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= Building codes

* International Building Code.

* Local Code.

Fire Scenario

= Fire scenarios
= Design height
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= Design parameters

« Fire scenarios

* Design fire size

» Design height
* Smoke management options
Smoke-filling
Mechanical exhaust
Make-up air
Ceiling jet and Plugholing
Plume diameter
« Opposed airflow
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Design Objective

= Management of smoke within the large
volume space and any communicating
spaces open to the large volume space.

* Maintain the smoke layer interface height to a
predetermined elevation.

+ Maintain a tenable environment in all exit excess
and area or refuge paths for the time necessary to
allow occupants to reach safety.

= Design time
* Prescribed by code.
* Egress analysis.
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Design Fires
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. SleadY state fires with constant heat release rate, Q
{kwW), frequently used as conservative design fire.

Fuel loading
! Low (minimum fire for fuel-restricted atrium)
+ Typical (iminhmum fire for atrigun

! with combustibles) 5
"High (Qarge fircs) 25
* Unsteady fires (t-squared fires) t T

« Q= heat release of fire (kW) Q =1055| —

o t =time (s), to = growth constant (s) [g

* 15=150 (Fast); ty= 300 (Medium}; ;=600 (Slow); /




Other Design Fires

» Fire test data

= Engineering analysis of fire growth, sprinkler
response and effect of sprinkler at prevailing
ceiling height

Steady Phase
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Smoke Filling - Steady Fire

= Large volume to contain smoke; no exhaust

" Appropriate for a constant
2 _111-0281m 1 H cross sectional A, for AH?
H A from 0.9 to 14 and for z
H values 2 to 20% of H

z =height of the first indication of smoke above the fire surface(m)
H =ceiling height above the fire (m)

A =area of atrjum (m*)

t=time(s)

Q = heat release rate from steady fire (kW)

e

Smoke Filling - Unsteady Fire

= Large volume to contain smoke; no exhaust

-1.45

Appropriate for a constant
t cross sectional A, for A/H?2
from 1 to 23 and for z
A 5
l%“’é(?]’/ values >1to 20% of H

z =height of the first indication of smoke above the fire surface (m)
H =ceiling height above the fire (m)

L2091
H

A =area of atrium (m*)
t=time(s)
1 = growth ume (s)

Mechanical Exhaust

= Most common form of atrium
smoke management in North
America

= Maintain smoke layer above
design height for design time

s Axisymmetric plume
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Axisymmetric plume R

: -~ = Assume point source

b T '?-‘EIDL,'— Virtual origin, zo.

s )]

1 L. /T z,=00830%-102,
- I T_:— * Q= heat release rate (kW).

Ly it D1 = diameter of fire (m).
= High spaces such as atria

*Height smoke layer large
compared to diameter of fire.

*Base of fire at floor level.
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Mass flow rate — Steady fire

m=0.071QY%2% +0.0018Q,. forz=toz

z=height of smoke layer interface above base of fuel (m)
z.. = mean flame height (m)

Q. =convective heat release rate (kW)
where Q. =xQ

m=0.0320"%z, forz<ua,

2. =0.166Q%°




Balcony Spill Plumes
» Balcony spill plumes
l <Fire in adjacent
compartment
«Plume spills into atrium
Baicony under balcony
’1 Alrium space

m=036000 7Y '(z, +0.2511)

g{ Doorway nt sy Bow rate i plume (Lg'sev)
Fire ¢~ heat rebease rate of the fire (kW)

- H = widih of the plume as it spills under the balcoay (m)
=a  height above the underside af the halcony (m)

#H  height ol balcony above fuel (m)

W=w+h

B = the width of the plume ym)

w the wiith of il opering, from the urea of ongn (m)
& = the distnce from the opening to the halcany edgy ()

If no draft curtains
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Temperature of Smoke Layer

Q.(1-n)
mC,

C, specific heat of plume gases (kJ/Kg °C)

