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This paper presents a mathematical  model for calculating the forces  

that a moving ice cover will exer t  against an isolated pile. 

The model requires  knowledge of the relationship between s t ra in  ra te  in 

the ice and the ra te  at which the ice cover i s  moving relative to  the pile. An 

experimental and a theoretical  approach to the derivation of this relationship 

a r e  advanced. 

It i s  assumed that compressive fai lure of the ice in the zone adjacent to 

the pile controls the thrus t  on the pile. It i s  further assumed that the mode of 

fai lure in th is  zone i s  comparable to  that for uniaxial compression t e s t s  in the 

laboratory. The model takes into account the influence of ice type, s t ra in  rate,  

pile geometry and temperature  on the thrust  on the pile. 



INTRODUCTION 

The prediction of the force that ice can exer t  on a s t ructure  i s  a design 

problem that has still  not been solved adequately. This i s  due to lack of knowl- 

edge of the deformation behaviour and strength of ice ,  insufficient information 

concerning the character is t ics  of ice covers associated with the design condition, 

and lack of appreciation of the interaction between ice and s t ructures .  The 

theoretical  investigation of a number of relatively simple cases  would result  in 

useful progress  towards establishing design cr i ter ia .  If the assumptions a r e  

properly chosen, the calculations should give the maximum loads that could be 

expected. These studies could also provide a basis  for  further refinement of the 

design method based on additional field, laboratory, and theoretical  studies. 

One situation that i s  of in teres t  i s  that of the force developed on a rigid 

c i rcular  pile by a laterally-moving ice cover.  In this paper a method i s  p r e s -  

ented fo r  calculating the load for the condition of continuous contact between the 

ice and half the circumference of the pile. The model takes into account the 

s t ra in  ra te  dependence of the resistance of ice to  deformation, and the effect of 

temperature.  

DEFORMATION BEHAVIOUR OF ICE 

It i s  necessary  to have some knowledge of the deformation behaviour of 

ice to properly understand the interaction between an ice cover and a s t ructure .  

Under certain loading conditions ice behaves in a viscoelastic manner.  If i t  i s  

deformed at  a constant ra te  of s t ra in ,  i t  exhibits an upper yield s t r e ss .  The 

s t ra in  associated with yield depends on the type of ice being deformed and the 

ra te  of deformation. F o r  the m o r e  res is tant  types of ice and the ra tes  of defor-  
- 3 

mation that should be considered in design, the s t ra in  at yield i s  about 2 x 10 (1). 

If the s t r e s s  or ra te  of strain imposed on the ice exceeds a fair ly cri t ical  

value, crack formation i s  initiated (2). This cracking activity causes a deterio- 

ration of the s t ructure  and contributes to the occurrence of yield o r  failure. F o r  

the loads of in teres t  for  design, the deterioration of the s t ructure  by crack 

formation would be so  extensive a t  yield that the ice could not be assumed to  have 

the same deformation propert ies a s  in the uncracked state. The cracks  would 

have so  relieved internal  constraints ,  however, that i t  would be reasonable to 

assume that the uncracked portions have a resistance to deformation of about the 

same value a s  that observed in an unconfined compression test .  



Fa i lu re  o r  yield in an unconfined compress ion  tes t  at the r a t e s  of s t r a in  

under considerat ion occurs  by the formation of a fault zone in which the re  i s  a 

m a r k e d  inc rease  in cracking activity. This  zone i s  approximately para l le l  

to  the plane of maximum shea r .  F o r  s t r a in  r a t e s  l e s s  than that associated with 

the ducti le- to-bri t t le  t rans i t ion  in behaviour, the m a t e r i a l  in  the zone r ema ins  

intact,  but the deformation of the specimen i s  concentrated in this  region (i .  e . ,  

the s t r a in  becomes,non-uniform).  At r a t e s  of s t r a in  g r e a t e r  than that assoc ia ted  

with the ducti le- to-bri t t le  t rans i t ion  in  behaviour, the formation of the zone i s  

abrupt and r e su l t s  in  catastrophic fai lure.  It i s  assumed that a s imi l a r  ductile 

o r  br i t t le  fa i lure  behaviour takes  place for  the situation under considerat ion,  

and that  the maximum load i s  associated with compress ive  yield o r  fa i lure  of the 

ice  immediately adjacent to the pile. 

