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Abstract 

We report a new charge-trap-engineered flash non-volatile 
memory that has combined 5nm Si3N4 and 0.9nm EOT HfON 
trapping layers, within double-barrier and double-tunnel 
layers. At 150oC under a 100µs and ±16V P/E, this device 
showed good device integrity of a 5.6V initial ΔVth window 
and 3.8V 10-year extrapolated retention window. These data 
are better than the 3.3V initial ΔVth and 1.7V 10-year data for 
a similar structure not having the extra HfON layer. 

Introduction 

According to the International Technology Roadmap for 

Semiconductors (ITRS) [1], continuous down-scaling of 
SONOS non-volatile memory (NVM) [1]-[12] is required by 
scaling down the charge-trapping layer to <6nm, to suppress 
short-channel effects. This is challenging since the charge 
trapping deteriorates when the Si3N4 is made thinner - for 
instance, very little charge trapping was shown for a 2nm 
Si3N4 layer used as the tunnel layer of BE-SONOS [10]. The 
high temperature retention also gets worse when the Si3N4 is 
thin, due to the higher trap energy in the oxide/Si3N4/oxide, 
arising from quantum confinement. The retention may be 
improved by using a BE-SONOS structure [10], but this 
yields low erase speeds (10~100ms). Such a retention and 
erase-speed trade-off is a fundamental limitation of charge- 
trap-flash (CTF) NVM. We have addressed this using a 
deep-trapping Al(Ga)N or HfON layer in a MONOS device 
[5]-[8]. The retention improves with increasing electron 
affinity (Evac-EC), going from Al(Ga)N to HfON. By using an 
Al(Ga)N trapping layer, rather than Si3N4, the retention 
improves in a SONOS device, as confirmed by Samsung [9]. 
Here we report a novel charge-trap-engineered flash (CTEF) 
NVM device. This combines a 5nm Si3N4 with a 0.9nm EOT 
layer of HfON, within double-barrier and double-tunnel 
layers, and still shows good retention and a large memory 
window. At 150oC and ±16V program/erase (P/E), the device 
showed a P/E speed of 100µs, an initial ΔVth window of 5.6V 
and an extrapolated 10-year retention of 3.8V. These results 
are much better than those of a control CTF device with a 
single Si3N4 trapping layer, which had a smaller initial ΔVth 
and poorer 10-year retention. The improvement in the 
memory window in the new device indicates the better 
trapping capability of the Si3N4-HfON structure, at a penalty 

of only extra 0.9nm for the EOT. We attribute the improved 
150oC retention in the CTEF devices to charges, trapped in 
shallow-energy traps in the thin Si3N4 layer, relaxing into 
deeper energy ones in the HfON layer, rather than leaking out. 
The 105-cycled window was found to be 4.9V. These results 
compare well with other data [2]-[12], with respect to the 
150oC retention, speed and memory window.   

Experimental Details 

The layers of the TaN-[SiO2-LaAlO3]-[Si3N4-HfON]- 
[LaAlO3-SiO2]-Si CTEF devices comprised 2.5nm of thermal 
SiO2, 2.5nm of PVD LaAlO3, 5nm of reactive PVD HfON0.2 
[13]-[14] and 5nm of Si3N4 by LPCVD. Then 8nm LaAlO3 
by PVD, 5nm SiO2 by PECVD, and 200nm TaN by PVD. 
This was followed by standard gate definition, self-aligned P+ 

implantation and an RTA. The LaAlO3 was obtained from 
mixed Al2O3 and La2O3 dielectrics, used for Vt tuning and Vfb 
shifting [15]-[20] for 32 nm node high-κ  p- and n-MOSFETs. 
For comparison, control devices having a single layer of 
Si3N4 CTF, and a similar structure, were made. The devices 
were measured by P/E, cycling and retention to 150oC.  

Results and Discussion 

A. P/E Characteristics: 

In Fig. 1 we compare, schematically, the conventional 
MONOS, double-barrier double-tunnel single-Si3N4-trapping 
CTF, and double-barrier double-tunnel double- shallow- and 
deep-trapping-energy-layer CTEF devices. The use of double 
LaAlO3-SiO2 tunnel layers permits a faster P/E. This arises 
from the ΔEC and ΔEV in the LaAlO3/SiO2 which gives better 
electron and hole tunneling during the program and erase 
procedures. The increased physical thickness, arising from 
the use of a high-κ layer, improves the retention. The addition 
of HfON in the Si3N4-HfON stack provides a deep trapping 
energy, for only an extra 0.9nm for the EOT. This also 
improves the retention through charge confinement with 
respect to the high-κ LaAlO3 layer. Fig. 2 displays the J-V 

erase characteristics indicating small leakage up to 150oC. A 
large C-V hysteresis of 6.6~9.9V was found under ± 13~17V 
sweep (Fig. 3). In Figs. 4-5 we show the Vth shift for the 
program and erase cases. A P/E time of 100µs was measured 
at ±16V, along with a large ΔVth, yielding a memory window 
of 5.6V in the CTEF device. For comparison, the program 
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and erase characteristics of a control single-Si3N4-trapping 
CTF device (Figs. 6-7) show that the ΔVth is smaller and has 
a smaller memory window of 3.3V at ±16V 100µs P/E.   

