

NRC Publications Archive Archives des publications du CNRC

Good 150oC Retention and Fast Erase Characteristics in Charge-Trap-Engineered Memory having a Scaled Si3N4 Layer

Lina, S. H.; Chin, Albert; Yeha, F. S.; McAlister, S. P.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.1109/IEDM.2008.4796829

Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1-4, 2008

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b5522dhttps://publications-cnrc.canada.ca/fra/voir/objet/?id=7e66e906-0f04-40f3-92fc-04c3d1b50-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-04c40fa-0

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Good 150°C Retention and Fast Erase Characteristics in Charge-Trap-Engineered Memory having a Scaled Si₃N₄ Layer

S. H. Lin^a, Albert Chin^{b,c}, F. S. Yeh^a, and S. P. McAlister^d

^a Dept. of Electrical Engineering, National Tsing Hua Univ., Hsinchu, Taiwan, ROC
^b Dept. of Electronics Engineering,, National Chiao-Tung Univ., Hsinchu, Taiwan, ROC
^c Nano-Electronics Consortium of Taiwan ROC
^d National Research Council of Canada, Ottawa, Canada
Tel: +886-3-5731841; Email: albert_achin@hotmail.com

Abstract

We report a new charge-trap-engineered flash non-volatile memory that has combined 5nm Si $_3$ N $_4$ and 0.9nm EOT HfON trapping layers, within double-barrier and double-tunnel layers. At 150°C under a 100 μ s and ± 16 V P/E, this device showed good device integrity of a 5.6V initial ΔV_{th} window and 3.8V 10-year extrapolated retention window. These data are better than the 3.3V initial ΔV_{th} and 1.7V 10-year data for a similar structure not having the extra HfON layer.

Introduction

According to the International Technology Roadmap for Semiconductors (ITRS) [1], continuous down-scaling of SONOS non-volatile memory (NVM) [1]-[12] is required by scaling down the charge-trapping layer to <6nm, to suppress short-channel effects. This is challenging since the charge trapping deteriorates when the Si₃N₄ is made thinner - for instance, very little charge trapping was shown for a 2nm Si₃N₄ layer used as the tunnel layer of BE-SONOS [10]. The high temperature retention also gets worse when the Si₃N₄ is thin, due to the higher trap energy in the oxide/Si₃N₄/oxide, arising from quantum confinement. The retention may be improved by using a BE-SONOS structure [10], but this yields low erase speeds (10~100ms). Such a retention and erase-speed trade-off is a fundamental limitation of chargetrap-flash (CTF) NVM. We have addressed this using a deep-trapping Al(Ga)N or HfON layer in a MONOS device [5]-[8]. The retention improves with increasing electron affinity $(E_{vac}-E_C)$, going from Al(Ga)N to HfON. By using an Al(Ga)N trapping layer, rather than Si₃N₄, the retention improves in a SONOS device, as confirmed by Samsung [9]. Here we report a novel charge-trap-engineered flash (CTEF) NVM device. This combines a 5nm Si₃N₄ with a 0.9nm EOT layer of HfON, within double-barrier and double-tunnel layers, and still shows good retention and a large memory window. At 150°C and ±16V program/erase (P/E), the device showed a P/E speed of 100 μ s, an initial ΔV_{th} window of 5.6V and an extrapolated 10-year retention of 3.8V. These results are much better than those of a control CTF device with a single Si₃N₄ trapping layer, which had a smaller initial ΔV_{th} and poorer 10-year retention. The improvement in the memory window in the new device indicates the better trapping capability of the Si₃N₄-HfON structure, at a penalty

of only extra 0.9nm for the EOT. We attribute the improved 150°C retention in the CTEF devices to charges, trapped in shallow-energy traps in the thin Si₃N₄ layer, relaxing into deeper energy ones in the HfON layer, rather than leaking out. The 10⁵-cycled window was found to be 4.9V. These results compare well with other data [2]-[12], with respect to the 150°C retention, speed and memory window.

