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A Load Duration Theory for Glass Design* 

W. G. Brown 
National Research Council, Ottawa, Canada. 

Introduction 

Probably every designer of glass has been faced, at 

one time or another, with the frustrating experience of 

trying to find a value for the stress at which glass fails. 

The search had to be abandoned, of course, with the 

realization that glass failure is as much dependent on the 

stress raising properties of surface flaws and scratches 

as on the intrinsic material strength of glass. As if this 

were not enough, it has been known for some time now 

that the strength of glass depends also on the duration 

of loading and on the temperature and relative humidity 

of the environment. The purpose of this paper is to 

gather together what is already known of these various 

phenomena into a practicable formulation for glass 

strength that can be used for glass design. The order of 

presentation is to discuss stress-corrosion, followed by 

statistical in~plications and probability theory and then to 

show the applicability of the theory for large glass plates. 

Stress corrosion 

The upper sketch in Figure 1 shows the micro- 

appearance of a glass surface, pitted with minute flaws 

and scratches as a result of manufacture and handling 

processes. For a specific flaw as indicated in the lower 

sketch, we have Inglis' equation1 to show the approximate 

relationship between flaw tip stress u,,,, applied tensile 

stress u, flaw depth x, and flaw tip radius p: 

rate depends, as well, on the stress magnitude. This stress 

corrosion phenomenon is described by the following 

equation: 

Here, d~ /d t  is the time rate-of-progress perpendicular 

to the glass-corrosion interface. It is approximately pro- 

portional to the relative humidity RH4, and to an exponen- 

tial term2 dependent on temperature T and stress u , ,  

parallel to the interface. (K ,  yo, Y ,  and R are constants.) 

Development and i~nderstanding for equation ( 2 )  comes 

mainly as a result of the work of Charles":{ and Weider- 

hoen4. 

Changes in dimensions x and p will depcnd over- 

whelmingly on the tip stress and it is not difficult to show 

that the rate of change of (x/p) will also be approximately 

of the form of equation (2). Furthermore, the stress term 

in equation (2) can always be approximated as a power 

term as in equation (3), that is, as the ratio of tip stress to 

temperature raised to power n, i.e.: 

With equation (3) as base, we can then go on directly, 

after substitution from equation (1) and integration, to 

develop the following: 

I-fRH - Y J R T  
u,,, = 2u (x /p)  112 ( 1 )  0 

(o/T)n dt = constant 

Because of the sharpness .of glass surface flaws, very 

high stresses can occur at flaw tips. (It should be kept in 

mind that in Figure 1 and equation (1) no real physical 

interpretation need be given to the tip radius p.) 

Since water vapour induces chemical corrosion in 

glass" albcit slowly, the geometry of a flaw can be ex- 

pected to change with time. Furthermore, the corrosion 
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RH - 
- - g ll+,/,j  

( n  + 1)  Tn  
( 4 )  

Equation (4) is a statement that the cumulative effect of 

arbitrary time-dependent stress o applied to a specimen 

until failure at time t,, is constant. Charles'':< finds ex- 

perimentally that n = 16 for soda-lime glass, hence, for 

example, with constant rate of stress increase P,  integra- 

tion shows that the failure stress ue is proportional to the 

stress rate raised to the 1 /17  power. In othzr words, we 



expect that tests will show the measured failure stress to 

decrease with decreasing loading rate. It  is also clear from 

equation (4) that the failure stress UE, obtained at  a stand- 

ard rate of stress increase, gives a complete and charac- 

teristic description of the strength of each specimen. 

The general validity of equation (4) is demonstrated 

when applied to other, independent test results as in 

Table I. Here, we see theory and experiment in close 

agreement for loading rate differences of 800 to 1. 

Table I .  Fail~lre stress results (Kropschott atid Mikesell") 

Comparative Predicted 

Loading Rate, p Failure Stress Failure Stress (pl l l i )  
1 lb/inx 1 .OO 1 .OO 

10 lb/in2 1.11 1.14 
800 lb/in2 1.48 1.49 

Probability implications 

Considering again the flaw or scratch geometry, we 

recognize that dimensions x and p will be random, hence, 

each specimen will fail at a different value of UE. If we 

now make a plot of the percentage of specimens which fail 

we obtain the cumulative failure probability P, as in 

Figure 2. Here, in the upper figure, we simply plot the 

total fraction of all specimens which have failed at specific 

values of UE. A few specimens will always fail at very low 

stresses and a few will not fail except a t  very high stresses. 

