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Abstract

Background: Dispersal from Candida albicans biofilms that colonize catheters is implicated as a

primary factor in the link between contaminated catheters and life threatening blood stream

infections (BSI). Appropriate in vitro C. albicans biofilm models are needed to probe factors that

induce detachment events.

Results: Using a flow through system to culture C. albicans biofilms we characterized a detachment

process which culminates in dissociation of an entire early stage biofilm from a silicone elastomer

surface. We analyzed the transcriptome response at time points that bracketed an abrupt transition

in which a strong adhesive association with the surface is weakened in the initial stages of the

process, and also compared batch and biofilm cultures at relevant time points. K means analysis of

the time course array data revealed categories of genes with similar patterns of expression that

were associated with adhesion, biofilm formation and glycoprotein biosynthesis. Compared to

batch cultures the biofilm showed a pattern of expression of metabolic genes that was similar to

the C. albicans response to hypoxia. However, the loss of strong adhesion was not obviously

influenced by either the availability of oxygen in the medium or at the silicone elastomer surface.

The detachment phenotype of mutant strains in which selected genes were either deleted or

overexpressed was characterized. The microarray data indicated that changes associated with the

detachment process were complex and, consistent with this assessment, we were unable to

demonstrate that transcriptional regulation of any single gene was essential for loss of the strong

adhesive association.

Conclusion: The massive dispersal of the early stage biofilm from a biomaterial surface that we

observed is not orchestrated at the level of transcriptional regulation in an obvious manner, or is

only regulated at this level by a small subpopulation of cells that mediate adhesion to the surface.
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Background
Members of the Candida genus are the principal etiologi-
cal agents of nosocomial fungal infections, with C. albi-
cans being the most common species [1-3]. The overall
mortality rate for patients with candidemia is greater than
40% [4-6]. Catheters are considered to be a likely point of
entry of C. albicans into the vascular system [7]. In support
of this evaluation, a particularly high risk of invasive can-
didiasis is associated with the use of urinary and vascular
catheters, and ventricular assist devices [8]. The chances of
acquiring a BSI resulting from colonization of an intravas-
cular catheter by Candida species has been ranked high
among pathogens involved in biomaterial centered infec-
tions, second only to Staphylococcus aureus [9]. C. albicans
colonizes various biomaterials and readily forms dense,
complex biofilms under a variety of in vitro conditions
[10]. C. albicans biofilms exhibiting similar architectural
and morphological features form in vivo [11-13]. The
implication is that dissemination from C. albicans bio-
films colonizing biomaterials is frequently a major factor
predisposing susceptible patients to life threatening BSI.

Despite the evidence that dispersal of cells from C. albicans
biofilms may be a critical step in biomaterial related cases
of candidemia, few studies have characterized C. albicans
biofilm detachment behavior. Daughter cells that are
released from C. albicans biofilms cultured on cellulose
acetate filters or cellulose fibers perfused with a continu-
ous flow of medium have been collected either as a means
to assess biofilm growth rate [14], or to determine if dis-
persed cells retain the intrinsic (transient) phenotypic
resistance to antimicrobials that is a hallmark of biofilms
[15]. In the former study there is an implicit (untested)
hypothesis that the detachment rate is constrained by the
medium substrate loading rate, and not simply a direct
(passive) response to the applied (mechanical) shear
force. Expression of a GPI (glycosylphosphaditylinositol)
anchored cell wall protein (Ywp1p) has been shown to
decrease adhesion between biofilms composed of yeast
forms and a polystyrene surface [16]. The implication is
that Ywp1p may be the effective structural component in
an active control network that induces biofilm detach-
ment. A recent review has discussed cell dispersal from C.
albicans biofilms with respect to its possible induction by
farnesol, a quorum sensing agent that promotes forma-
tion of the yeast form [17]. C. albicans biofilms formed
from mutants in which genes coding for key adhesins
under the positive control of the Bcr1p transcription fac-
tor have been disrupted produce thin fragile biofilms
[11,18]. Detachment of cells from biofilms formed from
these mutant strains is significantly enhanced [19].

Evidence is accumulating that bacterial biofilms actively
regulate dispersion processes using a variety of mecha-
nisms [20-28]. The aim of the present study was to deter-

mine if we could find evidence indicating that C. albicans
biofilm detachment from a biomaterial surface was
actively regulated at the level of transcription. A clearly
observable, reproducible transition between establish-
ment of strong adhesion and loss of adhesion in a rela-
tively copious early stage biofilm provided us with a
simple tractable in vitro system for probing changes in the
transcriptome associated with loss of adhesive bonds to a
biomaterial. Since the phenomenon involved the entire
biofilm population we could apply a relatively simple
scheme for array analysis which consisted of a closed loop
time course comparison. A comparison of biofilm and
batch cultures provided us with an additional way to
screen for genes that were specifically involved in the
detachment process.

Results
The detachment process involves an early abrupt loss of 

strong adhesion

Biofilms were cultured in a tubular reactor similar to that
used in a previous study [29] (Figure 1). Figure 2a shows
stages of biofilm detachment that are evident from visual
inspection of the silicone elastomer tubing in which the
biofilms were cultured. Regions where the biofilm has
been displaced from the tubing become visible by 2 h and
continue to enlarge during the course of development.
These regions of detachment are evident along the entire
length of the tubing. Biofilms cultured for 6 h appear to
have only minimal points of contact with the silicone
elastomer. Typically, this tenuous association is com-
pletely lost between 8 and 9 h, at which point the entire
biofilm is displaced downstream by the flow.

As in other C. albicans biofilm studies [11,30-33], our
inoculum was produced at 30°C in order to obtain a well
defined dispersed population consisting entirely of yeast
singlets and doublets, with no cell aggregates. This rela-
tively large inoculum settles to the lower surface of the
tubing during the 1 h incubation period. These cells,
which still have the yeast morphology after the 1 h incu-
bation period, are completely removed if the tubing is
drained, leaving the lower tubing surface completely free
of cells (data not shown). Contrary to our initial expecta-
tion, when medium flow is initiated, most cells remain
associated with the surface. We found less than 105 cells/
ml in aliquots collected immediately after initiation of
flow until just before loss of the entire biofilm (five exper-
iments). Cells that remain associated with the surface ger-
minate and the biomass increases primarily by hyphal
extension rather than increase in cell number (Figure 2c).
(A batch culture in which the conditions of the inocula-
tion are the same behaves similarly in this respect). Bio-
films grown for 1 h have developed a multilayer,
multicellular structure that remains associated with the
tubing after it is subjected to the large shear forces exerted
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at the interface by draining the tubing (Figs 2d and 2e),
indicating that as cells germinate they rapidly develop rel-
atively strong cell to cell (cohesive) and cell to surface
(adhesive) bonds.

The relatively strong adhesive association with the surface
that is established by 1 h is weakened considerably before
visible regions of the biofilm lift off the tubing and this is
accompanied by a change in biofilm morphology. The
early time course of this loss of adhesion was followed
using cryosectioning, scanning electron microscopy
(SEM) and time lapse photography (Figure 3). Cryosec-
tions of the biofilm indicated that there was a fairly abrupt
transition in the structural organization of regions of the
biofilm (particularly regions near the biofilm lateral
edges) consisting of the appearance of hyphae extending
into the surrounding medium between 60 and 90 min
(Figure 3a). Characterization of the surface using SEM
showed that the abrupt structural transition was coinci-
dent with the loss of adhesion to the surface (Figure 3b).
At 30 and 60 min a multilayer biofilm remained after
draining the tubing while at later time points (90 and 120
min) most of the cells were displaced by draining. No cells
could be found on the lower (previously colonized) sur-
face after draining tubing containing a 3 h biofilm (data
not shown). Time lapse photography of the top of the bio-
film during the transition indicated that macroscopic
detachment was first visible at the edges of the biofilm as
wavy flaps (Figure 3c). At later times wrinkles appeared in
the biofilm that, when viewed from the side, were evi-
dently locations at which portions of the biofilm had
been entirely displaced from the surface.

