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Abstract 35 

 36 

Stem-girdling treatments were applied in early spring to stimulate cone formation in 37 

two genotypes of interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) 38 

Franco).  After girdling treatments, male cone yield increased significantly in the next 39 

growing season. The increase was 14-fold in genotype 9137.  In genotype 9550, more 40 

than 8,700 male cones were induced from each tree whereas no male cones were 41 

found in controls.  Female cone yield was zero in controls and low for girdled trees in 42 

both genotypes. Multiple phytohormone-related compounds, including gibberellins 43 

(GAs), cytokinins, indole-3-acetic acid (IAA), abscisic acid (ABA) and their selected 44 

metabolites, were analyzed in developing long shoots after girdling treatments by high 45 

performance liquid chromatography-electrospray ionization tandem mass 46 

spectrometry (HPLC-ESI-MS/MS) in multiple reaction monitoring mode. 47 

Concentrations of GA4 were slightly higher at week 2 following girdling treatment, 48 

whereas at week 8 lower GA4 concentrations were found in girdled samples.  Stem 49 

girdling did not affect concentrations of IAA and major cytokinins, such as zeatin 50 

riboside and isopentenyl adenosine. Concentrations of ABA differed two-fold between 51 

the genotypes.  Although girdling treatment did not cause differences in ABA 52 

concentrations, it generally resulted in higher concentrations of ABA glucose ester. 53 

Concentration increase of 7'-hydroxy ABA by girdling was only found in genotype 54 

9550 at week 8. Girdling caused little change in concentrations of phaseic acid in both 55 

genotypes.  56 
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Abbreviations:  HPLC-ESI-MS/MS, high performance liquid chromatography-57 

electrospray ionization tandem mass spectrometry; MRM, multiple-reaction monitoring; 58 

GA, gibberellic acid; ABA, abscisic acid; PA, phaseic acid; DPA, dihydrophaseic acid; 59 

7'-OH ABA, 7'-hydroxy ABA; neoPA, neophaseic acid; ABA-GE, abscisic acid glucose 60 

ester; IAA, indole-3-acetic acid; IAA-Asp, indole-3-acetic acid aspartate; IAA-Glu, 61 

indole-3-acetic acid glutamate; t-Z, trans-zeatin; t-ZR, trans-zeatin riboside; c-ZR, cis-62 

zeatin riboside; t-Z-O-Glu, trans-zeatin-O-glucoside; dhZ, dihydrozeatin; dhZR, 63 

dihydrozeatin riboside;  2iP, isopentenyl adenine; iPA, isopentenyl adenosine. 64 

65 
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Introduction 66 

It is a frequent response for many perennial plant species to produce more flowers 67 

under stress conditions, such as drought, flooding, or physical damage. Stem girdling 68 

or scoring, depending on the amount of bark removal, has been used to enhance 69 

flowering and thus higher yield of fruit or seed (Noel 1970; Goren et al. 2004).   In 70 

some coniferous species, stem girdling increases cone formation (Wheeler et al. 1985; 71 

Ross and Bower 1991; Cherry et al. 2007).   72 

Plant hormones regulate tree physiological processes including growth 73 

(Savidge and Wareing 1984) and reproduction (Bernier et al. 1993).  Abscisic acid 74 

(ABA) is a well-known stress hormone.  It could increase sink strength (Yang et al. 75 

2003) and function as an endogenous signal (Finkelstein et al. 2002) that adjusts 76 

physiological responses to stress (Sauter et al. 2001, 2002; Bray 2002; Himmelbach 77 

et al. 2003) by regulating stomatal aperture and the expression of stress-responsive 
78 

genes (Leung and Giraudat 1998; Finkelstein et al. 2002).  Applied gibberellin (GA) 79 

can enhance both male and female cone yield in many coniferous species (McMullen 80 

1980; Pharis et al. 1980; Ross 1983; Pharis 1991; Ross and Bower 1991; Kong et al. 81 

