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* Global Context

Projected Transportation Fuel Cell System Cost
-projected to high-volume (500,000 units per year)-
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Source: US DOE FY 2013 Budget Request Rollout
February 14, 2012

* Transportation is responsible of 27% of GHGs Emissions
* Electrification of transportation is a solution
* Cost reduction required!
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* PEMFC Cost Estimate

At low and intermediate
APR, the PEM based
electrolyte is still one of
the more costly stack
components and one
needing to be reduced in
cost to achieve a cost
competitive fuel cell
system

Cost estimate for automotive PEMFC stack as a function of

annual production rate

- Annual Production Rate: 1,000 30,000 80,000 130,000 500,
System Net Electric Power (Output) 80 80 80 80 8d
System Gross Electric Power (Output) 87.91 87.91 87.91 87.91 8791
|Bipalar Plates (Stamped) S1684.081  GA3A.15L  S439.951 43303l  S42907
MEAs
Membranes 0 55.184.5110 $908.841 §562.231 $438.231 $230.7
| Calst ik EAppication (NSTFT | SLZ3Z28L  S7/00.37F  5695.571 S698.62L 5694
GDLs 0 $2140.330  $1,111.350 $69L53F  $537.04 $2425
M & E Hot Pressing $7209 $9.98 $8.23 $8.36 $8.1
M & E Gutting & Slitting $56.94 $4.42 $3.29 $3.02 s28
MEA Frame/Gaskets $469.80F $319.59 $311.95 $308.29 $301.4
Coolant Gaskets (Laser Welding) $185.48 $26.48 $29.43 $27.39 $255
End Gaskets {Screen Printing) $149.48 $5.08 $197 $1.25 %05
End Plates $87.43 $33.55 $28.91 $26.21 $198
Current Collectors $16.79 $7.18 $5.99 $5.54 $50
Compression Bands $10.00 $8.00 $6.00 $5.50 $5.0
Stack Housing s6raaff $7.541 $6.44f1 $5.87F $5.1
Stack Assembly $76.12[: $40.69E $34.958 $33.620 4320
Stack Condiitioning $170.88[ $53.87E $47.18H $41.380 $28.0
Total Stack Cost $11617.87  $3671.08  $2,873.61  $2,573:36 52,0309
[Total Stack Cost (5/kW..J ; 15,89 3 :
[Total Stack Cost (5/Waue) 313216 TA1.76 53269 S29.27 1

“Mass Production Cost Estimation for Direct H2 EM Fuel Cell Systems for Automotive Applications: 2010

Update,” September 30, 2010; B.D. James, J.A. Kalinoski, K.N. Baum;
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* PEM Manufacturing Process

m

Hydrogen & Fuel Cells 2013, Vancouver 16-19 June.

= Gore-Select® SOTA

electrolyte is based on
Nafion® cast on a porous

expanded e-PTFE substrate.

®* The processing cost to

manufacture the PEM
remains a major and

dominant cost element.
= A cost-competitive process

with a reduced number of

steps while maintaining the

mechanical properties and

Gore-Select ® membrane fabrication process
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the performance and
durability of Gore®

membranes still required.
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* PEM Manufacturing Process

Crossover (sccm)
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4 Humidity cycling accelerates

mechanical failures in the
absence of electrochemical
degradation

= Different processing technologies may
dramatically change the performance.

= Melt-extruded PEMs have improved

Shes Fe———

Failure Criteria

-
o

mechanical durability compared to solution
cast analogs.
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Lai, Y.-H. et al. Journal of Fuel Cell Science and Technology 6 (2), 1-13, 2009.

Process for membrane
manufacturing
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DuPont™ Nafion® (NR-111) Solution-cast (25 mm) 4000-4500 800-1000
Gore™ Primea Reinforced solution-cast (25 mm) 6000-7000 1300
lon Power™ Nafion® (N111-iP) | Melt-extruded (25 mm) 20000+ 1800




* Objectives

= Qur collaborations and industrial projects are focused on
paths with the most remaining opportunities and highest
impact on cost, performance and durability.