The structural reorganization observed at the 90 and 120
min time points becomes more pronounced as the bio-
film develops. Sections of 3 h biofilms were obtained
transverse to the direction of flow (in the plane of the tub-
ing cross-section) (Figure 4). The structure of the sections
prepared using the Spurr's embedding method (Figure 4a)
appeared quite similar to those prepared using cryosec-
tioning, a histological technique that was designed to pre-
serve the hydrated structure (Figure 4b). Both sectioning
techniques indicated a structure in which hyphae
extended from both sides of the detached biofilm into the
surrounding medium. Despite their relative immaturity,
the 3 h biofilms showed evidence of production of extra-
cellular polymeric substance (EPS) as indicated by stain-
ing with a monoclonal antibody against (1,3) β glucan
(Figure 4c and 4d). A previous study indicated that (1,3)
β glucan is a primary component of C. albicans EPS [34]

Table 1 summarizes the hydrodynamic (shear) forces
associated with displacement of the biofilm from the tub-
ing at various stages of growth. (The approximate dimen-
sions of the 3 h biofilm with respect to the tubing were
indicated in Figure 2b). The yeast inoculum was not
rinsed from the surface by the relatively low shear force
(0.016 dyn cm-1) of the medium flow which is an indica-
tion that this hydrodynamic force is quite gentle. How-
ever, it was completely displaced from the surface by
draining the tubing (data not shown). In contrast biofilms
cultured for between 30 min and 1 h have established a
sufficiently firm adhesion so that the biofilm can with-
stand application of a substantial shear force (17.3 dynes/
cm2).

Initial biofilm adhesion is dependent on expression of 

BCR1 and ALS3 but not on HWP1

A simple hypothesis is that the loss of adhesion described
above involves a temporal shift in expression of two
adhesins (ALS3 and HWP1), regulated by the BCR1 tran-
scription factor, that were shown play a prominent role in
C. albicans biofilm development [11,19,35]. In order to
pursue this idea we first determined if these genes were
involved in establishment of the initial strong adhesive
bond to the surface. Figure 5 shows that at 40 min the ref-
erence (wild type) strain has established adhesion to the
tubing surface while the bcr1/bcr1 and als3/als3 mutant
biofilms are almost completely displaced from the surface
by draining the tubing. BCR1 is a positive regulator of
morphogenesis. However, the lack of establishment of
adhesion of bcr1/bcr1 and als3/als3 strains was not entirely
coupled to filamentation in a simple manner since a sub-
stantial proportion of the bcr1/bcr1 and als3/als3 mutant
cells germinated (20 and 70%) during the 40 min time
interval. (The mean germ tube length of these cells was 14
+/- 12 and 10 +/- 7 μm, respectively). The results for the
hwp1/hwp1 mutant indicated that expression of this gene

Biofilm tubular reactorFigure 1
Biofilm tubular reactor. The reactor was inoculated by 
drawing a cell suspension into the tube from the effluent end 
(arrow) using a sterile syringe inserted through the tubing 
wall just down stream from the bubble trap. The bubble trap 
also serves as a sterility barrier. The entire system was 
enclosed in an incubator for temperature control (broken 
line).
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Biofilm detachment processFigure 2
Biofilm detachment process. a) Images of the biofilm in the tubing (side view) at various time points; regions where the 
biofilm has been displaced from the lower surface are indicated by arrows; a similar pattern of detachment was observed in 
more than 100 experiments; the scale bar is 2 mm; b) Approximate dimensions of the 3 h biofilm with respect to the tubing 
cross section; c) Changes in germ tube and cell density versus time; Legend: B, biofilm, P, planktonic (batch) culture; (By 1 h 
82% and 76% of the cells geminated in biofilm and planktonic cultures, respectively);d) The multilayer biofilm that remains on 
the surface after draining at times up until 1 h extends along the trough of the tubing and is visible; (Representative digital cam-
era image of the underside of the tubing); e) SEM images of the 1 h biofilm that remains on the lower surface of the tubing after 
draining.
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Time course of loss of adhesion and accompanying microscopic and macroscopic structural changesFigure 3
Time course of loss of adhesion and accompanying microscopic and macroscopic structural changes. a) Cryo-
sections of biofilms at different time points. Sections acquired at 30 and 60 min appear to conform to the curved surface of the 
tubing. Arrows indicate substratum side. The structure in which hyphae at the edges extend into the surrounding medium 
becomes apparent between 60 and 90 min. (Scale bars are all 50 μm). b) SEM images of the colonized (lower) surface of the 
tubing after the tubing was drained. Between 60 and 90 min there is a sharp transition in which most of the cells have lost their 
surface adhesion. (Scale bars are all 20 μm). c) Time course of gross structural changes during loss of adhesion. The biofilm is 
visible at 40 min. At 90 min the flanking sections detach as flaps (arrow); these flaps are more visible at later time points. At 135 
min wrinkles begin to form (arrow) and become more prominent at later time points (185 min).
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was not essential for establishment of firm adhesion, i.e.,
under our conditions and at this early stage in biofilm
development. At 40 min the biofilm was multilayered and
clearly attached. These results led us to characterize the
detachment phenotype of a strain that overexpressed
ALS3 which is described below.

Comparison of the firmly and loosely attached biofilm 

suggests that glycosylation, vesicle trafficking and 

transport contribute to the adhesive phenotype

As shown in Figure (2d and 2e) a visible multilayered bio-
film structure withstands the substantial shear force

applied by draining the tubing for biofilms cultured for 1
h. A portion of the 1 h biofilms is typically removed from
the surface by this procedure. These two subpopulations
are referred to as the 1 h firmly (1h F) and 1 h loosely (1h
L) attached biofilm. We reasoned that comparing the tran-
scriptional profiles of these two subpopulations might
uncover genes that were subsequently differentially regu-
lated to mediate detachment in our flow model. The com-
parison of 1h F and 1h L biofilms revealed 22 upregulated
and 3 repressed transcripts (see Additional file 1). Upreg-
ulated genes fell into process ontological categories of
vesicular trafficking, glycosylation and transport. RT-

Detached biofilm structure (3 h biofilms)Figure 4
Detached biofilm structure (3 h biofilms). All images were acquired using epi-fluorescence microscopy. a) Spurr's embed-
ded section; the fluorescence originates from the preparation technique; b) Cryosection stained with calcofluor white; c, d) 
Cryosections stained for (1,3) β glucan; c) Region at the edge of the biofilm; arrow indicates extracellular material that is 
stained; inset is the planktonic positive control (left: transmitted image right: epi-fluorescence image); d) region in the interior 
of the biofilm; arrows indicate stained material that appears as strands.
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qPCR confirmed the changes in transcript levels of some
genes enriched in glycosylation and vesicle trafficking
functions that exhibited relatively small fold changes
(Table 2). The distinct pattern of expression of these genes
within the context of the time course analysis is discussed
in the next section.

Time course analysis indicates detachment is associated 

with coordinated expression of mutually exclusive 

functional categories

In order to identify changes in the transcriptome that
accompanied the abrupt detachment event we performed
a closed loop time course analysis (Figure 6a). In such a
comparison, each sample is compared to two or more
other conditions thus allowing us to visually validate the
changes in transcript abundance. We compared the tran-
scriptome of 1h F and 1h L biofilms with biofilms that
had spontaneously and progressively lost their adhesive
bonds (3 and 6 h). The time course array analysis pro-
duced 148 predicted ORFs that were differentially regu-
lated (>= 1.5 fold change, P-value < 0.05) for at least one
pair wise comparison (Figure 6b). (The complete list of
genes that are significantly modulated in each comparison
is presented in Additional file 1). Of the 148 differentially
regulated genes, 98 have a known inferred function. There
were also 34 genes that were significantly up or down reg-
ulated in more than one pair wise condition (see Addi-
tional file 1). Comparison with two previous studies
[36,37] in which cells were transferred from 30°C to 37°C

Table 1: Hydrodynamics of biofilm displacement from the 

surface

Shear Force (dynes/cm2)1

0.016 17.3

Yeast inoculum2 + -

30 min-1 h Biofilm + +

2–6 h Biofilm + -

> 8 h Biofilm - -

1Computed as indicated in the Methods section
2 At the end of the 1 h inoculation period
+ biofilm remains attached
- biofilm is removed

Influence of deletion of HWP1, BCR1 and ALS3 and on establishment of early firm adhesionFigure 5
Influence of deletion of HWP1, BCR1 and ALS3 and on establishment of early firm adhesion. Biofilms formed from 
the strains indicated at the top of each column were harvested at 40 min and the tubing was drained. The top row are pictures 
of the underside of the tubing. Visible biofilm remained after draining the tubing for the reference strain (DAY286) and the 
hwp1/hwp1 mutant, while no visible biofilm remained for the bcr1/bcr1 mutant. There was some residual biofilm left after drain-
ing the tubing colonized by the als3/als3 mutant (before the ethanol rinse steps), but the adhesion to the surface was clearly 
much less than the reference strain. SEM images of the tubing in the second row indicated that multilayer biofilm remained on 
the surface of the tubing for the reference strain and the hpw1/hpw1 mutant, while very few cells could be found for the bcr1/
bcr1 and als3/als3 mutants. The most heavily colonized regions that were found are shown. (The ethanol dehydration removed 
all visible biofilm from the tubing for bcr1/bcr1 and als3/als3 mutant strains).
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in YPD medium indicated that differentially regulated
genes in the time course were not associated with this tem-
perature shift.