2008).  More rarely, exogenously applied auxins alone or in combination with GA4+7 82 

induce male cones (Pharis et al. 1980; Sheng and Wang 1990), whereas applied 83 

cytokinins favor female cone formation (Imbault et al. 1988; Wakushima 2004).  84 

Effects of GA4+7 on cone bud formation can be enhanced when GA is applied in 85 

combination with girdling (Ross and Bower 1991; Cherry et al. 2007).   86 
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Stem girdling interrupts phloem transport of carbohydrates (Stock and Silvester 87 

1994; Wang et al. 2006; Urban and Alphonsout 2007), basipetal flow of auxin (Dann et 88 

al. 1985) and acropetal flow of cytokinin (Skogerbo 1992; Cutting and Lynne 1993; 89 

Havelange et al. 2000). Information about how girdling influences endogenous 90 

phytohormone concentrations can possibly be used to improve cone bud induction 91 

strategies, such as exogenous application of florigenic PGRs.   92 

The objective of this research project was to investigate effects of stem girdling 93 

on cone bud yield and also on concentrations of endogenous phytohormones in the 94 

young, elongating long shoots on lateral branches.  These are the site for initiation of 95 

male and female cone buds.  In this research, multiple phytohormones and some 96 

selected metabolites were analyzed simultaneously by using high performance liquid 97 

chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-98 

MS/MS) in multiple-reaction monitoring (MRM) mode.  The main advantages of MRM 99 

mode are its selectivity, the result of monitoring a specific product ion of the precursor 100 

of interest, which reduces interference from matrix components, and its high sensitivity, 101 

the result of improving the duty cycle by focusing on only the analytes of interest. Also, 102 

no derivitization of the sample is required because volatility of the analytes is not an 103 

issue in HPLC, like it is in gas chromatography (GC). 104 

Currently, an MRM method has been applied in analyses of endogenous 105 

phytohormones for studies on seed dormancy (Feurtado et al. 2004, 2007), seed 106 

parasitism (Chiwocha et al. 2007) and bud development (Kong et al. 2008, 2009, 2011) 107 

in coniferous species.  In this study, four classes of phytohormones as well as their 108 
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selected metabolites were analyzed in two different genotypes of interior Douglas-fir 109 

[Pseudotsuga menziesii var. glauca (Beissn.) Franco].    110 

 111 

Materials and Methods 112 

Plant material 113 

Twelve grafted ramets of two genotypes (registration numbers 9550 and 9137) were 114 

used for girdling treatment and control in a clonal seed orchard belonging to Pacific 115 

Regeneration Technologies Inc. (PRT) in Armstrong, British Columbia (50°26 30 N, 116 

119°11 00 W).  Both genotypes are high breeding value parents for volume growth in 117 

the Nelson Seed Planning Zone of the B.C. interior Douglas-fir tree breeding program.  118 

These 14-year-old ramets had an average stem diameter of 86 ± 18 mm.   119 

Girdling treatment and experimental design  120 

Stem girdling (Figure 1A-B) was applied in May 15, 2007 after bud flushing and 121 

before cone differentiation.  Two cuts, three inches apart, were made.  Each individual 122 

was girdled according to standard nursery practice at PRT, meaning through to the 123 

xylem, penetrating bark, phloem and cambium. Each cut covered approximately 90% 124 

of the stem circumference.  To help wound recovery, cuts were covered with 125 

cheesecloth following girdling treatment (Figure 1C-D).   126 

Half of the ramets of each genotype were girdled.  The others served as 127 

controls.  To avoid any influence of destructive sampling on cone yield, half of the 128 

ramets in each treatment (n=3) were sampled for cone yield, but not for hormone 129 

analysis. Data was subject to one-way analysis of variance (ANOVA) using MINITAB 130 
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software (MINITAB Inc., State College, PA, USA).  Significance of means was 131 

analyzed by the Tukey test.  Overall, levels of significance were set to P < 0.05.   132 

