NRC Publications Archive Archives des publications du CNRC

Overview of the National and Provincial Energy Codes for buildings Taraschuk, C. R.; Mihailovic, M.; Knudsen, H.; Girgis, E.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

Publisher's version / Version de l'éditeur:

Building Science Insight 2009/10: Energy Efficiency in Buildings: New Tools and Technologies [Proceedings], 2009-01-01

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=7298abea-fa8f-4249-8fe6-080cb90c9848 https://publications-cnrc.canada.ca/fra/voir/objet/?id=7298abea-fa8f-4249-8fe6-080cb90c9848

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Institute for Research in Construction

Overview of the National and Provincial Energy Codes for Buildings

Cathy Taraschuk, Mihailo Mihailovic, Heather Knudsen and Elisabeth Girgis

Outline

- History of the Energy Code development in Canada
- National Energy Code for Buildings (NECB) 2011
 - Impetus for updating the 1997 Model National Energy Code for Buildings
 - Approach used in NECB and details
- Provincial/Territorial Energy Requirements for Building Construction

National Code System

Task Groups (e.g. TG on Building Envelope)

The Process

- From proposed changes to requirement:
 - Change Request from Proponent
 - Standing Committee Review
 - Standing Committee Development
 - Public Review
 - Standing Committee Final Recommendation
 - Commission Decision
 - Publication of Codes

History

- 1974 Department of Energy Mines and Resources requested interdepartmental committee to draft guidelines for energy efficiency of government buildings
- Associate Committee on the National Building Code (ACNBC) given mandate

- Standing Committee on Energy Conservation in Buildings
 - first meeting November 1976
 - technology for performance modeling not sufficiently advanced
 - Code set as prescriptive
 - Code based on ASHRAE 90 Standard
- Fall 1977 first draft document for public comment

 1978 – First edition of the "Measures for Energy Conservation in New Buildings"

- Second edition of Measures for Energy Conservation in Buildings was published in 1983
 - new section for houses
 - only province to adopt the Measures was Quebec, with some changes
 - 1990 Ontario Building Code included insulation levels for houses based on 1983 edition
 - CMHC compliance mandatory for housing financed under the National Housing Act

- 1989 Suspension of technical work
- 1990 Funding, market forces → technical work recommences

Model National Energy Code for Buildings 1997

- Prescriptive approach: building envelope, HVAC, service water heating, lighting, electrical power
- Engineering approach: performance → "Performance Compliance for Buildings"
 - reference and proposed building modeling
- Model National Energy Code for Houses (MNECH) published in 1997

- Total life-cycle costing
- Different construction requirements for different energy sources
- Regional variations in energy costs
- Not widely adopted

Decision to Update

- June 2005 Canadian Commission on Building and Fire Codes (CCBFC) meeting
 - NRCan presentation and request for update
- Motion
 - "Moved ... and seconded ... that CCBFC supports, as a first phase, the work on the technical basis for the development of the revisions to the MNECB as a progeny document on condition that the necessary support and funding for the project is provided from NRCan and/or others."

Decision to Update

- Building Energy Codes Collaborative (BECC)
 - business plan
 - P/T support
 - funding from NRCan
- February 2007 CCBFC meeting
 - "Moved by ..., seconded by ..., that the updating of the MNECB as a progeny document based on the BECC business plan be approved, subject to:
 - the process to develop the document would follow the policies and procedures of the Commission
 - the work would not compromise the capacity to complete the current and ongoing priorities of the coordinated codes development system"

NECB 2011

- Standing Committee on Energy Efficiency in Buildings (SC-EEB) formed in 2007
- First meeting in December 2007
- Task groups
 - Building Envelope
 - HVAC and Service Water Heating
 - Lighting and Power
 - Performance Compliance
 - Code Consolidation

NECB 2011

- Objective-based
- Energy used by the building
- Paths of compliance
 - Prescriptive path
 - Trade-off path (within the Part)
 - Performance path
- Simple payback approach
- Energy target