K means analysis produced the most meaningful patterns
in the time course array data (Figure 7). Since expression
levels of all 148 genes for all conditions were included in
this analysis, an implicit assumption in the interpretation
is that differences in gene expression levels detected
between 6 and 1 h and 6 and 3 h are a temporal extension
of the differential expression pattern exhibited between 3
and 1 h. The hierarchical cluster analysis presented in Fig-
ure 6 provides some support for this assumption since it
indicates that differences in expression levels between 1 to
3 h and 1 and 6 h are relatively closely related. The outly-
ing location of the 1hL/1hF condition can be interpreted
as indicating that differential transcript expression
between these two groups should be treated as a separate
category. In support of this interpretation we were unable
to correlate genes differentially regulated during the time
course analysis to genes identified in the comparison of
the 1 h firmly (1h F) and 1 h loosely (1h L) attached bio-
films. The proximity of the 6 h/1hF and 6 h/1hL condi-
tions indicates it is valid to regard these two categories as
reflecting similar temporal trends in differential expres-
sion.

The seven groups of genes identified by K means analysis
fell into distinct GO process categories summarized in

Table 3, which shows the four or five most significant cat-
egories according to the P value. With a few exceptions,
the GO process category assignments for each group were
mutually exclusive which suggests that the patterns
uncovered by the K means analysis were functionally
meaningful. Categories related to carbohydrate biosyn-
thetic processes (group 3) and interaction with the host,
adhesion during symbiosis and adhesion to the host
(group 7) have the most obvious possible functional rele-
vance to the detachment phenomenon.

Comparison with batch cultures indicates differential 

regulation of genes associated with a response to hypoxia, 

amino acid biosynthesis and cell surface proteins

If inoculation conditions are made as identical as possi-
ble, batch cultures are similar to the biofilm in terms of
both cell morphology (Figure 2c) and aggregation behav-
ior (Figure 8). Since cells in the batch cultures germinate
and also exhibit cohesive (cell to cell) interactions we rea-
soned that genes differentially regulated in the biofilm to
batch comparison and the time course analysis might con-
tain a subset of genes involved more specifically in the
detachment process, rather than exclusively in morpho-
genesis or cell to cell cohesion. It is conventional to com-
pare biofilm and planktonic cultures in microarray
analyses, where the planktonic culture(s) serves as a sort
of reference [30,33,38]. We compared 1 h and 3 h biofilm
and batch cultures to each other since these time points
bracketed the abrupt transition in which strong adhesion
was lost. We used the 1h F biofilm for this comparison
since we were attempting to uncover genes involved in
mediating adhesive interactions.

The categories of genes that were differentially regulated
between the biofilm and batch cultures are summarized
in Table 4. (The complete list of differentially regulated
genes is given in Additional file 2). In general, genes cod-
ing for proteins involved in glycolysis, fermentation and
ergosterol synthesis were upregulated while genes associ-
ated with oxidative phosphorylation and the TCA cycle
were downregulated. This pattern of differential gene
expression is very similar to that observed in comparisons
of batch cultures grown under aerobic and relatively
anaerobic conditions [39] and indicates that biofilm cells
were responding to hypoxia (Figure 9). The batch compar-
ison data were ordered with respect to the ratio of the fold
changes at the 3 h and 1 h time points. There were 16
genes for which this ratio was greater than 1.5 or less than
0.66 and also appeared in the list of significantly regulated
genes in the time course analysis. The 11 genes for which
the ratio (3 h/1 h) was greater than 1.5 exhibited a pattern
of expression that was fairly tightly clustered, similar to
the group 4 pattern found by K means analysis (data not
shown). Among these 11 genes were four which coded for
proteins involved in response to stress: ASR1, CDR4,
orf19.822 and AMS1.

Table 2: Genes up regulated in the 1hF/1hL comparison

Gene Orf Microarray1 RT Q-PCR2

Vesicular trafficking

SSS1 orf19.6828.1 1.56 1.63 ± 0.01

ERV29 orf19.4579 1.60 3.73 ± 0.41

SEC22 orf19.479.2 1.44 2.24 ± 0.1

EMP24 orf19.6293 1.44 1.24 ± 0.1

CHS7 orf19.2444 1.44 1.65 ± 0.12

YOP1 orf19.2168.3 1.55 1.67 ± 0.15

Glycosylation

PMT4 orf19.4109 1.63 ND3

DPM2 orf19.1203.1 1.61 2.33 ± 0.11

DPM3 orf19.4600.1 1.48 2.12 ± 0.2

WBP1 orf19.2298 1.44 4.75 ± 0.11

Transport

ADP1 orf19.459 1.68 ND

CTR1 orf19.3646 1.54 ND

ADY2 orf19.1224 1.69 ND

TNA1 orf19.2397 1.68 ND

ALP1 orf19.2337 1.58 ND

1Average fold change
2Log2 ratios. Each value is the mean ± standard deviation of two 
independent experiments each with three replicates.
3Not Done
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Time course analysis on DNA microarraysFigure 6
Time course analysis on DNA microarrays. A) Closed 
loop scheme. B) Heat map and two-dimensional hierarchical 
clustering of the different transcriptional profiles. Upregu-
lated and downregulated genes are colored in red or green 
respectively.

Categories of genes with similar expression patterns identi-fied by K means analysisFigure 7
Categories of genes with similar expression patterns 
identified by K means analysis. The seven groups of 
genes fall into distinct ontological process categories summa-
rized in Table 3. Patterns of expression of genes chosen for 
further analysis (groups 3, 4 and 7) are indicated.
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Table 3: Ontological categories associated with groups of genes identified by K means analysis of the time course array data

Process GO term Enrichment1 P value

Group 1 (17/37)2

Chromatin assembly/disassembly 18.07 7.41e-5

DNA packaging 10.13 0.00011

DNA metabolic process 4.69 0.00114

Regulation of meiosis 39.0 0.00155

Group 2 (12/17)

Response to stimulus 4.85 0.00063

Regulation of biological quality 8.76 0.00087

Pseudohyphal growth 20.75 0.00487

Response to stress 4.82 0.00727

Cell growth 15.09 0.00783

Group 3 (13/22)

Carbohydrate biosynthetic process 12.75 0.01118

Glycoprotein biosynthetic process 9.00 0.02203

Glycoprotein metabolic process 8.50 0.02260

Response to simulus 2.98 0.03761

Response to stress 3.33 0.05641

Cellular carbohydrate metabolic process 4.25 0.08011

Group 4 (12/20)

Heme metabolic process 55.33 0.00066

Heme biosynthetic process 55.33 0.00066

Tetrapyrrole biosynthetic process 55.33 0.00087

Porphyrin biosynthetic process 41.50 0.00087

Porphyrin metabolic process 41.50 0.00112

Tetrapyrrole metabolic process 41.50 0.00112

Group 5 (10/24)

Energy derivation/oxidation of organic compounds 11.1111 0.00216

Generation of precursor metabolites 8.5714 0.00459

Aspartate family amino acid metabolism 18.1818 0.00519

Sulfur metabolic process 16.6667 0.00661

Alcohol metabolic process 6.8966 0.03450

Metabolic process 1.4706 0.05460

Group 6 (9/18)

Aerobic respiration 19.5882 0.00041

Cellular respiration 19.5882 0.00043

Energy derivation/oxidation of organics 12.3333 0.001'54

Generation of precursor metabolites 6.3429 0.00330

Pathogenesis 6.3429 0.03922

Interspecies interaction 4.9333 0.06136

Group 7 (12/18)

Interaction with host 17.5263 5.91e-5

Adhesion during symbiosis 31.2500 0.00014

Adhesion to host 31.2500 0.00014

Biological adhesion 20.8333 0.00039

Pathogenesis 9.5143 0.00065

Single species biofilm formation/biomaterial 41.5000 0.00139

1 Ratio of the abundance in the differentially regulated gene set to the abundance in the set of genes contained in the gene ontology data base
2 Total number of classified genes/total number of genes in the group
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Loss of strong adhesion is not influenced by oxygen 

availability at the interface or in the medium

The porous structure of silicone elastomers results in a
high gas permeability [40]. (Silicone elastomer is 25 times
as permeable to oxygen as natural rubber). Thus it is likely
that oxygen penetration at the tubing surface might estab-
lish a gradient of oxygen at the biofilm/surface interface.

