneti algo-

rithms. The purpose is to disover patterns of dependeny in general mul-

tivariate time-varying systems, and to onstrut a suitable representation

for the funtion expressing those dependenies. The patterns of depen-

deny are represented by multivariate, non-linear, autoregressive models.

Given a set of time series, the models relate future values of one target

series with past values of all suh series, inluding itself. The model spae

is explored with a geneti algorithm, whereas the funtional approxima-

tion is onstruted with a similarity based neuro-fuzzy heterogeneous

network. This approah allows rapid prototyping of interesting interde-

pendenies, espeially in poorly known omplex multivariate proesses.

This method ontains a high degree of parallelism at di�erent levels of

granularity, whih an be exploited when designing distributed imple-

mentations, suh as workrew omputation in a master-slave paradigm.

In the present paper, a �rst implementation at the highest granularity

level is presented. The implementation was tested for performane and

portability in di�erent homogeneous and heterogeneous Beowulf lusters

with satisfatory results. An appliation example with a known time

series problem is presented.

1 Introdution

Multivariate time-varying proesses are ommon in a wide variety of important

domains like mediine, eonomis, industry, ommuniations, environmental si-

enes, et. Developments in sensor and ommuniation tehnology enable the

simultaneous monitoring and reording of large sets of variables quikly, there-

fore generating large sets of data. Proesses of this kind are usually desribed
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by sets of variables, sometimes of heterogeneous nature. Some are numeri, oth-

ers are non-numeri, for example, desribing disrete state transitions. In real

world situations, it is pratially impossible to reord all variables at all time

frames, whih leads to inomplete information. In pratie, the degree of au-

ray assoiated with the observed variables is irregular, resulting in data sets

with di�erent kinds and degrees of impreision. All of these problems severely

limit the appliability of most lassial methods. Many tehniques have been de-

veloped for time series predition from a variety of oneptual approahes ([3℄,

[6℄), but the problem of �nding models of internal dependenies has reeived

muh less attention. However, in real world multivariate proesses, the patterns

of internal dependenies are usually unknown and their disovery is ruial in

order to understand and predit them. In the present approah, the spae of

possible models of a given kind is explored with geneti algorithms and their

quality evaluated by onstruting a similarity-based neuro-fuzzy network rep-

resenting a funtional approximation for a predition operator. This approah

to model mining is ompute-intensive, but it is well suited for superomput-

ers and distributed omputing systems. In the parallel implementation of this

soft-omputing approah to model disovery, several hierarhial levels an be

identi�ed, all involving intrinsially parallel operations. Therefore, a variety of

implementations exploiting di�erent degrees of granularity in the evolutionary

algorithm and in the neuro-fuzzy network is possible. Here, following a parsi-

monious priniple, the highest level is hosen for a �rst parallel implementation:

that of population evaluation within a geneti algorithm.

2 Problem Formulation

The pattern of mutual dependenies is an essential element of this methodology.

The purpose is to explore multivariate time series data for plausible dependeny

models expressing the relationship between future values of a previously seleted

series (the target), with past values of itself and other time series. Some of the

variables omposing the proess may be numeri (ratio or interval sales), and

some qualitative (ordinal or nominal sales). Also, they might ontain missing

values. Many di�erent families of funtional models desribing the dependeny of

future values of a target series on the previous values an be onsidered, and the

lassial linear models AR, MA, ARMA and ARIMA [3℄, have been extensively

studied. The hoie of the funtional family will inuene the overall result.

The methodology proposed here does not require a partiular model. Beause

the generalized nonlinear AR model expressed by relation (1) is a simple model

whih makes the presentation easier to follow, we use this basi model:

ST (t) =F

0
BB�

S1(t� �1;1); S1(t� �1;2); � � � ; S1(t� �1;p1);
S2(t� �2;1); S2(t� �2;2); � � � ; S2(t� �2;p2);

: : :
Sn(t� �n;1); Sn(t� �n;2); � � � ; Sn(t� �n;pn)

1
CCA (1)
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where ST (t) is the target signal at time t, Si is the i-th time series, n is

the total number of signals, pi is the number of time lag terms from signal i
inuening ST (t), �i;k is the k-th lag term orresponding to signal i (k 2 [1; pi℄),
and F is the unknown funtion desribing the proess.

The goal is the simultaneous determination of: i) the number of required

lags for eah series, ii) the sets of partiular lags within eah series arrying

dependeny information, and iii) the predition funtion, in some optimal sense.

The size of the spae of possible models is immense (even for only a few series

and a limited number of time lags), and the lak of assumptions about the

predition funtion makes the set of andidates unlimited. A natural requirement

on funtion F is the minimization of a suitable predition error and the idea is

to �nd a reasonably small subset with the best models in the above mentioned

sense.