Task Group on Building Envelope

- Air leakage requirements are being introduced for building envelope assemblies
- Maximum overall thermal transmittances (U-values) will not differ for different types of construction
 - will be one U-value for roofs, one U-value for opaque walls, one for vertical glazing, etc.
- Thermal requirements categorized by climate zone, defined by heating degree days – six Canadian climate zones
- Thermal requirements will be fuel source neutral

Task Group on Building Envelope (cont'd)

Existing Provisions

Table A-3.3.1.1.(1)

Prescriptive Requirements – Above-ground Building Assemblies

Forming Part of Sentence 3.3.1.1.(1)

		Principal Heating Source			
	Assembly Description	Electricity, Other	Oil, Propane, Heat Pump	Natural Gas	
		Maximum Overall The	rmal Transmittance (I	U-value), W/m² ºC	
Roofs					
Type I - a	attic-type roofs	0.140	0.200	0.200	
Type II - parallel-chord trusses and joist-type roofs		0.230	0.230	0.230	
Type III - all other roofs (e.g., concrete decks with rigid insulation)		0.290	0.410	0.470	
Walls		0.330	0.480	0.550	
Floors					
Type I	 parallel-chord trusses and joist-type floors 	0.220	0.220	0.220	
Type II	 all other floors (e.g., concrete slabs with rigid insulation) 	0.290	0.410	0.470	

Task Group on Building Envelope (cont'd)

Proposed Approach

	Principal Heating Source		
Assembly Description	Electricity, Other	Oli, Prepane. Heat Pump	Natural Gas
	Maximum Overall The	rmal Transmittance (I	U-value), W/m² ºC
Roofs		X	
Type I - attic-type roofs	0.140	0.200	0.200
Type II - parallel-chord trusses and joist-type roofs	0.230	0.230	0.230
Type III - all other roofs (e.g., concrete decks with rigid insulation)	0.290	0.410	0.470
Walls		X	
Floors		X	
- parallel-chord trusses and joist-type floors	0.220	0.220	0.220
Type II - all other floors (e.g., concrete slabs with rigid insulation)	0.290	0.410	0.470

Lighting

- Lighting requirements are generally being harmonized with ASHRAE 90.1 2010
- Additional requirements for automatic control devices, including automatic daylighting controls
- Lighting power allowances for building exteriors will be introduced for more exterior lighting applications

Lighting (cont'd)

Lighting Power Density (LPD) tables updated

Lighting Power Densities Using the Building Area Method

Building Area Type	W/m ²
Automotive facility	9.79
Convention center	11.30
Courthouse	11.51
Dining: bar lounge/leisure	10.87
Dining: cafeteria/fast food	10.01
Dining: family	10.11

Lighting (cont'd)

LPD tables updated

Lighting Power Densities Using the Space-by-Space Method

Common Space Types	LPD, W/m ²	Building-Specific Space Types LI	PD, W/m²
Office – Enclosed	X	Gymnasium/Fitness Centre	X
Office – Open Plan	X	Playing Area	X
Conference/Meeting/Multipurpo	ose x	Fitness Area	X
Classroom/Lecture/Training	X	Courthouse/Police Station/Penitentiary	X
For Penitentiary	X	Courtroom	X

Lighting (cont'd)

- Simple trade-off compliance path
 - quantify the impact of daylighting/daylight dependent and other controls
 - compare the overall lighting energy use of a building to a prescriptive baseline

Electrical Power

Few technical changes are proposed

- For prescriptive path, values for efficiency ratings, insulation thicknesses, etc., are being updated to minimum values listed in other standards and efficiency acts
- New requirements
 - maximum temperature set points for vestibules
 - more requirements for when cooling is installed
 - more requirements for heat recovery systems
 - requirements for solar thermal service water heating equipment

- For trade-off path, system efficiencies as opposed to individual component efficiencies – would include losses through the ducts and pipes
- For compliance path, criteria/systems that cannot be altered from the prescriptive or trade-off approaches

Existing Provisions

Table 5.2.13.1.