The timing of the structural transition in which hyphae
extending from the edges of the biofilm were first
observed corresponds with the loss of adhesion (Figure 3)
suggesting that the two phenomena might be related.

We tested the hypothesis that availability of oxygen at the
biofilm/surface interface was providing a stimulus to

Cell aggregate formation in batch cultures; we did not observe alignment of germ tubes extending into the surrounding medium at the edge of any of the cell aggregatesFigure 8
Cell aggregate formation in batch cultures; we did not observe alignment of germ tubes extending into the 
surrounding medium at the edge of any of the cell aggregates.
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induce detachment by placing a gas tight glass sleeve
around the biofilm reactor and filling the sleeve with
nitrogen gas. Nitrogen was induced after 40 min of growth
to allow time for the biofilm to establish firm adhesion to
the surface. The presence of the nitrogen had a measurable
effect on hyphal length which was reduced by 62% com-
pared to the standard conditions (29 μm versus 47 μm, p
value 1.4 e-6). However, there was no visible difference in
the detachment phenotype at 3 h. We performed addi-
tional experiments to see if we could perturb the detach-
ment phenotype by availability of oxygen by either filling
the glass sleeve with pure oxygen or saturating the
medium with pure oxygen during biofilm development.
Although there were subtle perturbations in the biofilm
structure (data not shown) the detachment phenotype
was not appreciably altered.

Mutant strain analysis suggests that transcriptional 

regulation of a single gene candidate is not responsible for 

mediating the loss of strong adhesion

Based on the array analysis presented above we chose
seven genes (AMS1, PSA2, CWH8, PGA13, orf19.822,
AQY1, and ALS1) for further analysis. (A cwh8/cwh8

mutant could not be produced since it formed a trisomic
suggesting that it is a lethal mutation). In addition to
genes indicated by our array analysis, we chose two genes
for further study based on their possible function in the
detachment process as suggested by previous work (YWP1
and MKC1) [16,41]. We also constructed a strain express-
ing ALS3 constitutively under the control of the ACT1 pro-
moter based on its role in establishment of the initial firm
adhesion of 1 h biofilms (ALS3 also exhibited down
expression in the time course analysis that was just below
the 1.5 fold change threshold).

The detachment phenotype of nine mutant strains was
characterized using visual inspection (recorded with a dig-
ital camera), cryosections of 3 h biofilms, and SEM of the
surface after draining the tubing. With slight variations, all
the mutant strains exhibited detachment phenotypes that
were quite similar. Figure 10 presents a panel of results for
six of the strains tested. In the top row are mutants exhib-
iting detachment phenotypes that we consider essentially
identical. The detachment phenotypes of the aqy1/aqy1
and ywp1/ywp1mutants and the orf19.822 double knock-
out were very similar to those shown in the top row. The

Table 4: Summary of differentially regulated genes in the biofilm-batch comparison

Process GO Term Genes on microarray dataset Annotated Genes1 P value

1h-biofilm 3h-biofilm 1h-biofilm 3h-biofilm

Up regulated genes 130 127

Lipid metabolism 21 18

Ergosterol biosynthesis 11 9 28 1.82 E-10 6.67 E-08

Fatty acid metabolism 3 4 74 0.2 0.1

Other lipid metabolism 7 5 - - -

Glycolysis 13 7 16 5.74 E-18 1.75 E-07

Fermentation 3 2 16 0.01 0.07

Amino acid biosynthesis 11 5 205

Glutamate 5 1 13 2.37 E-05 0.27

Leucine 2 0 5 8.21 E-03 -

Other 4 4 - - -

Transport 12 4

Glucose transport 5 0 21 3 E-04 -

Oligopeptide transport 3 0 11 3 E-03 -

Other 4 4 - - -

Cell wall 8 8 92 4.5 E-03 7.7 E-03

Protein refolding 0 5 14 - 9 E-05

Down regulated genes 71 95

Translation (cytosolic ribosome) 11 33 105

Large subunit 8 18 50 9.08 E-05 8.1 E-15

Small subunit 3 15 39 0.08 4.68 E-13

Tricarboxylic acid cycle 6 2 20 1.75 E-05 0.11

Amino acid biosynthesis 3 13

Glutamate 0 4 13 - 6.2 E-04

Leucine 0 2 5 9 E-03

Other 3 7 - - -

ATP synthesis 6 9 20 1.75 E-05 4.9 E-09

Respiratory chain 8 11 26 5.36 E-07 2.02 E-10

Stress response 4 5 - - -

1Number of genes in the annotated database
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macroscopic appearance of the psa2/psa2 mutant was sim-
ilar to the reference strain but the biofilm was too fragile
to withstand the application of the OCT polymer to the
surface so cryosections could not be obtained. In the bot-
tom row are detachment phenotypes that exhibited slight
variations. Cryosections of the pga13/pga13 mutant did
not produce hyphae that were clearly aligned at both
edges of the biofilm. We tentatively attribute this to dis-
ruption of the structure during application of the OCT
polymer since this biofilm had the appearance of being
more fragile than that of the reference strain. In contrast,
the mkc1/mkc1 mutant produced a biofilm in which align-
ment of hyphae appeared to be more pronounced than in
the reference strain. (The detachment phenotype of the
CAI4 reference strain was the same as the BWP1 reference
strain). The detachment phenotype of ACT1-ALS3 biofilm
was the only one that differed appreciably from the refer-
ence strain in terms of macroscopic appearance. Com-
pared to the reference strain this mutant exhibited fewer
regions of detachment that were relatively more displaced
from the surface.

Discussion
Although circumstantial evidence strongly implicates that
detachment from C. albicans biofilms plays a significant
role in biomaterials centered infections, there is virtually
nothing known about which types of detachment events
might play a role, which conditions induce detachment,
or the characteristics of the biofilms responsible for the
dissemination. Our biofilm model is most relevant to
detachment events that might occur from vascular cathe-
ters which commonly transport a relatively rich nutrient
broth (total parenteral nutrition) and are statistically
among the most likely prosthetic devices to be associated
with C. albicans BSI [8]. A comparison with previous
results suggests that at this early stage the biofilm is at a
critical stage where it can either loose its adhesive associa-
tion with the silicone tubing or develop into a mature bio-
film [29]. In order to have a tractable in vitro biofilm
model we used an inoculum density that is higher than
that expected under any conceivable hospital conditions.
However, it is quite plausible that microcolonies that
develop from a much smaller inoculum might respond
similarly to a constant supply of rich medium and
undergo a similar process of global detachment very early
in their development. It is also reasonable to expect that
the primary colonizers would have previously experi-
enced a lower temperature environment such as the skin
or a hospital room.