It  i s  n e c e s s a r y  to es tab l i sh  the relat ionship between the s t r a in  r a t e  in  the 

i ce  immediately adjacent to the pile and the r a t e  of penetration of the cover i f  

the  foregoing assumptions a r e  to be used  in calculations of the maximum load 

tha t  can be exerted.  This  relat ionship could be establ ished by measu remen t .  

The sma l l  amount of information available f r o m  field s tudies indicates that  the  

shape of the load-penetration curve f o r  approximately constant r a t e  of pene t r a -  

tion i s  s imi l a r  to that of the s t r e s s - s t r a i n  curve  f rom constant s t r a in  r a t e  

t e s t s  (3) .  Lf yielding in the immediate vicinity of the pile has  the same  s t r a in  

dependence a s  in  the unconfined constant s t r a in  r a t e  t e s t s ,  comparison of these 

labora tory  r e su l t s  with field observat ions on load and penetrat ion would give the 

dependence of the s t r a in  r a t e  in th is  a r e a  on the r a t e  of penetration. The re  i s ,  

unfortunately, insufficient published information to allow th is  compar ison  to be 

made .  

In a l a t e r  sect ion of th is  paper a theore t ica l  relat ionship between the r a t e  

of penetrat ion and the r a t e  of s t r a in  in the i c e  i s  developed, assuming e las t ic  

behaviour. The assumption of e las t ic  behaviour should be reasonable f o r  a 

good proport ion of the load build-up p r io r  to yield at  the r a t e s  of penetrat ion of 

i n t e re s t  for  design. 

SOLUTION FOR PILE LOADING 

The situation under considerat ion i s  shown in Figure  1. A pile i n  

contact with the ice  cover over  the range 0 = + q, i s  subject to a fo rce  F 

acting through i t s  cent re .  The boundary conditions that  apply a r e  



o ( a ,  8) = o ( a ,  8) 2 ~ - ~ s 8 s q  
r (1)  

o (a ,  a )  = o ( a ,  8) = 0 q s e s 2 n - q  
r (2) 

T 8 ( a ,  8) = T ' (a,  8) = 0 0~ e s 2 r r  
r r 8 ( 3 )  

u (a, 8) = urZ ( a ,  8 )  2 T T - q s B < r (  (4)  

where  the p r imed  quantities r e f e r  to the pile and the unprimed to the ice .  

Following Noble and Hussain (4) ,  the s t r e s s  function f o r  the plane s t r a in ,  

e l a s t i c  case  that i s  appropriate  f o r  the boundary conditions i s  

where  D a r e  constants ,  a i s  the radius of the pi le ,  and v i s  Poisson's  rat io.  
n 

Ln the ice  the radia l  s t r e s s  i s  

and the radial  s t r a in  i s  r 1 

where  G i s  the shea r  modulus. Equation (6) indicates that the radial  s t r e s s e s  

a r e  compress ive ,  and it was found that  the c i rcumferent ia l  s t r e s s e s  a r e  tensile. 

Equations ( 6 )  and ( 7 )  f o r m  the bas is  f o r  the solution presented for  the pile loading 

problem. The foregoing derivat ion has been f o r  the plane s t r a in  case.  In the 

ice  cover  a t  some distance f r o m  the pile a plane s t r e s s  situation would exist .  



In the region very  near  the contact in ter face ,  however, the plane s t r a in  case  i s  

m o r e  appropriate (i. e . ,  the thickness of the ice  cover i s  assumed to be much 

g rea te r  than the region a t  the interface in which fai lure i s  initiated). 