Experimental Details

The layers of the TaN-[SiO₂-LaAlO₃]-[Si₃N₄-HfON]-[LaAlO₃-SiO₂]-Si CTEF devices comprised 2.5nm of thermal SiO₂, 2.5nm of PVD LaAlO₃, 5nm of reactive PVD HfON_{0.2} [13]-[14] and 5nm of Si₃N₄ by LPCVD. Then 8nm LaAlO₃ by PVD, 5nm SiO₂ by PECVD, and 200nm TaN by PVD. This was followed by standard gate definition, self-aligned P⁺ implantation and an RTA. The LaAlO₃ was obtained from mixed Al₂O₃ and La₂O₃ dielectrics, used for V_t tuning and V_{fb} shifting [15]-[20] for 32 nm node high- κ p- and n-MOSFETs. For comparison, control devices having a single layer of Si₃N₄ CTF, and a similar structure, were made. The devices were measured by P/E, cycling and retention to 150°C.

Results and Discussion

A. P/E Characteristics:

In Fig. 1 we compare, schematically, the conventional MONOS, double-barrier double-tunnel single-Si₃N₄-trapping CTF, and double-barrier double-tunnel double- shallow- and deep-trapping-energy-layer CTEF devices. The use of double LaAlO₃-SiO₂ tunnel layers permits a faster P/E. This arises from the ΔE_C and ΔE_V in the LaAlO₃/SiO₂ which gives better electron and hole tunneling during the program and erase procedures. The increased physical thickness, arising from the use of a high-κ layer, improves the retention. The addition of HfON in the Si₃N₄-HfON stack provides a deep trapping energy, for only an extra 0.9nm for the EOT. This also improves the retention through charge confinement with respect to the high- κ LaAlO₃ layer. Fig. 2 displays the J-V erase characteristics indicating small leakage up to 150°C. A large C-V hysteresis of 6.6~9.9V was found under \pm 13~17V sweep (Fig. 3). In Figs. 4-5 we show the V_{th} shift for the program and erase cases. A P/E time of 100µs was measured at ± 16 V, along with a large ΔV_{th} , yielding a memory window of 5.6V in the CTEF device. For comparison, the program

and erase characteristics of a control single-Si₃N₄-trapping CTF device (Figs. 6-7) show that the ΔV_{th} is smaller and has a smaller memory window of 3.3V at ± 16 V 100μ s P/E.

B. Retention & Cycling:

The retention data at 25, 85 and 150°C are displayed in Figs. 8-10. The extrapolated 10-year memory window decreases with increasing temperature. At 150°C, an initial ΔV_{th} of 5.6V and 10-year window of 3.8V were measured at 100 μ s and $\pm 16V$ P/E. The $10^2 \sim 10^3$ times faster erase times, compared with a BE-SONOS design [10], are due to the lower hole tunneling energy barrier, ΔE_V , between the LaAlO₃ and the SiO₂ in the CTEF devices. This design is possible due to the existing ΔE_V and ΔE_C between HfON trapping layer and high-κ LaAlO₃ tunneling layers for both fast hole tunneling erase and trapped electron retention, respectively. Meanwhile good retention is also maintained by physically thicker double LaAlO₃-SiO₂ confinement and that stored charges relax from the shallow-trap-energy in the Si₃N₄ into deeper traps in the HfON [13]-[14] (see Fig. 1(c)). The large 10-year window would allow 4 logic levels, as in multi-level cells (MLC), since there is an average of ~1.3V between the levels at 150°C. For comparison, the retention data of a control device appear in Fig. 11. A 3.3V initial ΔV_{th} and 1.7V 10-year extrapolated memory window were found much worse than data for the CTEF device. The endurance was good: viz. a large 10⁵-cycle window of 4.9V and 10^3 -cycled 10-year retention window of 4.1V, at ± 16 V 100 μ s P/E (Figs. 12-13). This performance occurs because the rapid P/E produces less stress and trap-generation in the 3nm EOT LaAlO₃-SiO₂ tunnel oxide. Table 1 compares and summarizes the memory data. Our CTEF device data compares well with that for other devices [2]-[12], and shows a larger memory window, better 150°C retention and higher speed.