From a medical point of view, we would like to know the
interplay of factors (extrinsic and intrinsic) that trigger dif-
ferent types of detachment events. The perception of bio-
films as structured [10] differentiated [17] communities
that may exhibit developmental stages that are actively

Common differentially regulated genes in 1 h and 3 h biofilm to batch comparison and C. albicans cells growing under hypoxic conditionFigure 9
Common differentially regulated genes in 1 h and 3 h 
biofilm to batch comparison and C. albicans cells 
growing under hypoxic condition.
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programmed [42] suggests that explicit intrinsic (regula-
tory) components might play a role. Two time course
studies have provided a foundation for discovering points
of active regulation of C. albicans biofilm developmental
processes at the transcriptional level. Significant changes
in the transcriptome accompany both the establishment
of initial association with the surface [33] and precede the
stage of pronounced increase in biomass [38]. This study
is the first to address transcriptome changes that accom-
pany a clearly observable biofilm detachment process. We
have found that a transition in which a firm attachment to
the surface is abruptly lost are coincident with changes in
the transcriptome, and we have identified genes that are
reasonable candidates for playing a role in this detach-
ment. Furthermore, a subset of the genes that were differ-
entially regulated during the transition is not associated
with either hyphal extension, the most obvious morpho-
logical change at the cellular level, or cell aggregation. The
microarray data indicated that changes associated with the
detachment process were complex and, even after using
the array data as a guide for mutant strain construction,
we were unable to demonstrate that transcriptional regu-
lation of any single gene was essential for loss of strong
adhesion.

The most direct evidence that biofilm developmental
processes are actively controlled by biofilm-specific tran-
scriptional regulatory networks has come from studies of
BCR1 dependent genes [11]. Bcr1p, a zinc finger domain
transcription factor under the positive control of Tec1p, a
positive regulator of morphogenesis, activates a set of
genes (ALS1, ALS3 and HWP1) that code for GPI
anchored cell surface proteins that are required for normal
biofilm formation. Of these, ALS3 and HWP1 appear to
play the most prominent role in biofilm development
[11,19,35], and evidence suggests that their differential
expression could play a role in mediating detachment
events [19]. We found that BCR1 was necessary for estab-
lishment of adhesion of the C. albicans biofilm to the sili-
cone elastomer surface and that ALS3 was necessary for
establishment of firm adhesion, while HWP1 was not
required. Although there was a slight trend of decreased
expression of TEC1 in the time course analysis, there was
no indication that BCR1 was differentially regulated dur-
ing detachment and overexpression of ALS3 had only a
modest effect on the detachment phenotype.

The time course analysis indicated that the detachment
process coincided with differential regulation of a relative
abundance of genes coding for plasma membrane pro-
teins, cell surface proteins and cell wall proteins, with a
modest enrichment in these categories (data not shown).
These genes were scrutinized more closely for clues that
would indicate changes in cell surface properties related to
detachment. Genes involved in transport (ALP1, TNA1,

Detachment phenotypes of selected mutantsFigure 10
Detachment phenotypes of selected mutants. All data 
presented are for 3 h biofilms. The top row of panels in each 
set are digital camera images (top view, first row; side view, 
second row). The third row in each set are cryosections and 
the forth row are SEM images of the surface after draining 
the tubing. SEM images show the most densely colonized 
regions of the surface that could be found. The biofilm 
formed from the pga13/pga13 mutant was relatively fragile 
and this may have contributed to the altered structure of the 
cryosections. In terms of gross structure the most pro-
nounced differences were seen in the ACT1-ALS3 construct 
which exhibited fewer regions of detachment that were rela-
tively more displaced from the surface.
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CTR1, GNP1, HGT1, HGT15, and DUR7) were highly rep-
resented indicating a shift in metabolism. There was no
clear trend indicating that these transcripts were generally
either increased or decreased during the time course.
There was a general decrease in transcripts for genes
involved in hyphal penetration (RAC1, PLB1) which is
suggestive of a response to reject surface association. It
would be reasonable to expect that induction of release
from the surface would involve cell wall restructuring and
two genes (SCW11, XYL2) are related to this function.

Patterns of gene expression uncovered by K means analy-
sis indicated that genes involved in similar biological
processes were regulated together which provides some
support for the hypothesis that the detachment process
was associated with some form of coordinated transcrip-
tional regulation. Genes involved in DNA packaging
(HTB1, HTA1, HHF22, HHT2, and NHP6a) and host
interaction (RAS1, SAP5, ALS1, and TEC1) were generally
down regulated (groups 1 and 7, respectively), while
genes involved in carbohydrate/glycoprotein (CWH8,
PSA2, and TPS3) biosynthetic processes and energy deri-
vation/generation of precursor metabolites (TPS2, MRF1,
and ADH5) were generally up regulated (groups 3 and 5,
respectively). Among group 1 there were a number of
genes coding for histones that were found to be differen-
tially regulated by the quorum sensing agents farnesol or
tyrosol (HTA1, HHT2, and NHP6a), both of which have
been shown to influence biofilm development [43,44].

There are a substantial number of genes whose expression
levels have been shown previously to influence C. albicans
biofilm formation. The BCR1 dependent genes were dis-
cussed above. The one gene (YWP1) specifically linked to
C. albicans biofilm detachment [16] was notably absent
from the list of differential regulated genes in the time
course analysis. This was not entirely unexpected since
YWP1 is expressed primarily in the yeast form. Another
gene that was notably absent from the list was EAP1. The
EAP1 gene has been shown to be required for strong adhe-
sion to polystyrene, which is similar to silicone elastomer
in that it is relatively hydrophobic [45]. PRP22, a gene
found to be upregulated upon binding of hyphae to poly-
styrene [46], showed a trend of downregulation in our
time course study. PRP22 is an RNA dependent ATP-ase,
and thus probably involved in general metabolism so we
did not consider this as a candidate for functional analy-
sis.

A reasonable hypothesis is that detachment from a sili-
cone elastomer surface is induced by a change in cell sur-
face hydrophobicity (CSH). C. albicans has a variety of
options for binding to host cells via specific interactions,
while CSH provides a less specific means of binding to
both host tissues and biomaterial surfaces [47]. Presuma-

bly cell to cell cohesion within a biofilm could be main-
tained by a subset of the more specific interactions, while
loss of CSH would weaken adhesion to the hydrophobic
silicone elastomer surface. Genes implicated in determin-
ing CSH include CSH1 [48,49], MNN4 [50] and three
genes that contain an eight cysteine domain that shows
similarity to a class of fungal hydrophobins (CSA1,
PGA10 and RBT5) [32]. CSH1 was upregulated during the
time course of detachment, a result that is difficult to
interpret since this would presumably enhance binding to
the silicone elastomer surface. Neither MNN4 nor CSA1
(WAP1) were among the genes differentially regulated in
either the time course analysis or the batch comparison.
PGA10 (RBT51), coding for a (putative) mannosylated
GPI anchored protein, was upregulated during the time
course and RBT5, coding for a GPI-anchored cell wall pro-
tein, was upregulated by factors of, respectively, 4.7 and
16.5 in the 1 and 3 h biofilm/batch culture comparisons,
but did not appear as a significantly regulated gene in the
time course analysis. (RBT5 was also one of the genes up
regulated in response to hypoxia (5.5 fold change) in a
previous study [39]).

We attempted to exploit the comparison between 1h F
and 1h L biofilm subpopulations to identify additional
genes that were involved in mediating adhesion with the
idea that the pattern of expression of these genes during
the time course might suggest genes involved in the
detachment process. However, genes identified in this
comparison were generally not ones that appeared in the
time course analysis and, in fact, the genes in this compar-
ison exhibited a pattern of expression that was relatively
removed from the time point comparisons. This is shown
both by the hierarchical clustering across the different
comparisons (Figure 6), and principle components analy-
sis (data not shown). Our interpretation is that genes
identified in the comparison of 1h F and 1h L biofilm sub-
populations, many of which fall into process categories of
glycosylation, vesicle trafficking and transport, are candi-
dates for mediating cohesive (cell to cell) interactions
rather than adhesive (cell to surface) interactions.