Solving fo r  the net resultant  force  which an  ice cover can exe r t  involves, 

initially, a consideration of the s t r e s s  distribution around the pile. Because the 

loading i s  dynamic the s t r e s s  distribution will depend on the s t ra in  ra te  in the 

ice  adjacent to the contact interface.  F r o m  equation ( 7 ) ,  the radia l  s t r a in  d i s -  

tribution at  the interface i s  

m 
Fx ( 2  - 3V) case Do 

2Gz ( a ,  6 )  = - t - t 2 ( 1  - 2v) T ( n f  1) 
r 2 n ( l  - V )  a 2 n t  2 n 

D cosn8 (8 )  
a 2 a 

Equation (8)  s implif ies  to  

if Poisson's rat io has the value of $. This simplification i s  considered to be 

justified in the present  case  because of the deteriorat ion of the i ce  a t  yield due to  

crack  formation,  and the viscoelast ic  behaviour of the intact ma te r i a l .  If i t  i s  

assumed that the solution of Noble and Hussain (4 )  i s  s t i l l  valid, the pa ramete r  

D can be obtained in t e r m s  of F x ,  in which case  equation (9 )  reduces to  
0 

This  equation i s  talcen a s  being representat ive of the s t ra in  and s t r a in  r a t e  d i s -  

tribution around the contact interface.  The radia l  s t r a in  r a t e  distribution, 

therefore ,  i s  

where i s  the radial  s t r a in  r a t e  a t  the interface on the line of action of the 

fo rce  Fx. The normalized s t r a in  r a t e  distr ibution f r o m  the above function i s  

plotted in Figure  2 along with a s imple sinusoidal distribution for  comparison. 

The  unconfined compress ive  yield o r  fa i lure  strength for  a given ice  type 

i s  a function of both tempera ture  and s t r a in  ra te .  Let  i t  be assumed that  this  

function i s  separable  (i. e . ,  0 = (T)  . o2  ( E  )).  Over the ductile range of 
YP 1 

behaviour a t  a given tempera ture ,  the dependence of the yield strength on s t r a in  



r a t e  i s  found to have the f o r m  

where (5: and a a r e  experimentally determined and 2 i s  a rb i t r a r i ly  selected to  
0 

maintain the dimensionless f o r m  of the equation. Combining equations (1 1) and 

(12) gives for  the s t r a in  r a t e  dependence of the s t r e s s  distribution around the 

pile for  max imum load 

Gold and Krausz  (1)  found that for  columnar-grained ice at  -10°C 5 = 565 k 
- 7 -3  -1 cm2  

and u = 0.25 over the s t ra in  r a t e  range of 2 x 10 to 10 s e c  where 
- 1 

= 1 s e c  . The maximum value for  the yield strength occurred  at  theduct i le -  
0 

- 4 
to-bri t t le  t ransi t ion,  which was associated with a s t r a in  r a t e  of about 2 x 10 

- 1 
s e c  . 

Equation (13) implicitly a s s u m e s  that the maximum s t r e s s  corresponding 

to the s t r a in  r a t e  has  been mobilized simultaneously over the full sur face  of 

contact. In rea l i ty  this  will probably not occur .  When the load on the pile i s  

maximum,  pa r t  of the contact sur face  will have undergone deformation in excess  

of that for yield and pa r t  m a y  not have undergone sufficient deformation to attain 

the maximum s t r e s s  condition. The load calculated using equation (13) should, 

therefore ,  be g rea te r  than the actual  load for  the assumed conditions. It  should 

not be ve ry  much g rea te r ,  however, because the s t r e s s  depends on the s t r a in  

r a t e  r a i sed  to  the 1/4 power, and the s t r e s s  at  yield i s  relat ively insensitive to  

the s t r a in  (i. e . ,  the s t r e s s - s t r a i n  curve has  a maximum a t  yield). 

The normalized f o r m  of equation (1  3) i s  plotted in  Figure  3 for  a = 0. 25. 

Shown a l so  i s  the normalized s t r e s s  for  a sinusoidal s t r e s s  distribution, i. e . ,  

The net force  pe r  unit thickness of ice  cover,  f ,  i s  given by 



where rl i s  one-half the angle of contact. Values for  the angle of contact,  

which depend on the e las t ic  proper t ies  of the pile and i ce ,  and a r e  usually l e s s  

than n, a r e  given by Noble and Hussain (4). 