 133 

Sample collection, processing and storage 134 

Cone yield was assessed in spring of 2008, the year following girdling treatment.  135 

Cone production was evaluated from three ramets of each genotype.  Samples of long 136 

shoots were collected from mid-crown at regular intervals of two or four weeks starting 137 

from girdling treatment. Each sample included ten long shoots in the early growing 138 

season and a minimum of three in the late season.  After collection, needles were 139 

removed from the stems of long shoots.  Stem samples were wrapped in tin foil, 140 

labelled and kept frozen in a - 20 °C freezer for 2 to 3 d.  Subsequently, the samples 141 

were lyophilized in a freeze-drier for 48 h after the vacuum was stabilized.   Dry 142 

samples were sealed in plastic bags and stored at - 20 °C.  143 

 144 

Analysis of hormones and their metabolites 145 

The analyzed compounds included ABA, 7'-hydroxy ABA (7'-OH ABA), ABA glucose 146 

ester (ABA-GE), dihydrophaseic acid (DPA), phaseic acid (PA), neophaseic acid 147 

(neoPA), trans-zeatin (t-Z), trans-zeatin riboside (t-ZR), cis-zeatin riboside (c-ZR), 148 

dihydrozeatin (dhZ), dihydrozeatin riboside (dhZR), trans-zeatin-O-glucoside (t-Z-O-149 

Glu), isopentenyl adenosine (iPA), isopentenyl adenine (2iP), IAA, IAA glutamate 150 

(IAA-Glu), IAA aspartate (IAA-Asp), and two gibberellins, GA4 and GA7. Compounds 151 
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both pure and deuterated, as well as extraction and purification steps were as outlined 152 

in Kong et al. (2008). The procedure used for quantification by high performance liquid 153 

chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-154 

MS/MS) was a modification of Chiwocha et al. (2003, 2005). Samples were injected 155 

onto a Genesis C18 HPLC column (100 × 2.1 mm, 4 μm, Chromatographic Specialties, 156 

Brockville, ON, Canada) and separated by a gradient elution of water against an 157 

increasing percentage of acetonitrile and methanol plus 0.04% acetic acid. Calibration 158 

curves were generated from the MRM signals obtained from standard solutions using 159 

the ratio of the chromatographic peak area for each analyte to that of the 160 

corresponding internal standard (Ross et al. 2004). QC samples, internal standard 161 

blanks, and solvent blanks were also prepared and analyzed along with each batch of 162 

tissue samples.  163 

 164 

Results 165 

Effects of girdling treatment on cone formation 166 

Girdling treatment significantly increased male cone yield (Table 1).  The increase was 167 

14-fold in genotype 9137.  In genotype 9550, more than 8,700 male cones were 168 

induced by girdling treatment from each tree whereas no male cones were found in 169 

controls.  Female cone yield was zero in controls and low for girdled trees in both 170 

genotypes (Table 1).   171 
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Gibberellins  172 

For both genotypes, concentrations of GA4 were higher in the treated trees than in the 173 

controls two weeks after girdling (Table 2).  Thereafter, controls were generally higher. 174 

GA concentrations were highest four weeks after the beginning of the experiment.  175 

Statistically, no significant difference (P < 0.05) was found in concentrations of GA4 or 176 

GA7 between the control and the girdled samples. 177 

Cytokinins 178 

A few zeatin-type (Z-type) cytokinins were identified and quantified in samples of 179 

genotype 9550 (Table 3 and Figure 2).  Among Z-type cytokinins, the predominant 180 

one is t-ZR.  In both genotypes, concentrations of t-ZR did not significantly change 181 

following girdling treatment (Figure 2).  Except for a lower concentration of t-Z-O-Glu 182 

in samples of the girdled trees at week 2, no difference caused by girdling was found 183 

in other Z-type cytokinins (Table 3).  Concentrations of Z and dhZ were below 184 

quantification limits.  Although 2iP was quantifiable in some samples, its concentration 185 

was very low (data not shown), while iPA was quantified in all samples (Figure 2).  186 

