i+l

NRC Publications Archive
Archives des publications du CNRC

Development of machining topology knowledge base
Yeung, Millan K.; Wang, Lihui; Orban, Peter

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

ICME 2003 Conference proceeding, 2003

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=750ec9ee-130f-4fcd-9096-b8eb5a12dca4d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=750ec9ee-130f-4fcd-9096-b8eb5a12dcad

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a

Development of Machining Topology Knowledge Base
Millan K. Yeung', Lihui Wang' and Peter Orban’

! Integrated Manufacturing Technologies Institute, National Research Council Canada

Keywords

Knowledge base, machining topology, object-oriented paradigm, CNC
programming, process planning, artificial intelligence.

Abstract

CNC machining is one of the widely used manufacturing process. Its
flexibility and efficiency allows the production of low quantity or high
volume parts cost effectively. However, the set up of machining topology —
the logical sequence of machining operations for different features in a part,
is mostly relied on the skill and experience of the CNC programmer. The
experience and knowledge could diminish or even disappear if the
programmer leaves. An intelligent flexible knowledge base would be an
ideal tool to preserve this knowledge and experience for the utilization of
CNC programming. This paper describes the development of a machining
topology knowledge base of an intelligent process planning system for the
automation of CNC programming.

1. Introduction

CNC machining is one of the most efficient and widely used manufacturing processes for
industries. It provides high efficiency for mass production of consumer products and
flexibility for low quantity production of specialized parts and components. Despite the
flexibility and capability of CAD/CAM systems, CNC programming still requires a
skillful programmer who should not only be a CAD/CAM and computer literate but also
a machining expert to plan and generate the tool paths. Recent publications have started
to address this shortcoming of CNC programming. Many research works have been
conducted to find ways to reduce this deficiency but they mostly dealt with specific
environments and conditions or in higher-level generality [1-9]. In a recent publication,
Yeung [10] described the development of an intelligent process planning system (IPPS)
for CNC programming and machining. The development was divided into three modules,
the feature extraction, the tool competition and the tool optimization. The feature
extraction module captures the topology of machining of the given part while the tool
competition and tool optimization modules provide an optimal tool and condition for

1800 Collip Circle, London, Ontario, N6G 4X8, Canada. Email: Millan.Yeung@nrc-cnrc-ge.ca

machining these topological features. This paper describes the development of the feature
extraction module and gives an overview of its design and implementation.

2. Topological machining feature extraction

Part features for machining are well defined by CAD systems and extensive work on
feature recognition for CAD/CAM has been pursued [11-12]. The focus of this
development is aimed at storing and extracting these features in a logical sequence
according to their machining order. Output of the development would be a topological
machining feature extraction system that can interact with other modules in Yeung’s [10]
IPPS but also work independently to define and extract topology of machining parts. The
core design of this system is divided into two working sets and a topological ordering
engine. The primitive set is a set of elementary features such as holes, wedges, bosses,
slots, islands, threads, etc. that their machining operations are well defined. The feature
set consists of machining features that are composed by a number of primitives or sub-
features. A given part is subdivided into a number of machining features. Each of these
features is further divided into a number of machining primitives or sub-features. Figure
1.0 shows the decomposition of a part in the machining operation.

Figure 1.0 Representation of a part to be machined.

The system then determines the topological order of these features and returns it in a
logical sequence for CNC programming. The core of this system is the knowledge base
that consists of data structure and operational requirements and constraints of these
features. Emphasis of the implementation lies heavily on the architect of the data
structure. Object-oriented programming paradigm gives a convenient way to facilitate the
implementation.

2.1. The primitive

There are a number of commonly used machining primitives and their corresponding
machining operations are well defined by logics and past experiences. The essence of
machining primitive structure is the geometries of the primitive and the blank
configuration for that primitive. This information is used for the definition of the
machining operations for the primitive. Primitives should be unique and mutually
exclusive from each other. To illustrate the data structure of machining primitives, a
primitive example ‘hole’ is used. The data structure of ‘hole’ will consist of dimensions
of the hole as well as the dimensions of the blank. It can be represented in the form of an
object in the object-oriented programming paradigm. Following is the pseudo code of the
structure.