Substituting equation ( 1  3) into (15) g' lve s 

r'l 

Sample calculations showed that the force  p e r  unit thickness of the cover was 

reduced by l e s s  than 5 p e r  cent using the sinusoidal s t r e s s  distribution given by 

L .  
equation (16) with a = 0.25 and o = 565 kg/cm ; 1 .e . ,  

fq 

This  reduction would balance, at  l ea s t  part ial ly,  the overest imation of the fo rce  

due to the assumption that  the yield s t r e s s  i s  mobilized over the full contact 

surface.  The calculation does indicate the relat ive insensitivity of the load to  

smal l  changes in s t ra in  ra te .  

The yield strength of ice i s  tempera ture  dependent. This  dependence i s  

where Q is the apparent  activation energy 
- 3 

R i s  the gas  constant (1.98 x 10 k c a l / m o l e o ~ )  

T i s  the t empera tu re  in degrees  Kelvin and 
- 
a. i s  a constant fo r  t empera tu re  equal to To. 

Observations indicate that the apparent  activation energy has about the same  



value a s  that found f r o m  c reep  studies,  i. e . ,  about 20 kcal/mole (5) .  

Modifying equation (17) to  take into account tempera ture  gives 

where f i s  now the load pe r  unit thickness at  the level in the ice cover for  which 

the tempera ture  i s  T .  

Integrating equation (19) gives for  the total  load exer ted  on the pile by an 

ice cover of thickness h 

The tempera ture  in the cover will vary f r o m  the equilibrium freezing 

t empera tu re  at  the ice-water  interface,  to some value at the upper surface d e -  

te rmined by the weather and snow cover. If i t  i s  assumed for  design that the 

tempera ture  dec reases  l inearly f r o m  Tm a t  the ice-water  interface to some 
z 

value, Ts ,  a t  the surface ( i . e . ,  T = T s  t- (Tm - T s )  g where z i s  positive 

downwards f r o m  the su r face  and h i s  the ice  sheet  thickness) ,  then equation (20) 

where K(T), a tempera ture  correc t ion  function, i s  a constant for  a given t e m -  

pera ture  of the surface  and the ice-water  interface,  and L(@), a geometry 

function, i s  a constant for  given relat ive e las t ic  proper t ies  of the pile and the ice. 

Both of these  functions can only be evaluated numerical ly.  The tempera ture  

correc t ion  function i s  plotted in F igure  4 and the value of the geometry function 

for  the case  of a rigid pile i s  1.80. Equation (21) indicates that the ra t io  of the 

total  load to  the product  of the pile d iameter ,  d, and i c e  thickness,  h, has  the 



following dependence on s t r a i n  r a t e  

i. e . ,  the no rma l i zed  load on the pile i s  p ropor t iona l  to  the yield s t r eng th  of t he  

i c e  in contact  with the pile.  

THEORETICAL RELATION BETWEEN STRAIN RATE AND PENETRATION 
RATE 

T o  give the p rope r  perspec t ive  t o  the d i scuss ion  p re sen t ed  in th i s  sect ion,  

cons ider  equation (21)  which shows that  the  pi le  loading depends on the s t r a in  

r a t e  r a i s e d  t o  the power % ,  where  a i s  a s m a l l  number  ( fo r  co lumnar-gra ined  

r i v e r  i c e  a = 0. 25). Even  an  approximate  re la t ion ,  t he r e fo re ,  between s t r a i n  

r a t e  and penetrat ion r a t e  would be useful  f o r  predict ing the lpad. 

Integrat ing equation ( 7 )  f o r  the r ad i a l  s t r a i n  g ives  

F 
X 

r I 2 
2Gu ( r ,  9 )  = - ( 3  - 4 ~ )  dn r  - (1 - 2v) - 

Do 
cose  - - 

4 n ( l  - V )  
2 r 

r 

whe re  f ( 9 )  i s  an odd function of 8. The na tu ra l  boundary condition t o  u s e  t o  d e -  

t e r m i n e  t h i s  function would be u = 0 fo r  r  = w , but i t  cannot be applied e a s i l y  

because  of the  & n r  t e r m .  This  difficulty can  be c i rcumvented  by choosing an 