Heating, Ventilation and Air-Conditioning Equipment Performance Standards
Forming Part of Sentence 5.2.13.1.(1)

Component	Cooling Capacity	Standard	Rating Conditions	Minimum Performance		
Air-cooled unitary air-conditioners and heat pumps – electrically operated (Except packaged terminal air-conditioners and room air-conditioners						
Split-system	≤ 19 kW	CAN/CSA-C273-M (including General Instruction No. 4)		In Standard		
Single package	≤ 19 kW	CAN/CSA-C656-M (including General Instruction No. 2)		In Standard		
All phases	> 19 and < 73 kW	CAN/CSA-C746				
Air-conditioners, all phases	73 - 222.7 kW (250 000 - 760 000 Btu/h)			EER = 8.5(1) $IPLV = 7.5(2)$		
	> 222.7 kW (760 000 Btu/h)	ARI 360		EER = 8.2(1) $IPLV = 7.5(2)$		

Proposed Provisions

System	Туре	System Differential on	System Components	Minimum Component Efficiency	Minimum Total System Efficiency (per all of the minimum Components)	Notes
Heating	Forced air	Up to 225,000 Btu/h	 Heat source Fan Static press Ducting Controls Terminal units Insulation 	 E_{hs} = 85% E_f = E_{sp} = E_{du} = E_c = E_{tu} = E_i = 	$SE_{fah} = 75\%$ $(85\% \times E_f \times E_{sp} \times E_{du}$ $\times E_c \times E_{tu} \times E_i)$	Any other relevant info or comments go here; you can also include the relevant section of the MNECB here, i.e. see below

System Efficiency Compliance			
Efficency Gain/Penalty:	1.3%		2 (0 11)
Comliance:	System is MNECB Compliant Reset Reference		Reference Settings
System Type:	Built-up Variable Volume		
Location:	Montreal		
Components Effic		Units	
Supply Fan	60.0%	%	
Supply Motor	91.7%	%	
Return Fan	37.5%	%	
Return Motor	80.0%	%	
Supply Temperature Control	Constant, below 15 oC	Selection	
Airflow Control	60.4%	%	
Supply Static Pressure	4.0	in. w.g.	
Supply Duct Leakage	5.0%	%	
Supply Duct Insulation	5.0	R-value	
Return Static Pressure	1.0	in. w.g.	
Heating Coil	20.0	°F	
Reheat Coils	20.0	°F	
Baseboards	6.0	°F	
Boilers	80.0%	%	
Cooling Coil	3.7%	°F	
Chillers	6.2	COP	
Heat Rejection	0.015	W/btuh	

Task Group on Building Performance Compliance

- Compliance will ultimately be based on building energy targets – for either 2011 version or subsequent
 - if use reference and proposed building approach, criteria/systems that are in the proposed building will be included in the reference building (e.g., cooling)
- Contents of supplement "Performance Compliance for Buildings" is being shifted to either the Code, the explanatory appendix to the Code, or a proposed users guide

Stay tuned...

- The Model National Energy Code for Houses (MNECH) was last published in 1997.
 - Has not been maintained since.
- Present development:
 - January 2008 CCBFC Executive Committee reviewed a code change request to add an energy objective to the NBC.
 - Also received correspondence from CHBA in support of refurbishing the MNECH.

- A Joint CCBFC/PTPACC Task Group was formed and recommend the following approach:
 - Follow application/scope of Part 9
 - incorporate technical requirements on Energy Efficiency into a separate section of Part 9 of the NBC.
 - include prescriptive requirements
 - Attempt to include performance targets
 - use NRCan's EnerGuide for New Homes and MNECH 1997 as a resource.

- Add energy efficiency in housing and small buildings to the Terms of Reference and work plans of SCEEB and SCHSB.
- A joint SCEEB and SCHSB task group will be formed to develop the technical requirements.
- Objectives and functional statements for buildings will be suitable for housing.
- Publish technical requirements as an interim change no later than 2012.

- Will address:
 - Building Envelope
 - HVAC
 - Service Water Heating (?)
- Water use efficiency is currently being reviewed for inclusion.

Current Status:

- Terms of Reference being drafted
- Seeking volunteers for membership (from SCEEB, SCHSB and external)
- First meeting to be held before end of the year.

Construction Institute for Research in

Bringing quality

built environment

www.nrc-cnrc.gc.ca/irc