Ts=Ty +

1 wall and ceiling heat transfer fraction

For an adiabatic atrium 77 = 0. This is a conservative
assumption

Normal values in the range from 0.3 to 0.7

Make-up Air e ;@\a
e _:{f-‘

= For steady flow, mass exhaust equals mass entering
below the smoke layer

= Supplied naturally or by a fan (usually
85 —95% of exhaust)
« Velocity of make up air maintained below 1 m/s at
perimeter of atrium
* Minimize deflection ol plume
* Minimize effects on smoke interface

Window Plumes

» Window plumes

« Fully developed fire in
compariment in
communicating space

m=|06BLLH Y (2, e LSO HL

where

m = mass flow rale plume at height =, (kpsec)
@ (240407 17 - 200 ()

.. ureu of vemtilation opening (%)

H. = bheight of ventilation opening (m)

2w~ heigh above the top of the window (m)

PREeep——

Volumetric Flow Rate
oo I
Ps =0 T,

T, .p, reference temperature and density
Ts.ps SMoke temperature and density

= Airdensity at 294 K is 1.2 kg/m?

= Volumetric flow rate of exhaust gases is:

v=10

Ps
V = volumetric flow rate (m? /s)
ps = density of exhaust gases (kg/m®)

Plume Diameter ' : -

* dp=Kagz

where

dp = plume diameter (m);

Kq = diameter constant;

z = distance above base of the fire (m).
= Kg= 0.5 for plume contact with wall.
= Ky = 0.25 for beam detection of plume.




Minimum Depth of Smoke Layer

e Ceiling jet
*Smoke flow under ceiling
extending radially from point
of plume impingement
*Recirculation flow from
walls

=Total depth typically
10-20% of atrium height

*Assume 20% unless
demonstrate less using
modeling
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Plugholing
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* Plugholing

*Air from below smoke layer
exhausted along with smoke

<Decrease system
effectiveness

Plugholing

vz
Vs =4415-,u“"[I!T'—T=]
o

V e = Maximum volumetnic flow rate without plugholing at T, (m¥s)
T, =absolute temperature in the smoke tayer (K)

T, =absolute ambient temperature (K}

d  =depth of smoke layer below lowest point of the exhaus inlet (m)
Y = exhaus! location factor (dimensionless)

= Number of inlets chosen so that maximum flow rate
for each inlet not exceeded
= Suggested values fory
+ Inlet in ceiling distance 2 2d from wall: y= 1
« Inletin ceiling < 2d from wall: y= 0.5
¢ Intetin wall: y=0.5

Opposed Air Flow
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« Prevent smoke from
communicating space
propagating into atrium

v, = 3Bg H( -1 T, )

v, limiting average air welocity (mésec)
& accelertion of gruvity (9.8 misec)
1 = height of the opening (m)

7.~ temperature of heated sinoke ('K)
7.~ 1emperature of ambient air ("K)

Opposed Air Flow
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* Prevent smoke from atrium
propagating into
communicating space

« Plume in contact with walls

= Limiting velocity <1 m/s

* Should not be used
ifz<3m

0t Tho (o £ 4 5 S bom v bont of 4 D
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v = limlung average air velacity (m-s)
¢ beit release cute of the fire (hW)
= distunce sthove the hase of 1he lire so the hottom of 1he apening (m)

Opposed Air Flow

= Prevent smoke from
atrium propagating into
communicating space

» Limiting velocity <1 m/s

v, =3 AT, =TT, |

v, * limiting average air velocity (misec)
x = aeeeleration of gravity (9.8 m'sech
11~ height of the opening (m)

T, ~ wemperature of heated smoke (*K)
7. = wmperature of ambient air (K}




Summary
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Overview of algebraic equations that can be
used for the design of atrium smoke
management systems.

= Good estimates when used within limits.
= Assume simple atrium designs.

For complex geometries or if outside limits of
equations, detailed engineering analysis
using zone or CFD models required.