a r b i t r a r y  rad ius ,  &, fo r  which the d i sp lacement  i s  negligible.  Applying this  con-  

dition t o  equation (23)  and a s suming  a Poisson ' s  r a t i o  of $ gives 

2 
whe re  i2 >> a . 
F o r r = a  and 8 = O  



F m 
x a 2n n 

D 
2Gu ( a ,  0) = - - Rn - t D 

2 Tr R o L .  n - 1  n t  1 ' 
(25)  

a a 

Using the solution given by Noble and Hussain (4)  to de termine  D and D in 
o n 

t e r m s  of F and combining the resul t  with equation (1  0) with B = 0 gives 
X I  

E a 
= 2.22 

ur  ( a ,  0)  
(26) 

1.22 [t- + R n i  - 0.616 

The  dependence of the s train-displacement r a t io  on a/R i s  shown in F igu re  5. 

All ice cove r s  and f loes  a r e  finite. F igu re  5 shows tha t  once the s ize of 

the floe o r  sheet  exceeds approximately 50 t imes  the pile radius,  the ra t io  of the 

s t r a in  to  the displacement evaluated a t  the pi le- ice interface i s  relat ively insen- 
- 2 - 3 

si t ive to  i t  (e. g . ,  a d e c r e a s e  in a/R f r o m  5 x 10 to 10 causes  a corresponding 

dec rease  in er#ur frorh 0.45 to 0.25). F o r  a given floe s ize  the ra t io  i s  a 

constant.  

Rearranging equation (26) and differentiating with r e spec t  to t ime  gives 

;,(a, 0)  
t r  ( a ,  0) = - 

kd 

where d i s  the d i ame te r  of the pile and 

The dependence of k on a/R i s  shown in F igu re  6. Equation (27) indicates that f o r  

a given floe s ize,  the s t r a in  r a t e  in the ice  a t  the pile va r i e s  inverse ly  with the 

pi le  d i ame te r .  Equation (27) a g r e e s  with that  given by Korzhavin (6 )  i f  k i s  s e t  
- 3 

equal t o  2 ( i . e . ,  a/R = 10 ). 

Substituting equation (27) into equation (21) gives 

F o r  a given m a t e r i a l  behaviour and t empera tu re  condition equation (29) reduces  

where  N i s  a proportionality fac tor  that  t akes  into account tempera ture  effects,  

s t r a in  distr ibut ion around the pile, s t rength  proper t ies  of the i ce ,  relat ive 

e las t ic  proper t ies  of the ice  2nd pile, and the geometry  factor  relating s t r a in  

10 8 2 



r a t e  and penetration r a t e .  

The normalized fo rce ,  - i s  plotted against the s t ra in  r a t e  in Figure  7 
hd ' - 2 

for  the case  of T = -1O0C, oo = 565 kg c m  , 3, = 0.25, ice  surface  t empera -  
0 

tu re  -1O0C, ice-water  interface t empera tu re  0°C and floe d iameter  for ty  t imes  
a - 4 

the pile d iameter  ( i . e . ,  - = 40, k = 1.25).  Note the s t ra in  r a t e  of 2 x 10 
a - 1 

sec  , which i s  the ra te  associated with the ducti le- to-bri t t le  t ransi t ion f o r  
-4  -1 

columnar-grained ice a t  -10°C. F o r  s t ra in  r a t e s  l e s s  than 2 x 10 s e c  the 

ice  would be expected to behave in a ductile manner .  F o r  s t r a in  r a t e s  g r e a t e r  
-4 -1 

than about 2 x 10 s e c  , laboratory observations indicate that the strength in 

simple compress ion  i s  constant o r  even d e c r e a s e s  with increasing r a t e  (7) .  The 

normalized force  a t  the s t r a in  r a t e  associated with the ducti le- to-bri t t le  t r ans i -  

tion would, therefore ,  be the maximum that could occur for  the assumed con- 

ditions. Bea r  in mind, however, that  this t rans i t ion  s t r a in  r a t e  i s  tempera ture  

dependent. 

