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Abstract

We present a detailed study of confidence esti-
mation for machine translation. Various meth-
ods for determining whether MT output is cor-
rect are investigated, for both whole sentences
and words. Since the notion of correctness is not
intuitively clear in this context, different ways
of defining it are proposed. We present results
on data from the NIST 2003 Chinese-to-English
MT evaluation.

1 Introduction

All current NLP technologies make mistakes.
Applications built on these technologies can
cope with mistakes better if they have some
reliable indication of when they may have oc-
curred. For instance, in a speech recognition
dialog system, low confidence in the analysis of
a user’s utterance can lead the system to prompt
for a repetition. This strategy has the potential
to significantly improve the system’s usability if
accurate estimates of correctness can be made.

The binary classification problem of assess-
ing the correctness of an NLP system’s output
is known as confidence estimation (CE). It has
been extensively studied for speech recognition,
but is not well known in other areas. The moti-
vation for our work was to apply CE techniques
to another NLP problem, measure performance,
and attempt to draw general conclusions. We
focused on machine translation because it is an
important area of NLP, and one where CE has
the potential to enable new applications.

In this paper we study confidence estima-
tion for both sentences and words in MT out-
put. Since most MT systems operate at the
sentence level, sentences are natural targets for
correctness judgements. The main challenges
in making these judgements are that MT out-
put is rarely correct at the sentence level to
begin with, and that there is no satisfactory
automatic method for determining whether or
not a given output sentence is correct, even if

reference translation(s) are available. Appli-
cations for sentence-level CE include filtering
translations for human post-editing or informa-
tion gathering, combining output from differ-
ent MT systems, and active learning (Ngai and
Yarowsky, 2000).

CE for words is relatively unaffected by the
problems that apply at the sentence level. Indi-
vidual words are more likely to be correct than
are whole sentences, and their correctess can be
assessed fairly reliably by comparison to refer-
ence translations. On the other hand, what cor-
rectness means is less obvious at this level; a
word could be correct in some possible transla-
tion, but wrong in the current context. Poten-
tial applications here include post-editing, in-
teractive machine translation systems, recombi-
nation of multiple sentence-level MT hypothe-
ses, and improved search algorithms (Neti et al.,
1997).

In the remainder of the paper, we first give
some background on CE in general (s2), then
describe our experimental setting (s3), present
sentence-level (s4) and word-level (s5) results,
and make some concluding remarks (s6).

2 Background

The goal of CE is to characterize the behaviour
of a base NLP system that produces an output y
given an input x. One way of doing so, which we
call weak CE, is to build a classifier that takes x
and y as input and returns a correctness score.
Various decisions can then be based on (suit-
ably optimized) thresholding against this score.
When scores are direct estimates of correctness
probabilities, they have a somewhat wider range
of applications; we refer to this as strong CE.
Both strong and weak approaches are reported
in the speech literature; evaluation techniques
for each are described in section 3.3 and in (Siu
and Gish, 1999).

CE techniques also differ in whether or not
they use a separate “CE layer” distinct from



corpus src refs sent word
NIST01 700 4 train train
NIST01 293 4 train val
LDC1 4107 1 or 4 train
LDC2 565 4 val
NIST02 878 4 test test

Table 1: Corpora. Columns give number of source
sentences and reference translations, and the split
used for sentence and word experiments.

the base NLP system. Many approaches, eg
(Wessel et al., 2001), derive confidence scores,
such as posterior probabilities P (y|x), directly
from quantities in the base system. However,
methods in which the CE portion is separate
predominate. Although these have the disad-
vantage of requiring a training corpus of ex-
amples labelled for correctness, they are more
powerful and modular. A wide range of ma-
chine learning algorithms have been tried in this
setting, including naive Bayes (Sanchis et al.,
2003), neural nets (Guillevic et al., 2002), and
SVMs (Zhang and Rudnicky, 2001).

All previous work on CE for MT has been
done by some of us. Ueffing et al (Ueffing et al.,
2003) describe several direct methods, includ-
ing posterior probabilities, for estimating the
correctness of individual words in MT output.
Gandrabur and Foster (Gandrabur and Foster,
2003) describe the use of a neural-net CE layer
to sharpen probability estimates for text predic-
tions in an interactive translators’ tool.