2.1 A SOFT COMPUTING MODEL MINING STRATEGY

A soft omputing approah to the model mining problem an be: i) exploration

of the model spae with evolutionary algorithms, and ii) representation of the

unknown funtion with a neural network (or a fuzzy system). The use of a

neural network allows a exible, robust and aurate preditor funtion approx-

imator operator. Feed-forward networks and radial basis funtions are typial

hoies. However, the use of these lassial network paradigms might be diÆ-

ult or even prohibitive, sine for eah andidate model in the searh proess,

a network of the orresponding type has to be onstruted and trained. Issues

like hosing the number of neurons in the hidden layer, mixing of numeri and

non-numeri information (disussed above), and working with impreise values

add even more omplexity. Moreover, in general, these networks require long

and unpreditable training times. The proposed method uses a heterogeneous

neuron model [9℄, [10℄. It onsiders a neuron as a general mapping from a hetero-

geneous multidimensional spae omposed by artesian produts of the so alled

extended sets, to another heterogeneous spae. These are formed by the union of

real, ordinal, nominal, fuzzy sets, or others (e.g. graphs), with the missing value

(e.g. for the reals R̂ = R [ f�g, where � is the missing value). Their artesian

produt forms the heterogeneous spae, whih in the present ase, is given by

Ĥ
n = R̂

nr � Ô
no � N̂

nn � F̂
nf . In the h-neuron, the inputs, and the weights,

are elements of the n-dimensional heterogeneous input spae. Among the many

kinds of possible mappings, the one using a similarity funtion [4℄ as the aggre-

gation funtion and the identity mapping as the ativation funtion is used here.

Its image is the real interval [0,1℄ and gives the degree of similarity between the

input pattern and neuron weights. See Fig-2.1 (left).

The h-neuron an be used in onjuntion with the lassial (dot produt as

aggregation and sigmoid or hyperboli tangent as ativation), forming hybrid

network arhitetures. They have general funtion approximation properties [1℄,

and are trained with evolutionary algorithms in the ase of heterogeneous inputs

and missing values due to lak of ontinuity in the variable's spae. The hybrid

network used here has a hidden layer of h-neurons and an output layer of lassial
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neurons. In the speial ase of prediting a single real-valued target time series,

the arhiteture is shown in Fig-2.1 (right).
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Fig. 1. Left: A heterogeneous neuron. Right: A hybrid neuro-fuzzy network.

This network works like a k-best interpolator algorithm: Eah neuron in the

hidden layer omputes its similarity with the input vetor and the k-best re-

sponses are retained (k is a pre-set number of h-neurons to selet). Using as

ativation a linear funtion with a single oeÆient equal to the inverse of the

sum of the k-similarities oming from the hidden layer, the output is given by

(2).

output = (1=�)
X
i2K

hiWi; � =
X
i2K

hi (2)

where K is the set of k-best h-neurons of the hidden layer and hi is the similarity

value of the i-best h-neuron w.r.t the input vetor. These similarities represent

the fuzzy memberships of the input vetor to the set lasses de�ned by the neu-

rons in the hidden layer. Thus, (2) represents a fuzzy estimate for the predited

value. Assuming that a similarity funtion S has been hosen and that the target

is a single time series, this ase-based neuro-fuzzy network is built and trained as

follows: De�ne a similarity threshold T 2 [0; 1℄ and extrat the subset L of the

set of input patterns 
 (L � 
) suh that for every input pattern x 2 
, there

exist a l 2 L suh that S(x; l) � T . Several algorithms for extrating subsets

with this property an be onstruted in a single yle through the input pattern

set (note that if T = 1, the hidden layer beomes the whole training set). The

hidden layer is onstruted by using the elements of L as h-neurons. While the

output layer is built by using the orresponding target outputs as the weights of

the neuron(s). This training proedure is very fast and allows onstrution and

testing of many hybrid neuro-fuzzy networks in a short time. Di�erent sets of

individual lags seleted from eah time series will de�ne di�erent training sets,

and therefore, di�erent hybrid neuro-fuzzy networks. This one-to-one orrespon-

dene between dependeny models and neuro-fuzzy networks, makes the searh

in the model spae equivalent to the searh in the spae of networks. Thus, given

a model desribing the dependenies and a set of time series, a hybrid network
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an be onstruted aording to the outlined proedure, and tested for its pre-

dition error on a segment of the target series not used for training (building)

the network. The Root Mean Squared (RMS) error is a typial goodness of �t

measure and is the one used here. For eah model the quality indiator is given

by the predition error on the test set of its equivalent similarity-based neuro-

fuzzy network (the predition funtion). The searh for optimal models an be

made with an evolutionary algorithm minimizing the predition error measure.