B. Retention & Cycling:  

The retention data at 25, 85 and 150oC are displayed in 
Figs. 8-10. The extrapolated 10-year memory window 
decreases with increasing temperature. At 150oC, an initial 
ΔVth of 5.6V and 10-year window of 3.8V were measured at 
100µs and ±16V P/E. The 102~103 times faster erase times, 
compared with a BE-SONOS design [10], are due to the 
lower hole tunneling energy barrier, ΔEV, between the 
LaAlO3 and the SiO2 in the CTEF devices. This design is 
possible due to the existing ΔEV and ΔEC between HfON 
trapping layer and high-κ LaAlO3 tunneling layers for both 
fast hole tunneling erase and trapped electron retention, 
respectively. Meanwhile good retention is also maintained by 
physically thicker double LaAlO3-SiO2 confinement and that 
stored charges relax from the shallow-trap-energy in the 
Si3N4 into deeper traps in the HfON [13]-[14] (see Fig. 1(c)). 
The large 10-year window would allow 4 logic levels, as in 
multi-level cells (MLC), since there is an average of ~1.3V 
between the levels at 150oC. For comparison, the retention 
data of a control device appear in Fig. 11. A 3.3V initial ΔVth 
and 1.7V 10-year extrapolated memory window were found - 
much worse than data for the CTEF device. The endurance 
was good: viz. a large 105-cycle window of 4.9V and 
103-cycled 10-year retention window of 4.1V, at ±16V 100µs 
P/E (Figs. 12-13). This performance occurs because the rapid 
P/E produces less stress and trap-generation in the 3nm EOT 
LaAlO3-SiO2 tunnel oxide. Table 1 compares and summarizes 
the memory data. Our CTEF device data compares well with 
that for other devices [2]-[12], and shows a larger memory 
window, better 150oC retention and higher speed.  

Conclusions 

We report a new CTEF NVM device with excellent 
10-year extrapolated retention window of 3.8V from an initial 
5.6V memory window at 150oC, at 100µs and a ±16V P/E. 
This was realized by using combined shallow- and 
deep-trapping layers of Si3N4-HfON. 
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Fig. 1. Schematic energy band diagram of (a) conventional MONOS, (b) double-barrier, double-tunnel and single-Si3N4

charge-trapping flash (CTF) memory (control), and (c) charge-trapping-engineered flash (CTEF) non-volatile memory with 
shallow- and deep- trapping layers and additional  ΔEC in trapping layer to double-tunnel layers (this work).

Fig. 2. Jg-Vg curves for CTEF devices. Fig.3. C-V hysteresis of CTEF devices.

Fig. 4. Program characteristics of CTEF devices for 
different voltages & times.   
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Fig. 5. Erase characteristics of CTEF devices at 
different voltages & times. 

Fig. 7. Erase characteristics of a single-Si3N4-trapping, 
double-barrier and double-tunnel CTF device for 
different voltages & times. 

Fig. 6. Program characteristics of a  single-Si3N4-
trapping, double-barrier and double-tunnel CTF 
device for different voltages & times. 
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Fig. 12. Endurance characteristics of CTEF devices.    

Fig.11. Retention characteristics of single-Si3N4-
trapping, double-barrier and double-tunnel CTF 
devices at 25oC, 85oC and 150oC. 

Fig. 13. 1K cycled retention data of CTEF devices. 

Fig. 10. Retention characteristics of CTEF devices at 
150oC. 

Fig. 8. Retention characteristics of CTEF devices at 
25oC. 

Fig. 9. Retention characteristics of CTEF devices at 
85oC. 

Table 1. Comparisons of P/E voltage, speed, initial ΔVth, extrapolated for 10-year retention at 85 and 150oC and endurance.

2.3@105-1.63.011V100µs/-11V 100µsSiO2/AlGaN/AlLaO3 [6]

4@105-2.074.413.5V 100µs/-13V 10msTANOS SiO2/Si3N4/Al2O3/TaN [2]

1.5@104-1.1 (@25oC)1.2 11.5V 3ms/-11.5V 100msTri-gate SiO2/Si3N4/SiO2 [3]

3.5@104-2.44.513V 10µs/-12V 1msFinFET SiO2/Si3N4/SiO2 [4]

P/E conditions for 

retention & cycling

Initial 

ΔVth (V)

ΔVth (V) for 10-year 

retention  @ 85oC 

ΔVth (V) for 10-year 

retention @ 1500C

ΔVth (V)

@Cycles

This Work (CTEF) 16V 100µs/-16V 100µs 5.6 4.1 3.8 4.9@105

This Work (single-trapping Si3N4 CTF) 16V 100µs/-16V 100µs 3.3 2.0 1.7 -

SiO2/AlN/AlHfO/IrO2 [5] 13V 100µs/-13V 100µs 3.7 1.9 - 2.9 @ 105

SiO2/HfON/AlHfO/TaN [7] 8V 100µs/-8V 100µs 2.5 1.45 - 2.1@105
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