3 Experimental Setting

3.1 Corpora

Our corpora consist of Chinese-to-English eval-
uation sets from NIST MT competitions, as well
as a large multi-reference corpus provided by
the Linguistic Data Consortium (LDC), cf. ta-
ble 1. These were divided into separate train,
validation, and test portions. We obtained
ouput from the ISI Alignment Template MT
system (Och and Ney, 2004) that participated
in the 2003 NIST evaluation (NIST, 2003). For
each source sentence, the system produced an
N -best list of translation candidates, of which
we used the top 1,000 for all experiments de-
scribed in this paper. Each resulting source-
sentence/target-candidate pair was treated as
an independent example (many examples for
word experiments), whose correctness was es-
tablished from the reference translation(s) avail-
able for the source sentence. The exact method

of defining correctness varied across different ex-
periments, as described below.

3.2 CE Techniques

Our data can be viewed as a collection of pairs
(x,c) in which x is a feature vector and c a cor-
rectness indicator. We explored different ways
of capturing the relationship between x and c.
For weak CE, we used scores derived directly
from x, and also (at the sentence level) multi-
layer perceptron (MLP) based regression mod-
els of MT evaluation scores from which c was
derived. For strong CE, we used naive Bayes
and MLP to estimate the probability of correct-
ness P (c = 1|x). Our choice of these learning
methods was driven by constraints on the re-
sources required for training on millions of ex-
amples: naive Bayes requires only a single pass
over the data for parameter estimation; while
MLP typically requires only a few passes when
using stochastic gradient descent.

Naive Bayes (NB)

In a probabilistic setting, the posterior class
probability is given by P (c|x) ∝ P (c)P (x|c).
The Naive Bayes assumption is that fea-
tures are statistically independent: P (x|c) =
∏

D

d=1 P (xd|c), where D is the dimension of the
feature vector x. Parameters are estimated us-
ing an absolute discounting smoothing of the
maximum likelihood solution. A small con-
stant b ∈ (0, 1) is discounted from every positive
count and distributed accross all events with
null counts. Denoting N and N(c) the num-
ber of examples in total and in class c, respec-
tively, N(xd, c) the number of examples in class
c with feature value xd, and N+, N

−
the num-

ber of possible values of xd with N(xd, c) > 0
and with N(xd, c) = 0, respectively, estimates
are P (c) = N(c)/N and:

P (xd|c) =















N(xd, c) − b

N(c)
if N(xd, c) > 0

b

N(c)

N+

N
−

if N(xd, c) = 0

For word-level CE, the word class prior proba-
bility is considered in the word posterior class
estimation: P (c|x, w) ∝ P (c|w)P (x|c), where
P (c|w) is smoothed as above.

Continuous features are discretised into a
fixed number of bins (usually 20) by visual in-
spection of the histograms of the feature values.

Multi Layer Perceptron

Multi Layer Perceptrons implement a non-linear
mapping of the input features by combining



layers of linear transformation and non-linear
transfer functions (Bishop, 1995). Parameter
are estimated by minimising a squared error loss
for regression and the negative log-likelihood for
classification. In our experiments, we used a
stochastic gradient descent, because it tends to
be quite efficient on redundant data.

As examples typically arise from the same
source sentence, they have many similar fea-
tures and are therefore highly redundant. Con-
vergence of stochastic gradient descent is guar-
anteed under certain conditions, in particular
examples must be presented in random order.
In our case, we usually have too many examples
to first load the training set in memory, then
pick examples at random. We therefore im-
plemented a random caching mechanism, where
data are loaded sequentially but unloaded ran-
domly, in order to simulate an independant ran-
dom pick from the entire training set. Although
the examples are only approximately indepen-
dant using this caching system, we observed em-
pirically that when the cache was large enough
to hold all the examples corresponding the sev-
eral source sentences, the final performance was
indistinguishable from a model trained using
truely independent random examples. This ran-
dom cache was implemented in the framework
of Torch (Collobert et al., 2002).

3.3 Metrics for Evaluation

As mentioned earlier, we are interested in as-
sessing the performance of CE techniques in two
settings: strong CE, requiring accurate proba-
bilities of correctness; and weak CE, requiring
only binary classification. In order to evaluate
our models, we use different metrics, all calcu-
lated over a test set {(x(i), c(i))}i=1...n, where

the indicator c(i) is 1 iff x(i) is correct, and 0
otherwise. We let n1 and n0 designate the num-
bers of correct and incorrect examples.

Strong CE metric: NCE

A standard way of measuring the fit between
a probabilistic model and a test corpus is neg-
ative log-likelihood (or cross entropy): NLL =

−
∑

i
log P (c(i)|x(i))/n. To remove dependence

on the proportion of correct examples in the cor-
pus, we use normalized cross entropy (NCE):

NCE = (NLLb − NLL)/NLLb (1)

The baseline NLL correspons to assigning
fixed probabilities of correctness based on
the empirical class frequencies: NLLb =
−(n0/n) log(n0/n) − (n1/n) log(n1/n).