Again, there was no difference due to treatment.  187 

Auxin and metabolites 188 

Concentrations of IAA declined after two weeks (Figure 2).  By week 8, it had dropped 189 

below quantifiable levels in most samples.  There was no significant difference in 190 

concentrations of IAA in samples of treated and untreated trees.  Concentrations of 191 

IAA catabolites IAA-Asp and IAA-Glu were generally below detectable levels (results 192 

not shown).   193 
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Abscisic acid and metabolites 194 

 195 

ABA concentration was two-fold higher in genotype 9550 than 9137 (Figure 3).  ABA 196 

concentration declined as the season advanced.   No significant differences between 197 

treatments were found.  Concentration changes in 7’-OH ABA were similar in both 198 

genotypes (Figure 3) although the general level of 7’-OH ABA in genotype 9550 was 199 

higher than that in genotype 9137.  Except for a higher 7’-OH ABA concentration in 200 

the sample of genotype 9550 girdled trees at week 8 after girdling treatment, there 201 

was no significant difference between the girdled samples and the controls.  202 

Concentrations of PA declined continuously as the season advanced (Figure 3).  203 

Girdling treatment in either genotype caused no significant difference in PA 204 

concentration.  Concentrations of DPA were very low and quantifiable only in few 205 

samples (data not shown).  NeoPA was not quantifiable in any of the samples.  ABA-206 

GE increased in the first two weeks and remained during the rest of sampling period 207 

(Figure 3).  The mean concentrations of ABA-GE appear to be higher in most of the 208 

girdled samples with significant difference (P < 0.05) at week 4 in genotype 9137.  The 209 

overall patterns of ABA-GE change after girdling treatment were significantly different 210 

between the girdled samples and the control (P=0.046, F=4.69 in genotype 9550; 211 

P=0.04, F=4.98 in genotype 9137).  For an overall pattern of both genotypes, ABA-GE 212 

concentration was 55% higher in the girdled samples than the control (P=0.009, 213 

F=7.57, n= 18).  214 
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Discussion 215 

Girdling induced much higher yields of male cone in both genotypes.  Girdling also 216 

induced female cones from zero to small numbers. These results indicate that our 217 

girdling treatment was effective and in keeping with previously published reports in 218 

which girdling enhanced cone formation in several conifers (Ebell 1971; Bonnet-219 

Masimbert 1982; Wheeler et al. 1985; Ross and Bower 1989). Cone yield can be 220 

inconsistent following girdling, as has been recorded for Norway spruce (Bonnet-221 

Masimbert 1987).  For Douglas-fir the most important factor influencing cone induction 222 

is the date of girdling. The optimal date varies by year, but corresponds to the period 223 

in which vegetative buds begin to swell (Ross and Bower 1989). This is similar to larch 224 

in which girdling is optimal during long shoot bud elongation (Melchior 1960).  Our 225 

result of lower female cone yield compared to male cone yield is also similar to cone 226 

yields from girdling experiments in a number of French seed orchards (Philippe et al. 227 

2006). In British Columbia, girdling of Douglas-fir trees has been similarly inconsistent, 228 

often leading to male-only cone crops (Woods 1989).  229 

Differences in ABA levels between the two genotypes were relatively consistent, 230 

with 9550 having higher ABA concentrations than 9137. Genotypic differences were 231 

also found in our previous study (Kong et al. 2009).  Although concentrations of ABA, 232 

a stress hormone (Kempa et al. 2008), were not influenced by girdling treatment, ABA 233 

metabolites , ABA-GE and 7’-OH ABA were affected by girdling.  This is the first report 234 

on a general ABA-GE increase by girdling treatment.  In other studies, Stem-girdling 235 

treatment resulted in accumulation of soluble sugar and starch in a girdled tree above 236 
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its girdling zone (Dann et al. 1985; Li et al. 2003).  Soluble sugar, especially glucose, 237 

might favour ABA-GE synthesis at higher concentrations after girdling treatment.  238 