Geneti Algorithms and Evolution Strategies are typial for this task and many

problem representations are possible. Geneti algorithms were used with a sim-

ple model oding given by binary hromosomes of length equal to the sum of the

maximal number of lags onsidered for eah of the time series (the time window

depth). Within eah hromosome segment orresponding to a given series, the

non-zero values will indiate whih time lags should be inluded in the model,

as shown in Fig-2.1.
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Fig. 2. Chromosome deodi�ation.

The system arhiteture is illustared in Fig-2.1. The series are divided into

training and test sets. A model is obtained from a binary hromosome by deod-

i�ation. With the model and the series, a hybrid neuro-fuzzy network is built

and trained, representing a predition funtion. It is applied to the test set and

a predition error is obtained, whih is used by the geneti algorithm internal

operators. Models with smaller errors are the �ttest.

At the end of the evolutionary proess, the best model(s) are obtained and

if the test errors are aeptable, they represent meaningful dependenies within

the multivariate proess. Evolutionary algorithms an't guarantee the global

optimum, thus, the models found an be seen only as plausible desriptors of

important relationships present in the data set. Other neural networks based on

the same model may have better approximation apabilities. In this sense, the

proposed sheme should be seen as giving a oarse predition operator. The ad-

vantage is the speed with whih hundreds of thousands of models an be explored

and tested (not possible with other neural networks). One the best models are

found, more powerful funtion approximators an be obtained with other types

of neural networks, fuzzy systems, or other tehniques. This method depends
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on di�erent parameters whih must be de�ned in advane (the similarity fun-

tion, the similarity threshold, et). In order to aount for an optimal seletion

of these parameters, meta-evolutionary paradigms like the one outlined in Fig-

4 are relevant. The outermost geneti struture explores the spae of problem

parameters.

3 Parallel Implementation

The hybrid nature of the soft-omputing method desribed in the previous se-

tion allows several di�erent approahes for onstruting parallel and distributed

omputer implementations. Hierarhially, several levels an be distinguished:

the evolutionary algorithm (the geneti algorithm in this ase) operates on a

least squared type funtional ontaining a neuro-fuzzy network. In turn, inside

the network there are neuron layers, whih themselves involve the work of indi-

vidual neurons (h-neurons and lassial). Finally, inside eah neuron, a similarity

funtion is evaluated on the input and the weight vetor in a omponentwise op-

eration (e.g. a orrelation, a distane metri, or other funtion). All of these are

typial ases of the workrew omputation paradigm at di�erent levels of gran-

ularity. Clearly, a ompletely parallel algorithm ould be ultimately onstruted

by parallelizing all levels traversing the entire hierarhy. This approah however,

will impose a big amount of ommuniation overhead between the physial om-

putation elements, espeially in the ase of Beowulf lusters (the most a�ordable

superomputer platform). Following the priniple of parsimony, the implemen-

tation was done at the highest granularity level in the geneti algorithm, namely

at the population evaluation level (learly, other operations an be parallelized

within the other steps of the geneti algorithm like seletion, et.). The lassial
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Fig. 4. Meta-geneti algorithm arhiteture. The outermost geneti struture explores

the spae of problem parameters and the inner proess �nds the best model(s) for a

given set of them.

type of geneti algorithm hosen (with binary hromosomes, simple rossover

and mutation, et) makes the population initialization and evaluation steps a

natural �rst hoie. The evaluation of a population involves the parallel eval-

uation of all its individuals (models) whih an be done in parallel. At this

level, there is a high degree of parallelism. A master-slave omputation stru-

ture is employed, where the master initializes and ontrols the overall proess,

olleting the partial results, and the slaves onstrut the neuro-fuzzy network

based on the deoded hromosome, and evaluate it on the time series. In our

implementation, the workload is managed dynamially, so that the load is well

balaned in a heterogeneous luster environment. The ommuniation overhead

was redued by repliating the data set on all the mahines in the luster. Thus,

the master program is relieved from sending a opy of the entire data set to

eah slave program eah time a model has to be evaluated. Messages sent to

the slaves are binary hromosomes, while messages reeived bak by the master

ontain only a single oating point number with the RMS error assoiated with

the hromosome (model).