Object hole
{
hole(parameter-list);
references (start-point, direction-cosine); //identify the
location and orientation
hole-diameter;
hole-depth;
hole-type(blind, through);
stock-inside-diameter;
}i

Most of these variables are self-explanatory and their structures are not unique. The
‘stock-inside-diameter’ indicates the amount of material that need to be removed and if
an existing hole is presented so to determine if drill operation is required. In general, the
stock information presented in the primitive should be localized and only include the
portion that concerns with the primitive. Other information such as material, tolerances,
surface finishing, etc. could also be included for quality control. For clarity of illustration,
these qualitative parameters and the implementation of their applications are assumed.
Furthermore, constraints and requirements for machining the primitive are included. This
information allows the assessment of the type of operations for the production of the
primitive. For our hole primitive example, this information is represented by embedded
methods.

Object hole
{
hole(parameter-list);
references (start-point, direction-cosine); //identify the
location and orientation
hole-diameter;
hole-depth;
hole-type (blind, through);
stock-inside-diameter;

BOOL drill-required() { return blank-inside-diameter <= 0.0; }
BOOL finish-cut-required() { return tolerance < given-dimension
|| surface-roughness < given-Ra; }

}s

The hole example demonstrated the key information required for the machining operation
of primitives.

The term machining primitive gives the impression that the underlying feature is simple
and easy to represent and machined. However, this is not always true for many practical
and realistic machining primitives. Indeed, profiled surfaces and even free form surfaces
such as spherical, parabolic, and NURBS surfaces can also be machining primitives.
Their representation and operational requirements and constraints are not as obvious and
easily defined. The inclusion of these complex primitives depends on the preferences of
the user and the software developers.

2.2. The feature

The feature working set consists of machining features that composed by one or more
primitives, other features or could even be a completed part. They are defined by the
users according to their needs and frequently machined parts. For example, a brake rotor
of an automobile, the part is composed by a number of primitives.

Figure 2.0 An automotive brake rotor.

It can be represented in a feature object data structure.

Object rotor
{
rotor{ parameter-list);
mounting-holel (mounting-holel-parameter-list
mounting-hole2 (mounting-hole2-parameter-list
mounting-hole3 (mounting-hole3-parameter-list
mounting-holed (mounting-holed-parameter-list
mounting-holeb5 (mounting-holeb5-parameter-list
mounting-hole6 (mounting-hole6-parameter-list
{
(
(

Se e e N

o N

gripping-slotl{(gripping-slotl-parameter-list
gripping-slot2(gripping-slot2-parameter-1list
gripping-slot3(gripping-slot3-parameter-1list
gripping-slotd (gripping-slot4-parameter-list);
gripping-slot5(gripping-slot5-parameter-list);

’
’

’

—— e e e e e e e
-

round-boss (round-bass-parameter-list); //OD of the hub
center-hole{ center-hole-parameter-list);

round-0D{ round-shaft-parameter-list); //outside diameter
OD-groove (OD-groove-parameter-list); //outside diameter groove
stock-0D;

BOOL outside-diameter-operation{ ..);
ses; //assuming primitives at the backside are defined.
}:

This data structure represents the machining features of the rotor shown in Figure 2.0.
Primitives of the structure can be represented in a similar fashion as the hole example
described in 2.1. The mounting-hole and center-hole data structures could be identical to
the hole example. Other primitives could be constructed in the similar way.