The batch cultures that we used for our biofilm/batch
comparison were similar to biofilms in both morphogen-
esis and cell aggregation behavior, and thus we antici-
pated that this comparison might reveal genes associated
with the biofilm-specific process of detachment. A sub-
stantial proportion of the 201 genes that were differen-
tially regulated in the biofilm/batch comparison were
probably associated with a response to a relative state of
hypoxia in the biofilm (Figure 9) [39]. However, expres-
sion of 12 genes coding for cell surface proteins were not
differentially regulated in the previous analysis of the C.
albicans response to hypoxia (ALS3, CDC19, FRE10,
HEM13, HSP104, HYR1, orf19.822, PGA10, PGA52,
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PGA7, PHR1, and SOD5). Of these 12 genes, the most
highly upregulated gene in the 3 h biofilm to batch com-
parison was orf19.822, a gene coding for a soluble protein
that is more abundant in C. albicans biofilms formed on
silicone elastomer than in corresponding batch cultures
[51]. A notable proportion (5 of 12) of the cell surface
genes code for GPI anchored or putative GPI anchored cell
wall proteins (PGA10, PGA52, PGA7 (CRW3, RBT6),
PGA10 (RBT51, RBT8), and HYR1).

The patterns of gene expression across the time course
conditions uncovered by K means analysis, supplemented
by the biofilm/batch comparison and the inferred func-
tion suggested to us that AMS1, PSA2, CWH8, PGA13,
orf19.822, AQY1, and ALS1 were candidates for playing a
major role in the detachment process. Inferred functions
of AMS1, PSA2, CWH8 and PGA13 indicated that these
genes might play a role in restructuring the cell wall, thus
possibly modifying the adhesive properties [52-54].
AMS1 and orf19.822 were among the genes identified as
unique to the biofilm process according to the batch com-
parison. Orf19.822 codes for a protein that may contrib-
ute to biofilm formation on silicone elastomer surfaces
[51]. We speculated that Aqy1p [55] might be one compo-
nent in a system enabling an orientational response to
oxygen gradients, since hyphal orientation is regulated by
calcium ion channels [56] and aquaporins are proposed
to have a role in cell tropism by acting in concert with ion
channels to regulate cell volume changes [57]. AQY1 was
highly up regulated in the biofilm/batch comparison.
ALS1 was the major overexpressed gene in a detailed
microarray studies that compared biofilms and batch cul-
tures grown under a variety of conditions [30]. ALS1 has
been described as a down stream effector of morphogene-
sis [58-60]. Down regulation of ALS1 was associated with
detachment so a strain expressing ALS1 constitutively
under the control of the ACT1 promoter was constructed.
We also chose ALS3 for mutant analysis based on its
apparent contribution to the establishment of firm adhe-
sion of 1 h biofilms. In addition, we characterized the
detachment behavior of mutants lacking expression of
MKC1, a mitogen activated kinase, shown previously to
be involved in surface sensing [41] and YWP1, a gene
shown previously to be involved in detachment of yeast
forms [16]. While the mutant strains pga13/pga13, mkc1/
mkc1 and ACT1-ALS3 exhibited slight modifications in
the detached biofilm phenotype, there was no strong indi-
cation that any of the gene products encoded by our can-
didate gene list was a primary determinant in mediating
detachment.

It is possible that the detachment process we observed is
not regulated at the level of transcription. Alternatively,
the process could well be orchestrated by transcriptional
regulation of a set of genes in a complex manner as is evi-

dent from the various interacting factors that have been
shown to influence CSH [50,61-64]. An intriguing possi-
bility is that the hyphae that extend from the edge of the
detached biofilm might be phenotypically distinct from
the hyphae in the interior and that this phenotypic differ-
ence is conferred at the level of transcriptional regulation.
There are also numerous possible points of post-transcrip-
tional control [65]. The first step in testing this latter
hypothesis would be to compare the transcriptome with
the proteome, with a focus on cell wall proteins. The fairly
abrupt, clearly discernable detachment process we have
described would provide an ideal system for exploring
these alternative, post-transcriptional mechanisms.

The detachment processes in bacterial biofilms that show
evidence of active regulation can be classified into those
which are elicited by an external stimulus [23-25,66] and
seeding dispersal, which occurs without applying an obvi-
ous external stimulus [27,67,68]. In this respect the
detachment process we have described is similar to seed-
ing dispersal since there is no obvious change in nutrient
loading (or hydrodynamic shear stress). Evidence has
been obtained that seeding dispersal is initiated by a
change in an internal microenvironment in the biofilm
[67]. The batch comparison indicated that biofilm cells
were experiencing a relative state of hypoxia, and there
was some evidence that this response was amplified dur-
ing the time course of detachment. However, we found no
evidence that oxygen availability was a factor in the
detachment process. One possibility is that the detach-
ment phenomenon originates from a change in hyphal
cell surface properties that is a generic part of germination
under these conditions. The early stage biofilm we exam-
ined did not exhibit the classic structure in which yeast are
somehow sequestered at the base of the biofilm. It may be
that these yeast are necessary for mediating the permanent
adhesion to the surface, while hyphae provide an initial
tenacious, but more transient anchor.

Conclusion
An early stage C. albicans biofilm inoculated from the
yeast form onto a silicone elastomer surface and grown in
rich medium under flow establishes both cohesive (cell-
to-cell) and relatively strong adhesive (cell-to-surface)
bonds. As cells germinate and hyphae grow by linear
extension the adhesive bonds are progressively weakened
over an 8 h period. This loss of adhesion is accompanied
by a structural reorganization of hyphae along the perim-
eter of the biofilm such that they become aligned in a
direction perpendicular to the interfaces delineated by the
biofilm-medium and biofilm-substratum boundaries.
The most pronounced transition in both adhesion and
structural reorganization occurs within the first 2 h of bio-
film development.
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A K means analysis of microarray time course data indi-
cated that changes in the transcriptome that accompany
the loss of adhesion fell into mutually exclusive func-
tional categories. The most relevant categories were
judged to be adhesion, biofilm formation and glycopro-
tein biosynthesis. There was no obvious pattern to suggest
that a single gene regulated the detachment process. Con-
sistent with this finding, a functional analysis using
mutant strains did not reveal any striking changes in the
detachment phenotype upon deletion or overexpression
of key genes.

At this point in our understanding of C. albicans biofilm
detachment it is uncertain which in vitro biofilm models
will be most relevant to understanding detachment proc-
esses responsible for clinical cases of biomaterial centered
infections. We propose that the biofilm model in our
study will be useful for charactering aspects of early
detachment events that may occur in catheters carrying a
relatively rich medium such as vascular catheters deliver-
ing total parenteral nutrition.

Methods
Strains and media

C. albicans strain SC5314 was used for microarray analy-
sis. Other strains used in this study are listed in Table 5.
Stocks were stored in 10% glycerol at -80°C. A 1:1 dilu-
tion of standard YPD (0.5% bacto yeast extract, 1% bacto
peptone, 1% glucose) was used for culturing both bio-
films and planktonic (broth) cultures. This was supple-
mented with 1 mM L-arginine, 1 mM L-histidine and 0.5
mM uridine for culturing prototrophs. YPD was chosen
for this study so comparisons with two other array studies
could be made [36,37]. The carbon loading via glucose
(55 mM) is similar to that used in other studies of C. albi-
cans biofilm formation on biomaterials [72-74]

Plasmid and C. albicans strain construction

Plasmid pFA-HIS1 was used as the template to prepare the
HIS1-PCR cassette, and plasmid pFA-URA3 was used to
prepare the URA3-PCR cassette as previously described
[75]. They both have a common DNA backbone, allowing
the same oligonucleotide pair to be used for the amplifi-
cation of the two PCR cassettes. The oligonucleotides used
in this work are listed and described (see Additional file
3). AMS1, PSA2, PGA13 and CWH8 genes were deleted in
two steps. In the first step, one allele was replaced by
homologous recombination with a PCR cassette contain-
ing the HIS1 gene. The BWP17 strain was transformed
with the PCR fragments, and the cells were plated onto
YPD plates minus histidine. Genomic DNA of the positive
colonies was analyzed by PCR for the proper integration
site of the cassette. The second allele disruption was
accomplished as for the first allele using the URA3-PCR
cassette and the cells were plated onto YPD plates minus

uridine. The colonies were again analyzed by PCR to iden-
tify the proper integration site. The complete deletion of
candidate genes was confirmed by PCR using primers
internal to the recombination sites amplifying ORF
regions. Growth rate of mutant strains in liquid medium
was similar to the wild type strain.