" One of our group focus is the development of advanced
polymeric electrolytes with:
1- higher performance and durability through components
design and morphology control
2- reduced cost through methods of manufacturing; thinner

robust membranes, high throughput methods of
manufacturing
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* Project Objectives

Develop a unique, high-volume manufacturing processes that produces low-
cost, durable proton exchange membranes and membrane-electrode-
assemblies, capable of meeting the demands of high volume production and
durability requirements for automotive applications.
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* Objectives

—[(CF2CF2)n(CFCF))y\——
—[(CF2CF2)n(CFoCF)lx—
OCF,CFCF;
| OCF,CFG0,H)
OCF,CFE0H)
Structure of LSC PFSA Structure of SSC PFSA

Polyelectrolyte membranes based on PFSA block copolymers are
still the state-of-the-art polyelectrolytes in PEMFC
We proposed in this project:

* Investigate melt-processing technologies for thin
polyelectrolytes manufacturing and assess their impact on the
morphology and properties

* By the use of melt-processing technologies, we were also
expecting to improve the durability and reduce manufacturing
cost (easily scalable fabrication process for mass production)

* Increase low RH operation (hydrophilic inorganic fillers)
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* Manufacturing Process

Melt-extruded thin polyelectrolytes : melt-casting vs. melt-blowing

PFSA: R-1000-CS from lon-
8. Nlp Rolls Power in the SO,F form

#. Treater (EW=1000)

Station Post hydrolysis for
conversion to the SO;H
form

5 Wip Rulls
7. Collapsing

3. Uig Frame

€. Bubbte

2. Exlruder

1. Feed §. Alr Ring

Melt-blown film

cenerally has a better

2. Extruder 3, Screen Pack 10. Winder .

T BTG balance of mechanical

; = properties than melt-
cast films because it is
drawn in both the
transverse and
machine directions.

* Melt-blowing process
allows a better
thickness control
(minimize waste)

4. Chiil Reli
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» Characterization: XRD

(patent application USSN 61/577,138)

XRD Transmission mode on solution-cast extruded and melt-

blown membranes

——R-1000-Extruded -—R-1000-Melt-Blown ~——NRE-211

4000

i ~ Diffraction peaks at 2 theta of

3000 _ 17.5° and 39.6° corresponds to d-
_ spacing of 5.5A and 2.4A
£ »w respectively are attributed to
E 00 Teflon-like domains of Nafion® :
E-) R-1000-CS R-1000-CS NRE-211
g 1500 Extruded Melt-blown

1000

Anisotropic pattern due to the higher
. orientation generated from the stretchingin
0 the machine direction during the cast-
o 10 20 30 40 50 80 extrusion process to achieve the required
2 Theta {degree) thickness
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* Characterization: EIS, WU, VC

Melt-extruded thin polyelectrolytes : melt-casting vs. melt-blowing

O (Ul o O O
ple ol R 80° 20° ptake ange
D0%R 0%R 0%R 0 0
NR-211 0.91 68.7 23.3 6.04 36.00 76.00
R-1000CS melt-cast 0.92 72.8 27.2 1.96 36.00 73.00
R-1000CS melt-blown 0.87 82.3 34.5 6.67 25.86 35.12
100
Schematic representation of crystallinity evolution 9% :ij::z;h::e
with processing 8
MD g 7
g 60
L5 o §
1 J f, 5 “ 3
57 S :
% é 20
g _/J S 9 10
Ungtretched unmlm' Blaxjally 0
Amorphous film Stretched film Stretched film
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* Morphology revealed by TEM

TEM on microtomed and Lead Acetate stained membranes

NRE-211 R-1000-CS
Solution-cast Melt-blown

* Solution-cast membrane: ordered ionic
domains agglomerated in spheres
ranging from 3 to 10 nm diameter

* Melt-extruded membrane: smaller
domains (4 to 6 nm), improved
dispersion and connectivity . Higher
density. Smaller water channels.
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* Bi-functional Additives

Azoles: bi-functional additives

H
= Extensively studied as proton I | [_?I_\",\l
carriers in anhydrous PEM @N {N) N
especially nitrogen based Pyrazole imidazole  Triazole
= Antifungal function and radical Ne NeN N
scavengers N’\\;/\NH Han L N (/IN)
» Bi-functional additives: Tetrazole " Benzimidazole

5-aminotetrazole

- Protection of functional

groups (SO5H) {? Q @

- rheology modifiers
(Plasticizers )

Thiazole Oxazole Isoxazole
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* Bi-functional Additives

Liet al. Chem. Mater. 2005, 17, 5884-5886
2.0
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a) Large irreversible oxidation peak near +1.0V (vs R . .
Ag/Ag+) in the voltammogram for imidazole. Oxidation (b) No. redox peaks observable for triazale in a W-IdEI'
products of imidazole are absorbed on the surface Pt potential range, 0 to +1.8V (vs Ag/Ag), and no obvious
electrode and block the surface active sites. change took place in the subsequent 50 cycles.