Weak CE metrics: CER and (I)ROC

The metrics we use for weak CE attempt to
capture the discriminability of the classification
function across the range of all thresholds used
to decide correctness.

The simplest metric is the classification er-
ror rate (CER): the proportion of examples on
which the classifier’s output differs from the true
correctness indicator. The values of CER we
use are based on thresholds optimized on the
test set (for sentence-level experiments), and
on the validation set (for word experiments).
The baseline is a classifier which assigns all ex-
amples to the most frequent class, for which
CERb = min(n0, n1)/n.

Another common way to assess the discrim-
inability of a classifier is to use the receiver
operating characteristic (ROC) curves (Duda
et al., 2001). These plot correct-reject ratio
(true negatives/n0) vs correct-accept ratio (true
positives/n1) for different thresholds. The ROC
curve lies in the unit square, with random choice
corresponding to the diagonal and perfect dis-
crimination corresponding to the edges. A re-
lated quantitative measure is the area under the
ROC curve or IROC; unlike CER, this is not af-
fected by the proportion of correct examples in
the corpus (Blatz et al., 2003).

4 Sentence-Level Experiments

In order to assign a correctness c to each trans-
lation hypothesis, we threshold automatic MT
evaluation measures. We use the two measures
which correlated best with human judgement in
the evaluation exercise described in (Blatz et al.,
2003):

WERg, the word error rate, normalised by the
length of the Levenshtein alignment; and

NIST, the sentence-level NIST score (Dod-
dington, 2002)

We use two different thresholds for each score,
giving four problem settings in total. The first
threshold produces 5% of “correct” examples,
and is intended to be sufficient for gisting pur-
poses. The second one tags 30% of examples as
correct, which we believe would be enough for
applications that require a simple bag-of-words
translation, such as cross-language IR.

4.1 Features

We used a total of 91 sentence-level features,
which we summarize briefly in this section. A
detailed list is given in (Blatz et al., 2003).



Base-Model Intrinsic

As described in (Och and Ney, 2004), the ISI
MT system is based on a maximum entropy
model defined over twelve feature functions; we
used the values returned by these functions as
features in our CE models. Another class of fea-
tures captures various pruning statistics from
the base model’s search algorithm.

Nbest List

A large set of features were calculated over
the N -best list generated for each source sen-
tence. This includes simple statistics such as
rank of the current hypothesis, ratio of its score
to the best score, average length of hypotheses
in the list, and ratio of total number of words
to source-sentence length. Additionally, vari-
ous features were based on the center hypothesis

having minimal average Levenshtein distance to
all others.

Source Sentence

Features intended to capture the translation dif-
ficulty of the current source sentence included
its length, various ngram frequency statistics,
and trigram language model scores.

Target Sentence

Similar to the above, we used features to cap-
ture the viability of the current target hypoth-
esis, including external and nbest-based (word
and phrase) language model scores, word fre-
quencies over the nbest list, and simple paren-
thesis and quotation matching.

Source/Target Correspondence

Features in this class aimed to capture the
translation relation between the source sentence
and target hypothesis. These included IBM
model 1 (Brown et al., 1993) probabilities in
both directions, word-alignment monotonicity,
and various kinds of agreement with other word-
level translations in the N -best list, including a
semantic similarity metric based on WordNet.

4.2 MLP Experiments

We compared various MLPs, trained on all fea-
tures, on the four problem settings described
above. Models used varying numbers of hidden
units (from 0 to 20), and either classification or
regression.

Table 2 shows the performance of the best
configurations for classification and regression.
The number of hidden units for each model
is omitted because it has no clear correlation
with performance. However, there is a clear
trend in which classification models do better

setting IROC CER NCE
N 05% .800 ± .002 3.21 ± .03 9.18 ± .61
N 30% .763 ± .001 27.10 ± .10 15.62 ± .09
W 05% .818 ± .002 5.57 ± .05 16.94 ± .21
W 30% .734 ± .001 28.95 ± .06 12.09 ± .10

N 05% .757 ± .002 3.10 ± .03
N 30% .762 ± .001 27.20 ± .10
W 05% .741 ± .002 5.54 ± .05
W 30% .723 ± .001 29.04 ± .04

Table 2: Best results for classification (top box) and
regression, with 95% confidence bounds. N and W
stand for NIST and WERg in the problem setting
column. Baseline values for CER are 3.21%, 32.5%,
5.65%, and 32.5% for each problem setting, in order.
Note that the results on each line in this table are
not necessarily generated by a single model.

than regression models, particularly as mea-
sured by IROC. (This is not completely surpris-
ing, given that classification MLPs were specifi-
cally trained for the corresponding thresholds.)
Globally, performance is better than the base-
line in all cases except CER for the NIST 5%
setting.

