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A LOAD DURATION THEORY FOR GLASS DESIGN
ABSTRACT

Stress corrosion rate theory, probability theory and
stress distribution theory were combined and used
to correlate failure test results for large plates of
soda-lime glass from different manufacturers. Ex-

amples demonitrate the design implications of the
theory.

UNE THEORIE DE LA DUREE DE LA CHARGE
POUR LA CONCEPTION DU VERRE

SOMMAIRE

La théorie du taux de corrosion de la contrainte, la
théorie de la probabilité et la théorie de la distri-
bution dela contrainte ontété réunies afin de mettre
en corrélation les résultats obtenus dans des essais
de ruine effectués sur de grandes lames de verre
soude-chaux provenantde différentsfabricants, Des
exemples montrent 'importance de la théorie dans
1a conception du verre.
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A Load Duration Theory for Glass Design®

Introduction

Probably every designer of glass has been faced, at
one time or another, with the frustrating experience of
trying to find a value for the stress at which glass fails.

The search had to be abandoned, of course, with the
realization that glass failure is as much dependent on the
stress raising properties of surface flaws and scratches
as on the intrinsic material strength of glass. As if this
were not enough, it has been known for some time now
that the strength of glass depends also on the duration
of loading and on the temperature and relative humidity
of the environment. The purpose of this paper is to
gather together what is already known of these various
phenomena into a practicable formulation for glass
strength that can be used for glass design. The order of
presentation is to discuss stress-corrosion, followed by
statistical implications and probability theory and then to
show the applicability of the theory for large glass plates.

Stress corrosion

The upper sketch in Figure 1 shows the micro-
appearance of a glass surface, pitted with minute flaws
and scratches as a result of manufacture and handling
processes. For a specific flaw as indicated in the lower
sketch, we have Inglis’ equation! to show the approximate
relationship between flaw tip stress o, applied tensile
stress o, flaw depth x, and flaw tip radius p:

Um'\"’”zd (X/P)l/2 (1)

Because of the sharpness of glass surface flaws, very
high stresses can occur at flaw tips. (It should be kept in
mind that in Figure 1 and equation (1) no real physical
interpretation need be given to the tip radius p.)

Since water vapour induces chemical corrosion in
glass®, albeit slowly, the geometry of a flaw can be ex-
pected to change with time. Furthermore, the corrosion

* Presented at the Annual Meeting of the International Commission on
Glass, Friday, September 3-6, 1969, Toronto,

W. G. Brown

National Research Council, Ottawa, Canada.

rate depends, as well, on the stress magnitude. This stress
corrosion phenomenon is described by the following
equation:

dz /dt %K-RH-C_(‘/O—W"M)/RT (2)

Here, dz /dt is the time rate-of-progress perpendicular
to the glass-corrosion interface. It is approximately pro-
portional to the relative humidity RH*, and to an exponen-
tial term? dependent on temperature T and stress o,
parallel to the interface. (K, y,, y; and R are constants.)
Development and understanding for equation (2) comes
mainly as a result of the work of Charles®# and Weider-
hoen*,

Changes in dimensions x and p will depend over-
whelmingly on the tip stress and it is not difficult to show
that the rate of change of (x/p) will also be approximately
of the form of equation (2). Furthermore, the stress term
in equation (2) can always be approximated as a power
term as in equation (3), that is, as the ratio of tip stress to
temperature raised to power n, ie.

dx/py/di=K, *RH*e ~Y/RT v (o sy (3)

With equation (3) as base, we can then go on directly,
after substitution from equation (1) and integration, to
develop the following:

t
T
f RH*e ™ vo/ RT (e/T)v dt = constant

RHe — vo/RT
e —————— R U | o

AT TR (4)
Equation (4) is a statement that the cumulative effect of
arbitrary time-dependent stress ¢ applied to a specimen
until failure at time t;, is constant. Charles® finds ex-
perimentally that n = 16 for soda-lime glass, hence, for
example, with constant rate of stress increase g, integra-
tion shows that the failure stress oe is proportional to the
stress rate raised to the 1/17 power. In other words, we
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expect that tests will show the measured failure stress to
decrease with decreasing loading rate. It is also clear from
equation (4) that the failure stress oe, obtained at a stand-
ard rate of stress increase, gives a complete and charac-
teristic description of the strength of each specimen.

The general validity of equation (4) is demonstrated
when applied to other, independent test results as in
Table 1. Here, we see theory and experiment in close
agreement for loading rate differences of 800 to 1.