Imidazole appears tb be inadequate for fuel cell applications, largely due to the high

electronic density of the Im ring and also due to the diffusion and absorption on the
surface of the catalyst

Azoles with lower electronic density are electrochemically stable for fuel cell

applications and effectively promotes proton conductivity of materials and under
anhydrous conditions
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* Lab-scale and Pilot-scale Manufacturing

Lab-Scale melt-casting and Pilot-scale multilayer melt-blowing line
for thin films polyelectrolytes prototyping

PFSA ionomer: Nafion® NR-40 from
lon-Power in the SO;H form
(EW=1000)

Processing temperature: 260°C

EEEEm——————— e
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* Advanced polyelectrolytes for PEMFC

103 T T T T T T S —
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Comparison of viscoelastic dynamic modulus (n*) obtained
from frequency sweep tests on Nafion®NR-40 at 260°C with
different additives

’—_—\

Hydrogen & Fuel Cells 2013, Vancouver 16-19 June.

* Characterization: Rheology (ARES)

10° — ]
; T 0t —— —— —
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Comparison of viscoelastic dynamic modulus

{n*) obtained from frequency sweep tests on

NR-40 at 260°C with different additive molar
ratios

Comparison of viscoelastic Viscoelastic
dynamic storage modulus (G’) and loss
modulus (G”') obtained from frequency sweep
tests on NR-40at 260°C with different additive
molar ratios
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* Characterization: FTIR-ATR Analysis

ATR-FTIR spectra recorded for NR-40, triazole and triazole-based PEMs
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* Absorption bands at 1576 and 1410 cm! may be associated to the
protonation of the heterocycle of azole as it is speculated that the protons
in the Nafion-Tz blend structure are strongly interconnected between SO,
and Tz. (Ref. J. Electrochem. Soc. 154(4), A290, 2007)
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* Characterization: FTIR-ATR Analysis

ATR-FTIR spectra for NR-40 based PEMs with different activation

protocols, compared with NRE-211
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* Characterization: Conductivity (EIS)

Conductlvity {(S/cm)

Conductivity as a function of RH and mechanical durability performed by
collaborators at GM Electrochemical Energy Research Lab

——DE2020 N1000

-=-CEF_N1000MB15A_Activated

% Relative Humidity
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120

* Mechanical durability
protocol: RH cycling from
0 to 150% at 80C

* > 20000 cycles greater
than the 6000 cycles
lifetime of cast Nafion®
reference sample.

* Characterization: Mechanical Properties

Micro-tensile properties of membranes activated with protocol
A2 compared to commercial references
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* Characterization: Dimensional stability

Dry/wet changes in thickness and linear expansion in the machine
direction (MD) and transverse direction (TD)

80.00 -
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0.00 ~
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These polyelectrolytes swell preferentially in the thickness direction,
with little in-plane swelling differing from all commercially available
materials!
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* Dimensional stability

i‘—
2 ¥
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Figure 22: Image of mud crack in as-received MEA of damage within mud crack in MEA sam
20scycling

* Polyelectrolyte membranes dimensional stability is critical for PEMFC
durability (5000 hours lifetime required for commercial use)

* Reduced volume change during hydration dehydration cycles, may
prevent cracks in the catalytic layer and membrane and MEA failure
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* Characterization: Polarization FC testing

Cell Voltage (V)
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* Characterization: Polarization FC testing

o

Cell Voltage @ 1A/cm? (V)
o

°

o©

o

Conditionning time {(hours)
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* Characterization: Cumulative Fluoride Loss (OCV AST)

1y i
_ / ——PFBA MBT15 0212
2 a ~a-PFSA MBT15 (12-01-2011)
3 N —a—211C8 in Masked Cell
o / ——211 in Large Cell * Qutstanding chemical durability
s N_g 60 7 * Cumulative fluoride loss was more
b § F.f' » than one order of magnitude
£ 5 40 v lower than Nafion® 211 reference
: /
E i/ CFL = 160 mmol/cm? after 120
© - hours (9.6 cycles) for the stack
0 ni&—*‘w , with Nafion® 211 baseline
0 5 10 15 CFL=5 mmol/cm? after 162.5 hours

(13 cycles) for the five cell stack

Cycle
with the new PEM technology

CFL from the cyclic OCV AST on 5 cells stack with
Nafion® 211 references and acid extruded PFSA
membranes of this project.

Results provided by Ballard Power Systems
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* Conclusions

1. The use of melt processing technologies allows the
identification of opportunities for significant performance
and durability improvement, and cost reduction of PFSA
based polyelectrolytes for PEMFC

2. Azoles have been used successfully as bi-functional additives
providing robust PEMs with reduced in-plane swelling and
durability that meets automotive requirements
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