4.3 Feature Comparison

We compared the contributions of all features,
both as individual confidence scores and as part
of feature groups used to train MLPs. To group
features, we classified them in two indepen-
dent ways according to whether they apply to
the source sentence, the target hypothesis, or
both; and according to whether they depend
on the base model or could be calculated with-
out knowledge of it. We also treated the base-
model’s scores as group on their own. All fea-
ture experiments were performed only for the
NIST 30% setting.

Results are shown in table 3 and figure 1.
The most striking observation is that the MLP
trained on only the twelve feature functions
from the base model is almost as good as the
one trained on all features. Another pattern is
that features that depend on the base model
are more useful that those that do not, and fea-
tures that apply to the target hypothesis are
more useful than ones that apply only to the
source sentence (as well as, to a much lesser ex-
tent, those that apply to a source/target pair).
A final conclusion is that a model that has been
trained on labelled data—regardless of the fea-
ture set used—is better at discriminating than
any single feature on its own.
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Figure 1: ROC curves for models trained on dif-
ferent feature groups. Note that the “wiggly” ap-
pearance of the curve for the source group is due
to the fact that these features are invariant over all
entries in a given nbest list, which leads the model
to assign large blocks of examples exactly the same
probability of correctness.

G IROC CER NCE
All .763 ± .001 27.10 ± .10 15.62 ± .09
Base .746 ± .001 27.82 ± .09 13.97 ± .08
BD .754 ± .001 28.02 ± .10 14.83 ± .10
BI .712 ± .001 29.88 ± .09 9.76 ± .09
S .687 ± .002 3.41 ± .07 7.23 ± .08
T .751 ± .001 27.91 ± .08 14.48 ± .09
ST .746 ± .001 28.47 ± .10 13.62 ± .07
S1 .648 ± .001 32.14 ± .08

Table 3: Results for models trained on different
feature groups. All is all features, Base is base model
scores; BD and BI are base-model dependent and
independent; S, T, and ST are source, target, and
both; and S1 is the best single feature.

5 Word-Level Experiments

It is not intuitively clear how to classify words in
MT output as correct or incorrect when compar-
ing the translation to one or several references.
We implemented a number of different measures
that were inspired by automatic evaluation met-
rics like WER and PER.

Pos: This error measure considers a word as
correct if it occurs in exactly this target
position in the reference translation.

WER: A word is counted as correct if it is
Levenshtein-aligned to itself in the refer-
ence.

PER: A word is tagged as correct if it occurs in
the reference translation. The word order
is completely disregarded, but the number
of occurrences is taken into account.

For all error metrics, we determine the refer-
ence with minimum distance to the hypothesis
according to the metric under consideration and
classify the words as correct or incorrect with
respect to this reference.

These error metrics behave significantly dif-
ferent with regard to the percentage of words
that are labeled as correct. Pos is very pes-
simistic with only 15% correct words on the cor-
pora described in section 3.1, whereas WER la-
bels 43% as correct, and PER 64%, respectively.
Note that those figures are not the translation
errors for the system output. They are cal-
culated for every hypothesis in the N -best list
(and not only for the single best translation).

5.1 Features

We used 17 features in total which we will de-
scribe shortly in this section. For more details,
see (Blatz et al., 2003).

SMT Model Based Features

We investigated two features that are based di-
rectly on namely the Alignment Template MT
model (Och and Ney, 2004). One gives the iden-
tity of the so-called Alignment Template, i.e.
the bilingual phrase, that was applied in the
translation of the current target word. Another
feature specifies whether the target word was
translated by a rule based system or not. This
rule based system was integrated into the trans-
lation process for the translation of special phe-
nomena such as dates and time expressions.

IBM Model 1

We implemented one feature that determines
the average translation probability of the target
word e over the source sentence words according
to Model1 introduced by IBM in (Brown et al.,
1993). This captures a sort of topic or semantic
coherence in translations.

Word Posterior Probabilities and
Related Measures

We investigated three different features intro-
duced in (Ueffing et al., 2003) that are calcu-
lated rather similarly: relative frequencies, rank
weighted frequencies and word posterior proba-
bilities. Each of them is based on determining
those sentences in the N -best list that contain
the word e under consideration in a certain po-
sition. The first variant (called any in table 4)
regards all those sentences that contain e at all,
whereas the second variant (source) considers
all sentences where e occurs as the translation
of the same source word(s). The third variant



(target) determines only those target sentences
containing e in exactly the same position.