The Parallel Virtual Mahine PVM [5℄ message passing system (version 3.4)

has been used, with GaLib 2.4 [12℄ as the general geneti algorithm library. The

same soure ode orresponding to the previously desribed parallel implemen-

tation was ompiled with the g++ ompiler in two di�erent distributed environ-

ments, both being Beowulf lusters running Red Hat Linux 7.2 and onneted

with an EtherFast-100 ethernet swith (Linksys):

{ a two-node luster (ht-luster), with a Pentium III proessor (1000 MHz,

512 MB RAM), and an AMD Athlon proessor (750 Mhz, 256 MB RAM).



8 Julio J. Vald�es and Gabriel Mateesu

{ a 4 CPU homogeneous luster (HG-luster), with two dual Xeon proessor

(2 GHz, 1 GB RAM) DELL Workstations.

Both lusters were benhmarked with an o�-the-shelf Poisson solver giv-

ing the following results: (i) ht-luster: 68.59 MFlops for Pentium III, 111.58

MGlops for Athlon, 180.17 MFlops total; (ii) HG-luster: 218.5 MFlops/CPU,

874 MFlops total.

3.1 EXAMPLE

The parallel implementation was tested using the Sunspot predition one di-

mensional problem [7℄. This univariate proess desribes the Amerian relative

sunspot numbers (mean number of sunspots for the orresponding months in

the period 1=1945 � 12=1994), from AAVSO - Solar Division [12℄. It ontains

600 observations, and in this ase, the �rst 400 were used as training and the

remaining 200 for testing. A maximum time lag of 30 years was pre-set, de�ning

a searh spae size of 230 models.

No preproessing was applied to the time series. This is not the usual way

to analyze time series data, but by eliminating additional e�ets, the properties

of the proposed proedure in terms of approximation apaity and robustness

are better exposed. The similarity funtion used was S = (1=(1 + d)), where d
is a normalized eulidean distane. The number of responsive h-neurons in the

hidden layer was set to k = 7, and the similarity threshold for the h-neurons was

T = 1. No attempt to optimize these parameters was made, but meta-algorithms

an be used for this purpose.

The experiments have been onduted with the following set of geneti algo-

rithm parameters: number of generations = 2, population size = 100, mutation

probability = 0.01, rossover probability = 0.9. Single point rossover and single

bit mutation were used as geneti operators with roulette seletion and elitism

being allowed.

The performane of the two lusters w.r.t the parallel algorithm is illustrated

in table 1.

As an illustration of the e�etiveness of the method, a run with 2000 gen-

erations and 50 individuals per population was made. The best model found

ontained 10 time lags, namely: (t-1), (t-2), (t-4), (t-10), (t-12), (t-14), (t-16),

(t-20), (t-28), (t-29). Its RMS predition error in the test set was 20.45, and the

real and predited values are shown in Fig 5.

4 Conlusions

Time series model mining using evolutionary algorithms and similarity-based

neuro-fuzzy networks with h-neurons is exible, robust and fast. Its parallel im-

plementation runs well on inexpensive Beowulf lusters, making intensive data

mining in time series a�ordable. This method is appropriate for the exploratory

stages in the study of multivariate time varying proesses for quikly �nding
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Table 1. ht-luster and HG-luster performane

No. No. Time(ses) Ratio Time(ses) Ratio

slaves CPUs Time(ses) (2 CPU/ 1 CPU) Time(ses) (4 CPU/ 2 CPU)

1 2 117 0.991 60 1

4 116 60

2 2 120 0.642 60 0.45

4 77 27

3 2 116 0.689 61 0.377

4 80 23

4 2 120 0.658 60 0.467

4 79 28

5 2 116 0.672 60 0.45

4 78 27
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Fig. 5. Comparison of the real and predited values for sunspot data (test set).

plausible dependeny models and hidden interations between time dependent

heterogeneous sets of variables, possibly with missing data. The dependeny

struture is approximated or narrowed down to a manageable set of plausible

models. These models an be used by other methods suh as neural networks or

non-soft-omputing approahes for onstruting more aurate predition oper-

ators.

Many parallel implementations of this methodology are possible. Among

many elements to be onsidered are: deeper granularity in the parallelization, use

of other hromosome shemes for model representation, variations in the type

of geneti algorithm used (steady state, mixed populations, di�erent rossover,

mutation and seletion operators, et.), use of other kinds of evolutionary algo-

rithms (evolution strategies, ant olony methods, et.), variations in the neuro-

fuzzy paradigm (kind of h-neuron used, its parameters, the network arhiteture,

et), the sizes of the training and test set, the maximum exploration time-depth
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window. These onsiderations make meta-evolutionary algorithms an attrative

approah, introduing a higher hierarhial level of granularity. Furthermore,

the intrinsi parallelism of the algorithms allows for eÆient parallel implemen-

tations. The results presented are promising but should be onsidered prelimi-

nary. Further experiments, researh and omparisons with other approahes are

required.
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