Considering the effect now of changing the specimen 

size, obviously, large areas of glass will fail at lower 

stresses than small areas because a large area is Inore 

likely to contain major flaws. This is readily visualized 

by considering simple tension tests on areas of different 

sizes as in the lower sketch of Figure 2. For area size 

A,, the probability of withstanding a given stress is 

(1 - P,,), from the diagram. For specimens twice as big, 

the withstanding probability is (1 - P,,)', that is, the 

withstanding probability of each half-area is (1 - P,,). 

Similarly, for area A,  the withstanding probability is equal 

to that for area A, raised to the power A/A,. Hence: 

It  is easy to see from equation (5) that for constant 

failure probability, the corresponding failure stress de- 

creases with increasing area. It might be mentioned in 

passing that glass areas of practical size such as windows 

are hundreds and thousands of times larger than usual 

laboratory samples and that under these conditions, aver- 

age failure stresses for the large areas will be of the order 

of only 1 / 4  those of the small areas. Under these circum- 

stances, tests on a limited number of small samples give 

no useful information for large areas. 

Correlation of test results for large plates 

We turn now to application of the load duration 

theory and probability-area implications to the practical 

problem of window glass. In particular, we have avail- 

able two independent sets of test results for large, square 

areas of soda-lime plate glass obtained by two different 

manufacturers. In one case, the glass area was constant 

at 10 square feet, and uniform pressure tests were carried 

out to break the glass in about 30 seconds. In  the other 

set of tests, the glass area varied between 36 and 100 

square feet and pressure loading was applied more slowly 

to cause failure in about 15 minutes. 

Both sets of tests were carried out with approxinlately 

simple edge support (i.e, very small edge moments). Con- 

sequently, although deflections and stresses at failure fall 

within the large (non-linear) range, the stress distributions 

over the plate surfaces will be the same as long as the 

elastic parameter q / E ( a / h )  L is the same. Here, q is the 

applied uniform pressure, E is Young's modulus, a is thc 

plate width and h is its thickness. For a limited range of 

q/E(a/h)-I ,  it is pernlissible to write, for any stress: 

and to make the appropriate substitution for u in equation 

(4). Here, B and s are constants. 

N o  real distribution of failure stresses uE will follow 

precisely any of the standard mathematical forms. For 

convenience, however, we can adopt the Weibull 

distributionti in the form: 

P, = 1 - exp [- k (A/A,) u p ]  ( 7 )  

The appropriate substitutions of equations (4) and (6) 

into equation (7) now give: 

PA = 1 - exp C(A/A,)  ' -( En." (a/h)-Is-" * [ 
?(RH/T1I) * exp [- .,/RT qq dt] j m/ll.-l] ( 8 )  

0 

Here, C is a combined constant for square plates. 

In both sets of tests referred to, the variation of q 

with time was determined and the integral in equation 

(8) evaluated and expressed in terms of mean or average 

breaking load q. A value for s = 12.3 was then deter- 

mined by plotting q vs h for the tests carried out on the 

snlall plates of 10 square feet area. In  these tests, the 

coefficient of variation on q had also been determined, the 

average value being 21.5%. With this information and 

Weibull's mathematics';, it was possible to infer m -z 7.3. 

From the results of this test series, it was then possible 

to infer average bursting strengths for the larger more 

slowly loaded plates of the second, independent series of 

tests. 

Table I1 is intended to show that the results of these 

two sets of tests correlate very well on the basis of the 



Table 11. Effects of pressure load duratiot~ and area (large plates) 

(1 (2) (3) (4)  (5) (6) (7)  
Average Indicated Ratio, 

Plate Size Bursting Pressure Column (3) Calculated Effects 
Mfr. No. 2 Pressure by Mfr. No. 1 -+ Column (2) Duration Area Combined 

8' x 8' x art 1.85 lb/in" 2.9 lb/inz 1.5 1.34 1.38 1.8 

6' x 6' x 4" 1.70 lb/inJ 2.4 lb/in" 1.4 1.31 1.24 1.6 

9 ' / x  9' X 4" 0.77 lb/in" 1.4 lb/in2 1.8 1.34 1.44 1.9 

10' x 10' x 4" 0.62 lb/ in" 1.2 lb/ins 1.9 1.34 1.51 2.0 

6 ' x  6 ' ~  3" 1.17 ib/in" 1.6 lb/in2 1.4 1.30 1.24 1.6 

8' x 8' x 3" 0.66 lb/ins 1.1 lb/ina 1.7 1.33 1.38 1.8 

10' x 10' x 4'' 0.42 lb/inz 0.82 lb/in' 1.9 1.34 1.51 2.0 

present theory even though the apparent, measured load- 

bearing capacity of the two sets of plates differs by up to 

nearly 100%. Column (2) of the table gives measured 

average bursting pressures for the various plate sizes of 

column (I), while the indicated bursting pressures of col- 

umn (3) are those which would be observed if the failure 

mechanism required only that the applied stress at failure 

should be the same as that observed in the tests on the 

smaller, more rapidly loaded plates. In  other words, col- 

umn (3) results from the old engineering assumption that 

failure occurs when the applied stress reaches some 

critical value. The ratio of indicated and actual bursting 

pressures in column (4) shows that this simplistic assump- 

tion gives errors of between 40  and 90 per cent. 