Conclusions

We report a new CTEF NVM device with excellent 10-year extrapolated retention window of 3.8V from an initial 5.6V memory window at 150° C, at 100μ s and a $\pm 16V$ P/E. This was realized by using combined shallow- and deep-trapping layers of Si_3N_4 -HfON.

Acknowledgments

The authors at NCTU like to thank Director T. B. Wu at Materials Sci. Eng. Dept., National Tsing Hua University for the help.

References

- International Technology Roadmap for Semiconductors (ITRS), 2007, Process Integration, Devices, & Strucure Chapter, p. 40, 44. www.itrs.net
- [2] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, "A novel SONOS structure of SiO₂/SiN/Al₂O₃ with TaN metal gate for multi-giga bit flash memories," *IEDM Tech. Dig.*, 2003, pp. 613-616.
- [3] M. Specht, R. Kommling, L. Dreeskornfeld, W. Weber, F. Hofmann, D. Alvarez, J. Kretz, R.J. Luyken, W. Rosner, H. Reisinger, E. Landgraf, T.

- Schulz, J. Hartwich, M. Stadele, V. Klandievski, E. Hartmann, and L. Risch, "Sub-40nm tri-gate charge trapping nonvolatile memory cells for high-density applications," *Symp. on VLSI Tech. Dig.*, 2004, pp. 244-245.
- [4] C. W. Oh, S. D. Suk, Y. K. Lee, S. K. Sung, J. Choe, S. Lee, D. U. Choi, K. H. Yeo, M. S. Kim, S. Kim, M. Li, S. H. Kim, E. Yoon, D. Kim, D. Park, K. Kim, and B. Ryu, "Damascene gate FinFET SONOS memory implemented on bulk silicon wafer," *IEDM Tech. Dig.*, 2004, pp. 893-896.
- [5] C. H. Lai, Albert Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng, S. P. McAlister, C. C. Chi, and P. Wu, "Novel SiO₂/AlN/HfAlO/IrO₂ memory with fast erase, large □V_{th} and good retention," in *Symp. on VLSI Tech. Dig.*, 2005, pp. 210-211.
- [6] Albert Chin, C. C. Laio, K. C. Chiang, D. S. Yu, W. J. Yoo, G. S. Samudra, S. P. McAlister, and C. C. Chi, "Low voltage high speed SiO₂/AlGaN/AlLaO₃/TaN memory with good retention," in *IEDM Tech. Dig.*, 2005, pp. 165-168.
- [7] C. H. Lai, Albert Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, and C. C. Chi, "Very Low voltage SiO₂/HfON/HfAlO/TaN memory with fast speed and good retention," in *Symp. on VLSI Tech. Dig.*, 2006, pp. 54-55.
- [8] H. J. Yang, Albert Chin, S. H. Lin, F. S. Yeh, and S. P. McAlister, "Improved high temperature retention for charge-trapping memory by using double quantum barriers," *IEEE Electron Device Lett.*, vol. 29, pp. 386-388, April 2008.
- [9] K. H. Joo, C. R. Moon, S. N. Lee, X. Wang, J. K. Yang, I. S. Yeo, D. Lee, O. Nam, U. I. Chung, J. T. Moon, and B. I. Ryu, "Novel charge trap devices with NCBO trap layers for NVM or image sensor," in *IEDM Tech. Dig.*, 2006, pp. 979–982.
- [10] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. C. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, "BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability", in *IEDM Tech. Dig.*, 2005, pp. 547-550.
- [11] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, "Novel multi-bit SONOS type flash memory using a high-k charge trapping layer," Symp. on VLSI Tech., 2003, pp. 27-28.
- [12] M. Fukuda, T. Nakanishi, and Y. Nara, "Scaled 2bit/cell SONOS type nonvolatile memory technology for sub-90nm embedded application using SiN sidewall trapping structure," *IEDM Tech. Dig.*, 2003, pp. 000-012
- [13] H. J. Yang, Albert Chin, W. J. Chen, C. F. Cheng, W. L. Huang, I. J. Hsieh, and S. P. McAlister, "A program-erasable high-κ Hf_{0.3}N_{0.2}O_{0.5} MIS capacitor with good retention," *IEEE Electron Device Lett.*, vol. 28, pp. 913-915, Oct. 2007.
- [14] H. J. Yang, C. F. Cheng, W. B. Chen, S. H. Lin, F. S. Yeh, S. P. McAlister, and Albert Chin, "Comparison of MONOS memory device integrity when using Hf_{1-x-y}N_xO_y trapping layers with different N compositions," *IEEE Trans. Electron Device*, vol. 55, pp. 1417-1423, June 2008.
- [15] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, "Device and Reliability of High-k Al₂O₃ Gate Dielectric with Good Mobility and Low D_{it}," Symp. on VLSI Tech. Dig., 1999, pp. 133-134.
- [16] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, "High quality La₂O₃ and Al₂O₃ gate dielectrics with equivalent oxide thickness 5-10Å," *Symp. on VLSI Tech. Dig.*, 2000, pp. 16-17.
- [17] Y. H. Wu, M. Y. Yang, A. Chin, and W. J. Chen, "Electrical characteristics of high quality La₂O₃ dielectric with equivalent oxide thickness of 5Å," *IEEE Electron Device Lett.* 21, 341, 2000.
- [18] C. H. Wu, B. F. Hung, Albert Chin, S. J. Wang, X. P. Wang, M.-F. Li, C. Zhu, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang "High temperature stable [Ir₃Si-TaN]/HfLaON CMOS with large work-function difference," *IEDM Tech. Dig.*, 2006, pp. 617-620.
- [19] C. F. Cheng, C. H. Wu, N. C. Su, S. J. Wang, S. P. McAlister and Albert Chin, "Very low V_t [Ir-Hf]/HfLaO CMOS using novel self-aligned low temperature shallow junctions," *IEDM Tech. Dig.*, 2007, pp. 333-336.
- [20] C. C. Liao, Albert Chin, N. C. Su, M.-F. Li, and S. J. Wang, "Low V_t gate-first Al/TaN/[Ir₃Si-HfSi_{2-x}]/HfLaON CMOS using simple process," Symp. on VLSI Tech. Dig., 2008, pp. 190-191.