ABA-GE is a catabolite of ABA located at the end of one of the major ABA metabolic 239 

pathways (Nambara and Marion-Poll 2005).  ABA-GE is regarded as physiologically 240 

inactive.   241 

No significant changes were found in the concentrations of major cytokinins 242 

after girdling.  Cytokinins are mainly synthesized in the root system and transported to 243 

the tree crown through the xylem (Baker 2000).  It has been suggested that stem 244 

girdling may block phloem transportation of synthesized nutrients from the crown to 245 

the root, which leads to root starvation and lower cytokinin levels (Cutting and Lyne 246 

1993).  On the other hand, more recent evidence has been found to support local 247 

cytokinin synthesis, such as in crown, in conifer trees (Rasmussen et al. 2009).  It was 248 

suggested that the ratio of sucrose to cytokinins might play an important role during 249 

flowering in Sinapis alba (Havelange et al. 2000).  This ratio could be affected by 250 

changes in sugar concentrations without changes in cytokinin levels.  This hypothesis 251 

might explain girdling effects on cone bud formation since stem girdling enhances 252 

sugar accumulation in tree crowns (Dann et al. 1985; Li et al. 2003, Murakami et al. 253 

2008) although more evidence is needed for coniferous species.  254 

In this study, the girdling treatment enhanced male cone formation without 255 

concentration changes in endogenous IAA.  Kong et al. (2008) found that stem-256 

injected GA4+7 increased both female cone yield and endogenous auxin 257 

concentrations in Douglas-fir long shoots at concentrations of either 40 or 400 mg 258 
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GA4+7 per tree.  However, male cone formation was enhanced only when the higher 259 

amount of GA was injected.  The higher GA4+7 treatments might generate some 260 

unknown stress-like effect in addition to IAA increase, resulting in better male cone 261 

formation.   262 

Concentration changes in phytohormones and metabolites in this study 263 

indicated that the metabolic pathways of GA showed little response to stem girdling.  264 

In previous reports (Kamienska and Reid 1978; Cutting and Lyne 1993), girdling 265 

treatment affected endogenous GA concentrations. In our study, only GA4 266 

concentrations differed between treatments: girdling caused a drop of 1/3 to 2/3 in 267 

both genotypes. Exogenously applied GAs stimulate female cone formation, and this 268 

effect is further enhanced when GA is applied in combination with a girdling treatment 269 

(Philipson 1985; Ross and Bower 1991; Cherry et al. 2007).  GA regulation of 270 

physiological processes may also involve other phytohormones (Weiss and Ori 2007) 271 

and/or gene expressions triggered by girdling treatment (Li et al. 2003).   272 

 During girdling treatment, few differences in our currently invested nonvolatile 273 

phytohormones could lead to more attention to ethylene, a volatile phytohormone.  274 

Ethylene could be induced by stress and physical injury (Murayama et al. 2006; 275 

Achard et al. 2007) and be able to induce flowering in a number of angiosperms 276 

(reviewed by Lin et al. 2009).  In the present, little information is available about the 277 

role of ethylene during cone initiation and differentiation in coniferous species.  278 

Application of ethylene precursors or ethylene releasing compounds, alone or in 279 

combination with other PGRs, merits further investigation.   280 
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Notable increases in male cone yield by girdling treatment and our analysis 281 

indicates that male cone yield might not be regulated directly by concentration 282 

changes in endogenous ABA, IAA and cytokinins.  In future experiments, more 283 

sampling points following the treatment could benefit in finding transient changes, if 284 

any, in concentrations of analytes. Since flowering process could be controlled by 285 

multiple factors and the physiological signals that induce flowering are complex  286 

(Pharis 1991, Bernier et al. 1993, Achard et al. 2006), the relationship between the 287 

affected phytohormones and/or their metabolites and enhanced cone yield by girdling 288 

treatment needs further study.    289 
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Tables 462 