Table 1. Failure stress results (Kropschott and Mikesell3)

Comparative Predicted

Loading Rate, g8 Failure Stress Failure Stress (g1/17)

11b/in2 1.00 1.00
10 1b/in2 1.11 1.14
800 Ib/in® 1.48 1.49

Probability implications

Considering again the flaw or scratch geometry, we
recognize that dimensions x and p will be random, hence,
each specimen will fail at a different value of se. If we
now make a plot of the percentage of specimens which fail
we obtain the cumulative failure probability Py as in
Figure 2. Here, in the upper figure, we simply plot the
total fraction of all specimens which have failed at specific
values of se. A few specimens will always fail at very low
stresses and a few will not fail except at very high stresses.

Considering the effect now of changing the specimen
size, obviously, large arcas of glass will fail at lower
stresses than small areas because a large area is more
likely to contain major flaws. This is readily visualized
by considering simple tension tests on areas of different
sizes as in the lower sketch of Figure 2. For area size
A,, the probability of withstanding a given stress is
(1 — Py,), from the diagram. For specimens twice as big,
the withstanding probability is (1 — Pg)*, that is, the
withstanding probability of each half-area is (1 — Py).
Similarly, for area A, the withstanding probability is equal
to that for area A, raised to the power A/A,. Hence:

A/A,
Pp=(1—-"P;) €))]

It is easy to see from equation (5) that for constant
failure probability, the corresponding failure stress de-
creases with increasing area. It might be mentioned in
passing that glass areas of practical size such as windows
are hundreds and thousands of times larger than usual
laboratory samples and that under these conditions, aver-
age failure stresses for the large areas will be of the order
of only 1/4 those of the small areas. Under these circum-
stances, tests on a limited number of small samples give
no useful information for large areas.
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Correlation of test results for large plates

We turn now to application of the load duration
theory and probability-area implications to the practical
problem of window glass. In particular, we have avail-
able two independent sets of test results for large, square
areas of soda-lime plate glass obtained by two different
manufacturers. In one case, the glass area was constant
at 10 square feet, and uniform pressure tests were carried
out to break the glass in about 30 seconds. In the other
set of tests, the glass area varied between 36 and 100
square feet and pressure loading was applied more slowly
to cause failure in about 15 minutes.

Both sets of tests were carried out with approximately
simple edge support (i.e. very small edge moments). Con-
sequently, although deflections and stresses at failure fall
within the large (non-linear) range, the stress distributions
over the plate surfaces will be the same as long as the
elastic parameter q/E(a/h)* is the same. Here, q is the
applied uniform pressure, E is Young's modulus, a is the
plate width and h is its thickness. For a limited range of
q/E(a/h)?, it is permissible to write, for any stress:

¢/E(a/h)?~B [q/E(a/h-&]s/n (6)

and to make the appropriate substitution for ¢ in equation
(4). Here, B and s are constants.

No real distribution of failure stresses o, will follow

precisely any of the standard mathematical forms. For
convenience, however, we can adopt the Weibull
distribution® in the form:

Py,=1—cxp[—k (A/A,) o 0] (7)

The appropriate substitutions of equations (4) and (6)
into equation (7) now give:

Py=1—exp[C(A/A,) * § E»s (a/h)ts »
t
I

§(RH/TY) * exp [— o/RT @ dt] bm/ost]  (8)

Here, C is a combined constant for square plates.

In both sets of tests referred to, the variation of q
with time was determined and the integral in equation
(8) evaluated and expressed in terms of mean or average
breaking load q. A value for s =12.3 was then deter-
mined by plotting q vs h for the tests carried out on the
small plates of 10 square feet area. In these tests, the
coefficient of variation on q had also been determined, the
average value being 21.5%. With this information and
Weibull’s mathematics%, it was possible to infer m ~ 7.3.
From the results of this test series, it was then possible
to infer average bursting strengths for the larger more
slowly loaded plates of the second, independent series of
tests.

Table II is intended to show that the results of these
two sets of tests correlate very well on the basis of the



Table 11. Effects of pressure load duration and area (large plates)

(1) (2) (3) (4) (5) (6) (7
Average Indicated Ratio,
Plate Size Bursting Pressure Column (3) Calculated Effects
Mfr. No. 2 Pressure by Mfr. No.1 -+ Column (2) Duration Area Combined
8 x 8 x 3 1.85 1b/in2 2.9 Ib/in2 1.5 1.34 1.38 1.8
6 x 6 x 3" 1.70 1b/in2 2.4 1b/in2 1.4 1.31 1.24 1.6
9% 9 x 4 0.77 1b/in? 1.4 1b/in2 1.8 1.34 1.44 1.9
100 x 100 x 4" 0.62 1b/in2 1.2 1b/in® 1.9 1.34 1.51 2.0
6 x 6 x 3" 1.17 ib/in® 1.6 1b/in2 1.4 1.30 1.24 1.6
8 x 8 x 3 0.66 1b/in2 1.1 1b/in® 1.7 1.33 1.38 1.8
10 x 10" x 3" 0.42 1b/in? 0.82 1b/in? 1.9 1.34 1.51 2.0