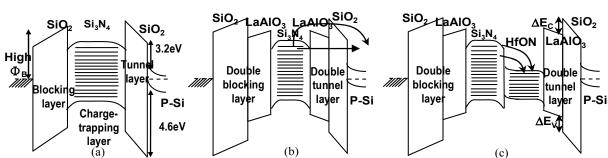


Fig. 1. Schematic energy band diagram of (a) conventional MONOS, (b) double-barrier, double-tunnel and single-Si₃N₄ charge-trapping flash (CTF) memory (control), and (c) charge-trapping-engineered flash (CTEF) non-volatile memory with shallow- and deep- trapping layers and additional ΔE_C in trapping layer to double-tunnel layers (this work).

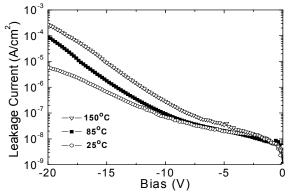


Fig. 2. J_g - V_g curves for CTEF devices.

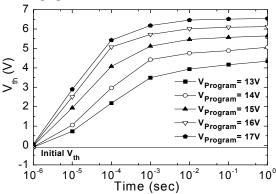


Fig. 4. Program characteristics of CTEF devices for different voltages & times.

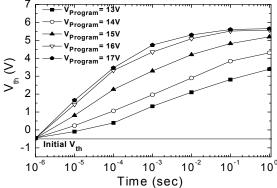


Fig. 6. Program characteristics of a single-Si₃N₄-trapping, double-barrier and double-tunnel CTF device for different voltages & times.

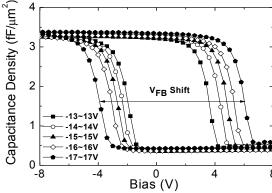


Fig. 3. C-V hysteresis of CTEF devices.