In columns (5) and (6), equation (8) has been used to 

calculate the portions of the ratios of column (4) which 

are due to time-duration and glass area effects. The load 

duration difference of 15 minutes in one test series com- 

pared with 30  seconds in the other gives a bursting pres- 

sure difference of approximately 33% (column (5)), 

whereas a 10: l  change in plate area changes the burst- 

ing pressure by 51%. The combined (multiplied) effects 

of columns (5) and (6) are given in column (7); the results 

are in good agreement with column (4). 

The  results of Table I1 represent, in effect, a 

description of the strength of large, practical areas of 

soda-lime plate glass. With this in mind, it was possible 

to infer a value for k in equation (7) with the help of 

surface stress distribution measurements made by Kaiser7. 

With k determined, thc strcngth characteristics of large 

areas of soda-lime plate glass are thereby completely (al- 

beit approximately) determined. 

Examples 

Table 111 gives some rather arbitrary examples of 

application in design. Thickness requirements have been 

calculated for a specific nominal failure probability of 

0.001 for square plates of 4 and 100 square feet area 

respectively, with their edges supported in several different 

ways. An applied pressure of 0.2 psi for 60  seconds would 

correspond, for example, to a 100 mph wind load. The 

same pressure for  3 years might represent the cumulative 

snow load on a skylight in a 30  year design lifetime. 

(Aquarium windows can be handled in the same way.) 

We first note in Table 111 that the manner in which 

the glass edges are held can have a marked effect on 

thickness rcquirements. (Simple support here means very 

light edgc restraint and fixed support means rigidly held 

edges.) The two cases of two-edge support show thickness 

reductions of up to 50% are possible with rigidly held 

edges. 

Turning to load duration, we see that thickness re- 

quirements for  three years are roughly twice as great as 

for 60  second loading. The effect of temperature has also 

been indicated, where it will be noted that reducing the 

temperature from 70°F to 32OF reduces the required 

thicknesses by about 16% -in other words, glass is 

somewhat stronger at  lower temperatures. 

Table 111. Required plate thickness lo withstat~d a uniform pressure load of 0.2 Ib/itl2 for  failure probability of 1 in 1000 

2' x 2' Plate 10' x 10' Plate 
60 sec at 3 yrs at 3 yrs at 60 sec at 3 yrs at 3 yrs at 

Type of Support 21°C h (in.) 2I0C h (in.) O°C h (in.) 21°C h (in.) 21°C h (in.) O°C h (in.) 

Simple (All Edges) 0.08 0.18 0.15 0.59 1.34 1.15 

Simple (2 Opposite Edges) 0.18 0.28 0.25 1.11 1.74 1.60 

Fixed (2 Opposite Edges) 0.12 0.21 0.18 0.78 1.22 1.13 



Conclusion 

As far as is known, past design practice has always 

neglected load duration effects and has also frequently 

overlooked statistical implications and even the influence 

of type of edge support. In any event, it now appears 

possible to  design glass on an improved rational basis. In 

this connection, it might be mentioned that the total cost 

of the manufacturers' tests referred to was of the order of 

one-half million dollars. Consequently, there is consider- 

able justification for deriving as much value as possible 

from the results. 

I t  should be noted that the present procedures can 

be extended to the problem of glass edges, the strength of 

which is important, particularly as a result of temperature- 

induced stresses in windows. Sealed, double-glazed win- 

dow units present another design problem that can now 

be handled with the help of the present methods. Particu- 

larly with small units, the action of temperature and 

barometer changes causes a bellowing effect with cumu- 

lative loading conditions that may cause unusually high 

rates of failure. 

* 
G l a s s  S u r f a c e  w i t h  F l a w s  

S p e c i f i c  F l a w  L e a d i n g  t o  F a i l u r e  

FIGURE 1. Schematic representation of surface flaws 
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(b)  Illustrating tensile tests on areas A, and 2A, 
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2nd column, line I I  and reference 4, proper name is  Wiederhorn. 

Table 1. Loading rate should be Ib/in2-sec. 

In paragraph including equation ( 6 )  the terms should be 

I n  4 a n d P  g 2  
E(h )  E(hJ  

In equation (8) the exponent on a/h should be 4s-2n, the small square 

brackets should close after RT, and the entire expression enclosed 

by ( } should be raised to the exponent m and the equation 
n t l  

terminated at this point with the large bracket. 

W. G. Brown 