Biofilm cultures

Biofilms were cultured in a tubular reactor similar to that
used in a previous study [29] (Figure 1). Biofilms were cul-
tured in a 50 cm length of silicone elastomer tubing
(Cole-Parmer, cat#96410-15) (5 mm ID, 10 mm OD), or,
for one experiment, USP class VI medical grade silicone
elastomer tubing of the same dimensions (P.E.P-plastics).
Medium was pumped from a 2 L Erlemeyer flask using a
peristaltic pump which was placed upstream of a flow
break followed by the biofilm reactor. After sterilization
by autoclaving the entire setup was placed in an incubator
at 37°C. The inoculum was prepared as follows. 10 ml of
broth was inoculated with a single colony from a YPD
agar plate. Cultures were incubated on a shaker at 280
rpm and 30°C to an OD600 of 0.4–0.5. This was used to
inoculate a fresh 10 ml broth culture at 0.05 OD600 which
was grown overnight under the same conditions. From
this culture 20 ml of cells at 108 cells/ml in phosphate
buffered saline (PBS) (0.1 M, pH 7.0) was prepared. The
tubular reactor was clamped downstream of the air trap
and, using a 20 ml syringe, the reactor was filled by draw-
ing the cell suspension into the tubing from the effluent
end. The inoculated reactor was incubated for 1 h at 37°C
before starting the medium flow at 1 ml/min.

Planktonic cultures

Batch cultures were grown at 37°C on a shaker at 280
rpm. Preparation of the inoculum for planktonic cultures
was the same as for biofilm cultures. The medium volume
of batch cultures grown for different periods of time was
adjusted so that the cells would be exposed to the same
volume of medium as the biofilm for each time point.
Accordingly, batch cultures were all inoculated with 1 ×
108 cells and cultured in final volumes of 30, 60, 90, 120
and 180 ml for the 30, 60, 90, 120 and 180 min time
points, respectively. For 90, 120 and 180 min time points
the initial medium volume was 60 ml, and 30 ml aliquots
of medium were added at appropriate times.

Biofilm sectioning

Biofilms were sectioned using two methods. For embed-
ding in Spurr's resin [76] biofilm samples were fixed in
situ at 4°C in 3% gluteraldehyde in PBS. The fixed sam-
ples were washed at room temperature for 10 min in 20,
50 and 100% ethanol solutions successively. Samples
were incubated in a series of Spurr's: 1:2 Spurr's: propyl-
ene oxide (overnight at 4°C); 1:1 Spurr's: propylene oxide
(8–10 h at room temperature), 2:1 Spurr's: propylene
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oxide (overnight at 4°C) and full strength Spurr's (6–8 h
at room temperature). The Spurr's solution of the last
incubation was replaced by a fresh one and samples were
baked for 10–12 h in an oven at 70°C. After cooling to
room temperature, the silicone tube was removed from
each sample and the hardened Spurr's column containing
the biofilm was sectioned using a Reichert OM-U2 ultra-
microtome. Sections were mounted on slides and imaged
using a Nikon Eclipse E600 in epi-fluorescence mode.

Samples for cryosectioning were prepared by excising a
section of the silicone elastomer tube used to grow the
biofilm with a fresh razor blade without disturbing the
biofilm. Excess medium in the tube was carefully removed
using a 10 ml syringe and needle. The tubing was cut
lengthwise and the upper half was removed. The biofilm
on the lower half was covered carefully with a layer of
OCT (optimum cutting temperature formulation, Tissue-
Tek) and placed on dry ice until completely frozen. The
tubing was carefully peeled away from the frozen biofilm
by warming up the tube part briefly between fingers. The
frozen biofilm sample was dipped vertically into the
center of a cryosectioning cup filled with fresh OCT which

was placed on dry ice until it was completely frozen. Fro-
zen samples were sectioned at -19°C using a Leica
CM1850 cryostat. The 5 μm thick cryosections were
mounted on Superfrost/Plus microscope slides (Fisher
Scientific), washed gently with distilled water to remove
the excess OCT and dried at room temperature. Cryosec-
tions were imaged using a Nikon Eclipse E800 microscope
interfaced to a Metaview 2.0 image acquisition system
(Molecular Devices). Unstained sections were viewed in
transmission using DIC optics. Sections stained with cal-
cofluor (Fungi-Fluor™ stain, Polysciences, Inc) were
viewed in epi-fluorescence mode.

Antibody labeling of (1,3)  glucan in biofilm cryosections

The protocol for staining biofilm cryosections for (1,3) β
glucan was a modification of a published protocol [77].
The primary monoclonal antibody (mAb) was from Bio-
supplies Australia (produced in mice). The secondary
anti-mouse antibody, conjugated to Alexa Fluor 488, was
from Invitrogen (produced in rabbits). We used plank-
tonic cells grown at 30°C and adhered to slides used for
cryosectioning (Superfrost/Plus microscope slides, Fisher
Scientific) as positive and negative controls. The negative

Table 5: Candida albicans strains used in the study

Strain Strain Genotype

AS1 (ACT1-ALS3)1 ura3 :: imm434arg4::hisGhis1::hisG:: [pCIp-Act1] RPS1/RPS1:: [pCIp-Act1-ALS3]
ura3 :: imm434 arg4::hisG his1::hisG

[This study]

AS5 (ACT1-ALS1) ura3 :: imm434arg4::hisGhis1::hisG:: [pCIp-Act1] RPS1/RPS1:: [pCIp-Act1-ALS1]
ura3 :: imm434 arg4::hisG his1::hisG

[This study]

AS6 (pga13/pga13) ura3 :: imm434arg4::hisGhis1::hisGpga13 ::URA3
ura3 :: imm434 arg4::hisG his1::hisG pga13 ::HIS1

[This study]

AS9 (psa2/psa2) ura3 :: imm434arg4::hisGhis1::hisGpsa2 ::ARG4
ura3 :: imm434 arg4::hisG his1::hisG psa2 ::HIS1

This study]

AS10 (ams1/ams1) ura3 :: imm434his1::hisGarg4::hisGams1 ::ARG4
ura3 :: imm434 his1::hisG arg4::hisG ams1 ::HIS1

[This study]

BJ3a1a (ywp1/ywp1) ura3 :: imm434arg4::hisGywp1 ::GFP-HIS1
ura3 :: imm434 arg4::hisG ywp1 ::GFP-HIS1

[16]

BWP17 ura3 :: imm434arg4::hisGhis1::hisG
ura3 :: imm434 arg4::hisG his1::hisG

[69]

CA14 ura3 :: imm434
ura3 :: imm434

[70]

CAYF178U (als3/als3) ura3 :: imm434::URA3-IRO1als3::ARG4arg4::hisGhis1::hisG
ura3 :: imm434 als3::HIS1 arg4::hisG his1::hisG

[11]

CJN702 (bcr1/bcr1) ura3 :: imm434arg4::hisGhis1::hisG::pHIS1bcr1::ARG4
ura3 :: imm434 arg4::hisG his1::hisG bcr1::URA3

[11]

CJN459 (bcr1/bcr1) ura3 :: imm434arg4::hisGhis1::hisGbcr1::Tn7-UAU1
ura3 :: imm434 arg4::hisG his1::hisG bcr1::Tn7-URA3

[11]

CM-1613C (mkc1/mkc1) ura3 :: imm434mkc1 ::hisG
ura3 :: imm434 mkc1 ::hisG

[71]

DAY 286 ura3 :: imm434ARG4:URA3::arg4::hisGhis1::hisG
ura3 :: imm434 arg4::hisG his1::hisG

[11]

FJS24 (hwp1/hwp1) ura3 :: imm434arg4::hisGhis1::hisGhwp1::Tn7-UAU1
ura3 :: imm434 arg4::hisG his1::hisG hwp1::Tn7-URA3

[unpublished2]

JC0188 (aqy/aqy) ura3 :: imm434aqy ::hisG-URA3-hisG
ura3 :: imm434 aqy ::hisG

[55]

1 Simple genotype description for the mutants used in the study.
2Constructed by Frank J Smith
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control was omission of the primary antibody. In this case
no fluorescence was detected under exposure conditions
in which there was relatively bright fluorescence originat-
ing from cells exposed to the primary antibody. In addi-
tion, fluorescence was in every case associated with cells as
confirmed by comparing images acquired using epi-fluo-
rescence and transmission modes (data not shown). OCT
was rinsed from the biofilm cryosections before antibody
staining using Tween Tris Buffered Saline (TTBS), pH 7.6.
This was followed by exposure to TTBS with 1% BSA (15
min), exposure to the primary mAb at 4 ug per ml in TTBS
(1 h), three washes with TTBS (5 min each), exposure to
the secondary Ab at a 1:100 dilution in TTBS (30 min) and
a wash with TTBS 3 times (5 min each).

