# NRC Publications Archive Archives des publications du CNRC

Use of algebraic equations for atrium smoke management analysis Lougheed, Gary

NRC Publications Archive Record / Notice des Archives des publications du CNRC : <a href="https://nrc-publications.canada.ca/eng/view/object/?id=773da7a5-e6cb-4a7c-b65a-707970f1bed5">https://nrc-publications.canada.ca/eng/view/object/?id=773da7a5-e6cb-4a7c-b65a-707970f1bed5</a> https://publications-cnrc.canada.ca/fra/voir/objet/?id=773da7a5-e6cb-4a7c-b65a-707970f1bed5

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <a href="https://nrc-publications.canada.ca/eng/copyright">https://nrc-publications.canada.ca/eng/copyright</a>

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <a href="https://publications-cnrc.canada.ca/fra/droits">https://publications-cnrc.canada.ca/fra/droits</a>

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

**Vous avez des questions?** Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.







## Outline

- Design parameters
  - · Fire scenarios
  - Design fire size
  - Design height
- · Smoke management options
  - Smoke-filling
  - Mechanical exhaust
  - · Make-up air
  - · Ceiling jet and Plugholing
  - · Plume diameter
- Opposed airflow

. .-----

### References

- NFPA 92B, Standard for Smoke Management Systems in Malls, Atria and Large Spaces, National Fire Protection Association, Quincy, MA, 2005.
- Klote, J.H. and Milke, J.A., Principles of Smoke Management, ASHRAE, Atlanta, Georgia.
- ASHRAE Handbook, HVAC Applications, Chapter 52.
- Building codes
  - · International Building Code.
  - · Local Code.

....

# **Design Objective**

- Management of smoke within the large volume space and any communicating spaces open to the large volume space.
  - Maintain the smoke layer interface height to a predetermined elevation.
  - Maintain a tenable environment in all exit excess and area or refuge paths for the time necessary to allow occupants to reach safety.
- Design time
  - · Prescribed by code.
  - Egress analysis.

4 - Removal - Name also had to

# Fire Scenarios Fire scenarios Design height Axisymmetric plume Balcony spill plume Window plume

# Design Fires

 Steady state fires with constant heat release rate, Q (kW), frequently used as conservative design fire.

|  | Fuel loading                                         | Design fire<br>(MW) |
|--|------------------------------------------------------|---------------------|
|  | Low (minimum fire for fuel-restricted atrium)        | 2                   |
|  | Typical (minimum fire for atrigim with combustibles) | 5                   |
|  | High (large fires)                                   | 25                  |

- Unsteady fires (t-squared fires)
  - Q = heat release of fire (kW)
  - t = time (s), t<sub>g</sub> = growth constant (s)
  - t<sub>g</sub>=150 (Fast); t<sub>g</sub>=300 (Medium); t<sub>g</sub>=600 (Slow);

-

# Other Design Fires Fire test data Engineering analysis of fire growth, sprinkler response and effect of sprinkler at prevailing ceiling height Time, t





Appropriate for a constant

cross sectional A, for A/H2

from 0.9 to 14 and for z values ≥ to 20% of H











# Temperature of Smoke Layer

$$T_s = T_o + \frac{Q_c (1 - \eta)}{\dot{m} C_p}$$

C, specific heat of plume gases (kJ/Kg °C)

 $\eta$  wall and ceiling heat transfer fraction

For an adiabatic atrium  $\eta=0$ . This is a conservative assumption

Normal values in the range from 0.3 to 0.7

-

# Volumetric Flow Rate

$$\rho_s = \rho_r \frac{T_r}{T_s}$$

 $T_r, \rho_r$  reference temperature and density

 $T_s, \rho_s$  smoke temperature and density

- Air density at 294 K is 1.2 kg/m³
- Volumetric flow rate of exhaust gases is:

$$\hat{V} = \frac{\dot{m}}{a}$$

 $\dot{V} = \text{volumetric flow rate (m}^3/\text{s})$ 

 $\bar{\rho}_s$  = density of exhaust gases (kg/m<sup>3</sup>)

-

# Make-up Air

- For steady flow, mass exhaust equals mass entering below the smoke layer
- Supplied naturally or by a fan (usually 85 –95% of exhaust)
- Velocity of make up air maintained below 1 m/s at perimeter of atrium
  - · Minimize deflection of plume
  - Minimize effects on smoke interface

amond that are the

# **Plume Diameter**

 $d_p = K_d z$ 

where

dp = plume diameter (m);

K<sub>d</sub> = diameter constant;

z = distance above base of the fire (m).

- K<sub>d</sub> = 0.5 for plume contact with wall.
- K<sub>d</sub> = 0.25 for beam detection of plume.

----













# Summary

- Overview of algebraic equations that can be used for the design of atrium smoke management systems.
- Good estimates when used within limits.
- Assume simple atrium designs.
- For complex geometries or if outside limits of equations, detailed engineering analysis using zone or CFD models required.