 463 

 464 

 465 

Table 1. Cone yield per tree (mean ± SE) of two Douglas-fir genotypes 9550 and 9137 466 

subjected to girdling.  Asterisk (*) indicates significant difference (P < 0.05) between 467 

the treatment and control, based on three replicates. 468 

 469 

Treatment   9550  9137 

  ♂ cone ♀ cone ♂ cone  ♀ cone 

Control  0 0 572 ± 143  0 

Girdling   8,723 ± 1,690 *  10 ± 9  8,135 ± 1,356 *   6 ± 5 

470 
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Table 2. Effects of stem girdling on concentrations (ng g-1 DW) of endogenous 471 

gibberellins in long shoots of Douglas-fir in two genotypes.  Mean (± standard error) 472 

values of three independent replicates (n=3) are shown. NQ stands for not quantifiable. 473 

 474 

        9550   9137 

Week  Treatment  GA4  GA7  GA4  GA7 

2  
Control  6.5 ± 6.5  2.6 ± 2.6  3.3 ± 3.3  NQ 

Girdling  13.9 ± 1.8  NQ  10.5 ± 6.0  NQ 

4 
 Control  63.1± 23.6  8.8 ± 4.9  26.2 ± 15.6  7.0 ± 5.0 

 Girdling  21.1 ± 3.8  7.5 ± 2.6  19.4 ± 7.7  6.8 ± 3.4 

8 
 Control  11.6 ± 2.4  2.3 ± 2.3  2.9 ± 2.9  NQ 

  Girdling   NQ   NQ   6.3 ± 6.3   NQ 

 475 

 476 

477 
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 478 

 479 

Table 3.  Effects of stem girdling on concentrations (ng g-1 DW) of endogenous zeatin-480 

type cytokinins in long shoots of Douglas-fir in genotype 9550.  Mean (± standard error) 481 

values of three independent replicates (n=3) are shown. Asterisk (*) indicates 482 

significant difference (P < 0.05) compared with the control at each individual time point. 483 

NQ stands for not quantifiable. 484 

 485 

 486 

Week  Treatment  t-Z-O-Glu  c-ZR  dh-ZR 

2  
Control  6.4 ± 0.1  11.1 ± 1.3  NQ 

Girdling  5.5 ± 0.1*  12.0 ± 0.7  1.6 ± 1.6 

4 
 Control  7.9 ± 0.2  19.0 ± 2.7  7.4 ± 0.6 

 Girdling  8.6 ± 0.6   16.9 ± 1.7  8.8 ± 1.4 

8 
 Control  21.1 ± 2.0  13.6 ± 1.3  13.6 ± 1.8 

  Girdling   17.0 ± 1.3   13.7 ± 1.7   10.7± 2.2 

 487 

 488 

 489 

 490 

 491 

492 
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Figure legends  493 

 494 

Figure 1. Photos showing the process of stem-girdling treatment in Douglas-fir.  495 

Girdling was applied by saw (A) on the stem (B, arrows).  Cheesecloth (C) and tape 496 

were placed on the girdled area (D) after girdling treatment for protection. 497 

 498 

Figure 2. Concentrations of cytokinins and auxin in Douglas-fir long shoots following 499 

girdling treatment in May 15, 2007 with genotypes 9550 (left column) and 9137(right 500 

column).  Girdling treatment (black), control (grey), mean ± SE, n=3.  NQ stands for 501 

not quantifiable. 502 

 503 

Figure 3. Concentrations of ABA and metabolites in Douglas-fir long shoots following 504 

girdling treatment in May 15, 2007 with genotypes 9550 (left column) and 9137(right 505 

column).  Girdling treatment (black), control (grey), mean ± SE, n=3.  Asterisk (*) 506 

indicates significant difference (P < 0.05) compared with the control at each individual 507 

time point.  508 

 509 

510 



 27

Figures 511 

 512 
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Figure 2 525 
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Figure 3 528 