//A boss is defined as a protrusion comes out from a surface - the hub
//of the rotor.
Object round-boss

{

round-boss(parameter-list);

reference(start-point, direction-cosine); //direction-cosine
points to the boss-axis

diameter;

height;

stock-0D;

stock-height; //measured from the flat surface and up
}i

//A slot is defined as a groove on a surface - slots on the disc of the
//rotor.
Object gripping-slot
{
gripping-slot (parameter-list);
reference(start-point, end-point, direction-cosine);
slot-size(width, height);
stock-size(width, height);
start-hole{ start-hole-parameter-list);
}i

//round-0D is just a round surface - the outside surface of the rotor.
Object round-0D
{

round-0OD(parameter-list);
OD; //outside diameter
length;
stock(OD, length);

}:

//the groove on OD - the groove on the outside surface of the rotor.
Object OD-groove
{

OD-groove(parameter-list);
groove-size(width, depth);
stock(width, depth);

bi

Furthermore, the data-structure of rotor can be hierarchically nested with sub-features to
avoid code redundancy as well as improving the clarity of the implementation.

Object rotor
{

rotor(parameter-list);

set-of-mounting-holes(repeat-mounting-hole-definition, number-
of-holes);

set-of-gripping-slots(repeat-gripping-slot-definition, number-
of-slots });

hub(round-bossl, center-hole);

OD-with-groove(round-OD, OD-groove, stock-0OD);

Operational-methods(*°*°);

eee; //assuming primitives at the backside are defined.

yi
2.3. Topological ordering

Topology of machining is defined from pre-defined logical order of certain machining
features and special order set by user preferences and past experience. Besides the logical
topology such as boring hole before broaching key-slot and facing before drilling, a
number of criteria or goals can be applied to determine the topological order of
machining features. In general, the criteria of largest volume material removal will take
precedence to set the topological order for roughing. For finishing, the common practice
is starting from the interior geometries and work toward outer shape. Applying these
criteria to the rotor example, we can generate a topological sequence for the machining
operation.

Rotor = { rough-cut(hub, mounting holes, OD-with-groove), finish-cut(
hub, gripping-slots, OD-with-groove) 1};

These criteria are also applied to the sub-feature level and the primitive level. In our
example, the topological machining sequences for the hub and outside surface of the rotor
are also defined in the same manner.

Hub = { rough-cut(center-hole, round-boss), finish-cut(center-hole,
round-boss)}),

OD-with-groove = { rough-cut(OD-groove, round-OD), finish-cut(round-
ob) };
//note that the groove requires only rough-cut because
of loose tolerance.

With the object-oriented-paradigm, the blank configuration is updated at the object
structures after their operation. This satisfies the requirement of the feature-extraction
module described in the IPPS proposed by Yeung [10].

2.4. Implementation

Within this design, there are three steps to implement the knowledge base for the
topology of machining features. The first step is to define the machining primitives. User
and developer can determine the depth and granularity of the primitives to meet their
needs. Secondly, the definition of machining features or classes of parts to be machined is
developed based on the machining primitives. Finally, criteria for setting up the
topological sequence are defined according to 2.3 and the knowledge base is completed.
To utilize the knowledge base and to complete this topological machining feature

extraction system, two interfaces are needed for capturing the machining features from
feature-recognition system and the topological preferences from user. An expert system
would be an ideal complement for the user interface but is outside the scope of this
development. Figure 3.0 summarizes the development.

— >

Define

Primitives —P
~—

) "
Features & blank Capture Fezllat]l:lrnez &
Configurations ———P»] Features —P 1 Configurations

—

™)

User Define Topological
Preference —P Criteria — > Ordering
J ~N—

Figure 3.0 Implementation of the topological machining feature extraction

To facilitate the implementation, object-oriented programming systems such as Visual
C++® and the dynamic-linked library (DLL) facility of Microsoft® would provide a
great developing environment for the construction and dynamic update of the knowledge
base and interfaces.