Target Language Based Features

We implemented three different features using
the semantic data provided by WordNet. The
first similarity feature is the average semantic
similarity from the word in question to the word
aligned to the same source position in each of
the top three hypotheses. The two other fea-
tures come from WordNet’s polysemy count, for
details see (Blatz et al., 2003).

Two more target language based features
were implemented. One is a basic syntax check
that looks to highlight hypotheses with mis-
matched parentheses and/or quotation marks.
The second feature counts the number of oc-
curences in the sentence for each word in the
target sentence.

5.2 Performance of Single Features

Using the Naive Bayes classifier, we tested the
performance of single features for word confi-
dence estimation. Additionally, we combined
the best 3 and all 17 features with the same clas-
sifier. Table 4 shows the confidence estimation
performance of single features in terms of CER
and IROC using the error measure PER for la-
beling words as correct or incorrect. The fea-
tures which yield the best results are the word
posterior probability, rank weighted frequency,
and relative frequency (WPP) with respect to
occurrence of the word in any position in the
target sentence. Those three features give a sig-
nificant improvement over the baseline of more
than 5% absolute in CER. The feature based
on Model1 also discriminates very well, followed
closely by the WPP with regard to the aligned
source position(s).
The combination of three of the best performing
features (word posterior probabilities with re-
spect to different criteria and the Model1 based
feature) yields a significant improvement over
the performance of any of the single features.
There is no significant change in CER or IROC
if more information is added by combining all
17 features.

5.3 Comparison of Different Models

For word level confidence estimation, we investi-
gated several different MLP architectures, with
the number of hidden units ranging from 0 to 20.

Figure 2 compares the tagging performance
for different MLP architectures and for the
Naive Bayes classifier, including all features.

Feature CER IROC

Baseline 36.2 –

WPP any 30.8–30.9 .706–.707
Model1 31.2 .699
WPP source 31.9 .694–.695
WPP target 32.5–32.7 .686–.689
SMT model based 33.1 .671–.673
Target based 33.1–33.4 .666-.668
top 3 29.2 .733

All 29.6 .736

Table 4: CER [%] and IROC for single features and
their combination using Naive Bayes; Word Error
Measure: PER.
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Figure 2: ROC curves for PER, MLPs with differ-
ent numbers of hidden units and Naive Bayes, com-
bining all features.

We see that the Naive Bayes classifier and the
MLP with zero hidden units have a very simi-
lar performance. But as soon as the MLP gets
more complex by the addition of more hidden
units, the MLP outperforms the Naive Bayes
approach significantly. There is no significant
difference between the MLPs consisting of 5 to
20 hidden units.

5.4 Comparison of Word Error
Measures

Table 5 compares the IROC values for word con-
fidence estimation using an MLP with 20 hidden
units for all the error measures described at the

Error Measure Pos WER PER

IROC .734 .703 .766

Table 5: Comparison of IROC values of an MLP
with 20 hidden units for different error measures (all
features).



beginning of the section. We see that classifi-
cation according to some of the error measures
is easier to learn than according to others. The
highest discriminability is obtained for the most
“relaxed” measure PER, followed by Pos. As we
had expected, WER is harder to learn, because
the ratio of correct and incorrect words is almost
equal.

6 Conclusion

We have reported on the use of various tech-
niques for classifying MT output as correct or
not, at both the sentence and word levels. Both
levels present problems for the definition of cor-
rectness. At the sentence level we resolved
these problems by using automatic MT evalua-
tion metrics and re-defining “correctness” to be
above a certain threshold (of match to reference
translations), which we feel should correspond
to usability within different applications. At the
word level we investigated three strategies, dif-
fering in strictness, for matching corresponding
words in reference translations.

Our main conclusions can be summarized as
follows:

• Training a separate layer using machine-
learning techniques is better than relying
solely on base model scores.

• Features derived from the base model are
more valuable than external ones, and
should be tried first before investing effort
in the implementation of complex external
functions.

• Features based on nbest lists are more valu-
able than ones based solely on individual
hypotheses.

• Features that capture properties of the tar-
get text are more valuable than those that
do not.

• Multi-layer perceptrons (neural nets) out-
perform naive Bayes models. MLPs with
more hidden units can give better perfor-
mance than those with fewer.

In future work, we look forward to using the
techniques developed here within various appli-
cations described in the introduction. We also
intend to continue to refine our definitions of
correctness to make them more stable and more
broadly applicable.
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