Digital camera images and movies

Digital camera images were acquired using an Olympus
SP-350 8 Megapixels digital camera at the highest resolu-
tion mode. Digital movies were recoded using a QX5
Computer Microscope (Digital Blue Inc.).

Cell counts and hyphal length

Both biofilms and planktonic cultures were exposed to 20
mg/ml pronase in Tris buffer (10 mM Tris/HCl, pH 8.0, 2
mM EDTA) for 60 min to disperse cell aggregates accord-
ing to a previously published protocol. [78] (Cell aggre-
gates could not be dispersed sufficiently for either
counting or hyphal length measurement by vortexing
alone). Cells were counted in a hemacytometer. Hyphal
length was measured from images acquired of dispersed
cells using the Nikon/Metaview system described above.

Field emission scanning electron microscopy (FESEM)

The tubing was first drained as described in the following
section. A tube section was excised and cut lengthwise into
two pieces. The bottom part, where the cells settle and
form the biofilm, was immersed overnight in fixing buffer
(1% paraformaldehyde, 2.5% gluteraldehyde in 0.1 M
sodium cacodylate buffer, pH 7.2–7.4). The fixed samples
were rinsed twice for 10 min in 0.1 M sodium cacodylate
buffer and dehydrated twice for 5 min in 50%, 70%, 90%
and 100% ethanol solutions. Samples were dried at room
temperature. Samples were coated with a thin film of irid-
ium, 15 s at 20 mA, in a Emitech sputter coater. Cells were
viewed with a Supra 55VP FESEM (Zeiss) using the Inlens
detector at 1 kV and 3 mm working distance.

RNA preparation

Biofilm samples were collected by first clamping and then
removing the colonized section of the tubing. The liquid
column was drained into a 50 ml polypropylene tube
placed in an ice bath by moving the tubing to a vertical
position and releasing the clamps. For 1 h biofilms the
more firmly attached biofilm was then removed by rolling
the tubing between the hands followed by flushing the

tube with 25 ml of ice-cold RNase-free water using a 50 ml
syringe to achieve the highest pressure possible. This pro-
cedure was accomplished in less than 3 min for each
experiment. Cells from batch cultures were collected by
pouring the contents of the culture flask into 50 ml poly-
propylene tubes in an ice bath. Cells from biofilm or
batch cultures were centrifuged at 4°C in 10–20 ml aliq-
uots at 2500 × g for 3 min, washed with ice-cold RNase-
free H2O and immediately flash-frozen in liquid N2 and
stored at -80°C until use.

To release the RNA from cells, samples stored at -80°C
were placed on ice and RNeasy buffer RLT was added to
pellets at a ratio of 10:1 [vol/vol] buffer/pellet. The pellet
was allowed to thaw in the buffer while vortexing briefly
at high speed. The resuspended pellet was placed back on
ice and divided into 1 ml aliquots in 2 ml screw cap
microcentrifuge tubes containing 0.6 ml of 3 mm diame-
ter acid-washed glass beads. Samples were homogenized
5 times, 1 min each, at 4200 RPM using the Mini-Bead-
beater mill (Biospec Products Inc., Bartlesvile, OK, USA).
Samples were placed on ice for 1 min after each homoge-
nization step. After the homogenization the Qiagen RNe-
asy protocol was followed as recommended. Total RNA
samples were eluted in RNase free H2O, flash-frozen in
liquid N2, lyophilized and stored at -80°C until used for
the different analyses.

Microarray experiments: cDNA labeling, hybridizations 

and data analysis

Four independent biological replicates were performed
for each hybridization comparison. Labeling of the four
biological replicate was performed using a dye-swap strat-
egy that resulted in 2 experiments with Cy3/Cy5 and two
experiments Cy5/Cy3 ratios. RNA quality and integrity
were assessed using an Agilent 2100 Bioanalyzer. cDNA
labeling and microarray production were performed as
previously described by Nantel et al. [79]. Briefly, 20 μg of
total RNA was reverse transcribed using oligo(dT)21 in the
presence of Cy3 or Cy5-dCTP (Invitrogen) and Super-
script III reverse transcriptase (Invitrogen). Thereafter,
template RNA was degraded by adding 2.5 units RNase H
(USB) and 1 μg RNase A (Pharmacia) followed by incuba-
tion for 15 min at 37°C. The labeled cDNAs were purified
with QIAquick PCR Purification Kit (Qiagen). Prior to
hybridization Cy3/Cy5-labeled cDNA was quantified
using a NanoDrop ND-1000 UV-VIS spectrophotometer
(NanoDrop) to confirm dye incorporation. Pre-hybridiza-
tion and hybridization solutions consisted of DIG Easy
Hyb solution (Roche Diagnostics, Mannheim, Germany)
with 0.45% salmon sperm DNA and 0.45% yeast tRNA.
Slides were washed once in 1.0% SSC, 0.2% SDS at 42°C
for 10 min, twice in 0.1% SSC, 0.2% SDS at 42°C for 10
min, once in 0.1% SCC at 24°C for 5 min, followed by
four rinses in 0.1% SSC. Chips were air dried before being
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scanned using a ScanArray Lite microarray scanner (Per-
kin Elmer). QuantArray was used to quantify fluorescence
intensities. Data handling, analysis and normalization
were carried out using Genespring GX v.7.3 (Agilent Tech-
nologies, CA). Genes with statistically significant changes
in transcript abundance in each experiment were identi-
fied using a 1.5-cutoff and Welch t-test with a False Dis-
covery Rate (FDR) less than 5%. Gene annotations were
from http://www.candidagenome.org or http://
www.yeastgenome.org. The latter database was accessed
using the DAVID search program [80].

Expression analysis by real-time quantitative PCR

cDNA was synthesized from 5 μg of total RNA using the
reverse-transcription system (50 mm Tris-HCl, 75 mm
KCl, 10 mm dithiothreitol, 3 mm MgCl2, 400 nm
oligo(dT)15, 1 μm random hexamers, 0.5 mm dNTP, 200
units Superscript II reverse transcriptase; Invitrogen). The
total volume was adjusted to 20 μL and the mixture was
then incubated for 60 min at 42°C. Aliquots of the result-
ing first-strand cDNA were used for real-time PCR ampli-
fication experiments. Real-time PCR was performed using
the Corbett Rotor-Gene RG-3000A (Corbett Research,
Sydney, Australia) with the SYBR Green PCR master mix
(Qiagen) according to the manufacturer's instructions.
After 10 min denaturation at 95°C, the reactions were
cycled 40 times at 95°C for 15 s, 56°C for 15 s and 72°C
for 30s. To verify that only the specific product was ampli-
fied, a melting point analysis was performed after the last
cycle by cooling samples to 55°C and then increasing the
temperature to 95°C at 0.2°C per second. A single prod-
uct at a specific melting temperature was found for each
target. All samples were tested in triplicate and the mean
was determined for further calculations. Each run
included a no template control to test for assay reagent
contamination. To evaluate the gene expression level, the
results were normalized using Ct values obtained from
Actin (Act1, orf19.5007). The relative quantification anal-
ysis was performed using the comparative Ct method as
described by Guillemette et al. [81].

Estimation of shear stress

Shear stress (τ) is defined as:

τ = μ(dv/dy) (1)

where μ is the absolute (dynamic) viscosity (approxi-
mately 10-2 dynes sec cm-2). For a cylindrical geometry the
slope of the velocity profile at the tube wall (dv/dy) is
related to the maximum velocity (Vmax) by:

dv/dy = 2(Vmax/r) (2)

where r is the radius of the tubing and:

Vmax = 2 V (3)

where V is the mean flow velocity across the velocity pro-
file (the volumetric flow divided by the cross sectional
area of the interior of the tubing). The shear stress applied
in draining the tubing was estimated from the average V
determined from the time required for the medium plug
to reach the end of the tubing (0.5s).
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