3. Summary and Conclusion

CNC machining is an efficient process but requires skillful and experienced CNC
programmer to generate process plan and CNC programs. Yeung described an intelligent
system IPPS for process planning of CNC programming in a recent publication [10]. This
paper gives a detail description of the development and implementation of the feature
extraction module of IPPS. The design of the module is divided into two working sets
and a topological ordering engine. The primitive set consists machining primitives while
the feature set consists of machining features that are composed by primitives, other
features or classes of parts. The topological ordering engine determines the order of
machining operation for these features based on criteria set by logics and user’s
preferences and experience. These working sets and the topological ordering engine are
stored and manipulated in a knowledge base. Object-oriented paradigm is used for the
implementation of this knowledge base because of its capabilities on method
encapsulation (for capturing and retaining knowledge) and polymorphism (inheritance for
code re-use). Tools such as Visual C++® and the DLL from Microsoft® are ideal for the
development. The flexibility of this topological machining feature extraction system
allows the storage and utilization of existing machining topology yet permits the user and
developer to use their own special preferences. The basic architecture and structure of the
feature extraction system described provides tools for knowledge acquisition and the
development of machining topology for various parts. Challenges remain in the capturing
and representation of machining topology because of the large variety of machining parts.

Physical machining experiments and modeling will help to build up the knowledge hence
expanding the applicability of the system.

4.

[1]

[2]

(3]

[4]
[3]

[6]

[7]
8]

[9]
[10]

(11]

[12]

References

L. Wang, N. Cai, H.-Y. Feng and W. Shen: Feature-Based Reasoning for
Machining Process Sequencing in Distributed Process Planning, Proceedings of
13th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM 2003), Vol.2, pp.655-667, June, 2003.

Fuh J.Y.H., Ji P. and Zhang Y.F., “Future development trends in CAM/CAPP-NC
systems”, International Journal of Computer Applications in Technology, vol.8,
no.3-4, pp.203-210, 1995.

Yeo S.H.,, “A multipass optimization strategy for CNC lathe operations”,
International Journal of Production Economics, vol.40, no.2-3, pp.209-218, Aug.
1995. :

Norton N., “Controlling the Shop Floor”, Manufacturing-Engineer, vol. 72, no. 6,
pp- 272-275. December 1993.

Budde W. and Imbusch K., “EXAPT process planning and NC planning with
database-supported management of production data”, IFIP Transactions B
(Applications in Technology), vol.B-3, pp.119-30, 1992.

Pande S.S. and Prabhu B.S., “An expert system for automatic extraction of
machining features and tooling selection for Automats”, Computer Aided
Engineering Journal, vol.7, no.4, pp.99-103, Aug. 1990.

Martin J.M., “A strategy for NC programming”, Manufacturing-Engineering.
vol.102, no.2, pp.82-84. Feb. 1989.

Mantyla M., “Feature-based product modeling for process planning”, Organization
of Engineering Knowledge for Product Modeling in Computer Integrated
Manufacturing, 2™ Toyota Conference. Elsevier, Amsterdam, Netherlands, xii+461,
pp-303-324. 1989.

Chin Sheng Chen, “Developing a feature based knowledge system for CAD/CAM
integration”, Computers & Industrial Engineering. vol.15, pp.34-40, 1988.

Yeung M., “Intelligent Process Planning System for Optimal CNC Programming —
A Step Towards Complete Automation of CNC Programming”, Proceedings of the
International Conference on Manufacturing Automation (ICMA 2002), ISBN: 1-
86058-376-8, pp.169 — 177, Dec., 2002.

Christensen G.K. and Mogensen O.B., “Backward form feature recognition and
removal for an automatic CNC-programming system-BCAM”, Advanced
CAD/CAM Systems — State-of-the-art and Future Trends in Feature Technology.
Chapman & Hall, London, U.K., ISBN: 0412617307, pp. 205-216, 1995.

Brun J.M., “From characteristic shapes to form features: a recognition strategy”,
Advanced CAD/CAM Systems — State-of-the-art and Future Trends in Feature
Technology. Chapman & Hall, London, UK., ISBN: 0412617307, pp. 179-192,
1995.