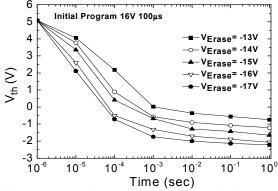


Fig. 5. Erase characteristics of CTEF devices at different voltages & times.

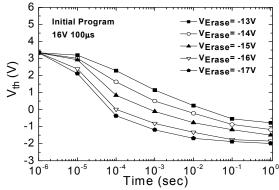


Fig. 7. Erase characteristics of a single-Si₃N₄-trapping, double-barrier and double-tunnel CTF device for different voltages & times.

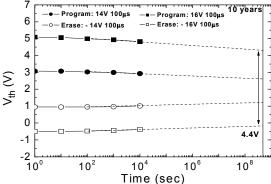


Fig. 8. Retention characteristics of CTEF devices at 25°C.

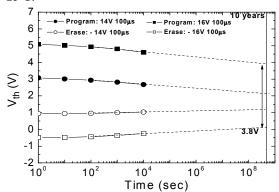


Fig. 10. Retention characteristics of CTEF devices at 150°C.

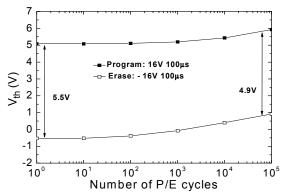


Fig. 12. Endurance characteristics of CTEF devices.

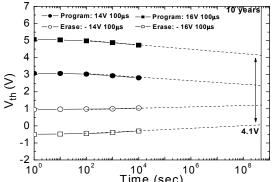


Fig. 9. Retention characteristics of CTEF devices at 85°C .

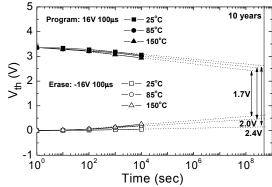


Fig.11. Retention characteristics of single-Si₃N₄-trapping, double-barrier and double-tunnel CTF devices at 25°C, 85°C and 150°C.

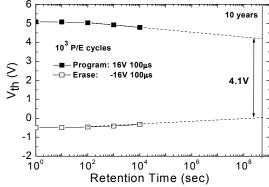


Fig. 13. 1K cycled retention data of CTEF devices.

	P/E conditions for retention & cycling	Initial $\Delta V_{th}(V)$	△V _{th} (V) for 10-year retention @ 85°C	ΔV_{th} (V) for 10-year retention @ 150°C	△V _{th} (V) @Cycles
This Work (CTEF)	16V 100μs/-16V 100μs	5.6	4.1	3.8	4.9@10 ⁵
This Work (single-trapping Si ₃ N ₄ CTF)	16V 100 μs/- 16V 100 μs	3.3	2.0	1.7	•
TANOS SiO ₂ /Si ₃ N ₄ /Al ₂ O ₃ /TaN [2]	13.5V 100μs/-13V 10ms	4.4	2.07	-	4@10 ⁵
Tri-gate SiO ₂ /Si ₃ N ₄ /SiO ₂ [3]	11.5V 3ms/-11.5V 100ms	1.2	1.1 (@25°C)	-	1.5@10⁴
FinFET SiO ₂ /Si ₃ N ₄ /SiO ₂ [4]	13V 10μs/-12V 1ms	4.5	2.4	-	3.5@10 ⁴
SiO ₂ /AIN/AIHfO/IrO ₂ [5]	13V 100μs/-13V 100μs	3.7	1.9	-	2.9 @ 10 ⁵
SiO ₂ /AlGaN/AlLaO ₃ [6]	11V100μs/-11V 100μs	3.0	1.6	-	2.3@10 ⁵
SiO ₂ /HfON/AIHfO/TaN [7]	8V 100μs/-8V 100μs	2.5	1.45	-	2.1@10 ⁵

Table 1. Comparisons of P/E voltage, speed, initial ΔV_{th} , extrapolated for 10-year retention at 85 and 150°C and endurance.