present theory even though the apparent, measured load-
bearing capacity of the two sets of plates differs by up to
nearly 100%. Column (2) of the table gives measured
average bursting pressures for the various plate sizes of
column (1), while the indicated bursting pressures of col-
umn (3) are those which would be observed if the failure
mechanism required only that the applied stress at failure
should be the same as that observed in the tests on the
smaller, more rapidly loaded plates. In other words, col-
umn (3) results from the old engineering assumption that
failure occurs when the applied stress reaches some
critical value. The ratio of indicated and actual bursting
pressures in column (4) shows that this simplistic assump-
tion gives errors of between 40 and 90 per cent.

In columns (5) and (6), equation (8) has been used to
calculate the portions of the ratios of column (4) which
are due to time-duration and glass area effects. The load
duration difference of 15 minutes in one test series com-
pared with 30 seconds in the other gives a bursting pres-
sure difference of approximately 33% (column (5)),
whereas a 10:1 change in plate area changes the burst-
ing pressure by 51%. The combined (multiplied) effects
of columns (5) and (6) are given in column (7); the results
are in good agreement with column (4).

The results of Table II represent, in effect, a
description of the strength of large, practical areas of
soda-lime plate glass. With this in mind, it was possible
to infer a value for k in equation (7) with the help of
surface stress distribution measurements made by Kaiser?.

With k determined, the strength characteristics of large
areas of soda-lime plate glass are thereby completely (al-
beit approximately) determined.

Examples

Table III gives some rather arbitrary examples of
application in design. Thickness requirements have been
calculated for a specific nominal failure probability of
0.001 for square plates of 4 and 100 square feet area
respectively, with their edges supported in several different
ways. An applied pressure of 0.2 psi for 60 seconds would
correspond, for example, to a 100 mph wind load. The
same pressure for 3 years might represent the cumulative
snow load on a skylight in a 30 year design lifetime.
(Aquarium windows can be handled in the same way.)

We first note in Table III that the manner in which
the glass edges are held can have a marked effect on
thickness requirements. (Simple support here means very
light edge restraint and fixed support means rigidly held
edges.) The two cases of two-edge support show thickness
reductions of up to 50% are possible with rigidly held
edges.

Turning to load duration, we see that thickness re-
quirements for three years are roughly twice as great as
for 60 second loading. The effect of temperature has also
been indicated, where it will be noted that reducing the
temperature from 70°F to 32°F reduces the required
thicknesses by about 16% —in other words, glass is
somewhat stronger at lower temperatures.

Table I11. Required plate thickness to withstand a uniform pressure load of 0.2 lb/in? for failure probability of 1 in 1000

2 x 2'Plate 10’ x 10/ Plate
60 sec at 3 yrs at 3yrsat 60 sec at 3yrsat 3yrsat
Type of Support 21°Ch (in.) 21°Ch (in.) 0°C h (in.) 21°Ch (in.) 21°Ch (in.) 0°C h (in.)
Simple (All Edges) 0.08 0.18 0.15 0.59 1.34 1.15
Simple (2 Opposite Edges) 0.18 0.28 0.25 1.11 1.74 1.60
Fixed (2 Opposite Edges) 0.12 0.21 0.18 0.78 1.22 1.13
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Conclusion

As far as is known, past design practice has always
neglected load duration effects and has also frequently
overlooked statistical implications and even the .influence
of type of edge support. In any event, it now appears
possible to design glass on an improved rational basis. In
this connection, it might be mentioned that the total cost
of the manufacturers’ tests referred to was of the order of
one-half million dollars. Consequently, there is consider-
able justification for deriving as much value as possible
from the results.

It should be noted that the present procedures can
be extended to the problem of glass edges, the strength of
which is important, particularly as a result of temperature-
induced stresses in windows. Sealed, double-glazed win-
dow units present another design problem that can now
be handled with the help of the present methods. Particu-
larly with small units, the action of temperature and
barometer changes causes a bellowing effect with cumu-
lative loading conditions that may cause unusually high
rates of failure.

VT WY

Glass Surface with Flaws

g 0
X
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Specific Flaw Leading to Failure

Ficurt 1. Schematic representation of surface flaws
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ERRATA LIST
Page 75 2nd column, line 11 and reference 4, proper name is Wiederhorn,
Page 76 Table 1. Loading rate should be Ib/in2—sec,

In paragraph including equation {6) the terms should be

q 4 2
@) ER)

In equation (8) the exponent on a’/h should be 4s-2n, the small square
brackets should close after RT, and the entire expression enclosed
by { } should be raised to the exponent % and the equation
terminated at this point with the large bracket.
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