DISCUSSION 

The theory developed i s  for  cold ice (i. e . ,  tempera ture  l e s s  than 0 "C) in  

intimate contact with a rigid cylindrical pile. The equations obtained should give 

an  upper l imit  to the thrus t  that can be induced, and the i r  form i s  sufficiently 

simple that i t  should be relat ively easy  to  determine the i r  validity through field 

measuremen t s .  

F o r  many situations significant movement of the ice relat ive to a s t ruc ture  

only occurs  during spring breakup (e .  g. , many pier  s i tes ) .  Values of loads that 

have been obtained for  this condition a r e  shown in Figure  7. Neil l ts  r e su l t s  (8)  

a r e  fo r  two s i tes  with pier  d i ame te r s  of 0.85 and 2.3 m .  The ba r s  indicate the 

range in velocities and ice  floe s i zes  observed. It should be noted that  the 

2 .3  m pile was inclined a t  23' f rom the vert ical .  The observed loads a r e  not 

m u c h  sma l l e r  than the maximum predicted by equation (21) for  an ice  cover at  

0°C throughout. F igure  7 indicates the la rge  range in s t r a in  r a t e s  that m u s t  be 

taken into consideration, both in design and research .  

Also shown in Figure  7 a r e  r e su l t s  obtained by Nuttall and Gold (9 )  f rom 

laboratory t e s t s  simulating pile loading by columnar-grained ice ca r r i ed  out at  

-10°C. The theoret ical  curve for  a tempera ture  of -10°C throughout the ice i s  

shown for  comparison. The s t ra in  r a t e s  were  evaluated a t  the point where 

creep  s t ra in  was equal to  the assumed s t r a in  a t  yield (2 x lo- ) ) .  In a l l  ca ses  

this  s t ra in  occurred  in the region of p r i m a r y  creep .  Note that the observed 



loads a r e  sn la l le r  than the theoret ical ly predicted ones. If the s t r a in  r a t e s  

associated with the secondary c reep  stage a r e  used  in the calculat ions,  the 

predicted loads f o r  given conditions a r e  l e s s  than the ones applied. 

It  would be expected that  an ice cover would be in int imate contact with a 

pile only during the very  ini t ial  period of i t s  movement relat ive to it .  Once the 

fa i lure  p rocess  had been induced, contact between the i ce  and pile would probably 

no longer be continuous. It  would be expected tha t  s t r e s s  concentrations would 

exis t  a t  the points of contact f rom which fa i lure  could continue with relat ive ease .  

The load resul t ing f rom such par t ia l  contact conditions would be l e s s  than that 

predicted assuming int imate contact. 

During spring breakup the ice  cover can be expected to be a t  O°C through- 

out, and the width of the f loes m u s t  be equal t o  o r  l e s s  than that of the channel. 

Labora tory  studies indicate that  the  s t rength  of melting ice i s  l e s s  than that which 

would be predicted by equation (18) ,  (6) .  The foregoing f ac to r s  m u s t  be taken 

into considerat ion in field investigations and when establ ishing design c r i t e r i a .  

They could account, along with the possible d e c r e a s e  in s t rength  with inc rease  in 

s t r a i n  r a t e  in the bri t t le  region, f o r  the difference between the predicted and 

observed fo rces  shown in F igu re  7 .  

Equation (30)  indicates that the normal ized  load d e c r e a s e s  a s  the  pile 

d i ame te r  i nc reases .  It  might  be considered that th is  i s  a geometry  effect,  but i t  

i s  in  real i ty a s t r a in  r a t e  effect.  This  can be appreciated by refer r ing  to equation 

(27)  which indicates that the s t r a in  r a t e  in the ice  at  the pile va r i e s  inverse ly  a s  

the pile diameter ' .  This  possibility m u s t  be taken into consideration if the r e l a -  

tion between r a t e  of penetrat ion and s t r a in  r a t e  in the ice  a t  the pile i s  t o  be 

de termined by comparison of field and labora tory  observat ions.  

As the value of the exponent, a , in equation ( 3 0 )  i s  probably l e s s  than 

0. 5, the unit load developed on the pile will not be s trongly dependent on ra te  of 

penetrat ion and pile d i ame te r  in the ductile region. The range of d iameter  and 

r a t e  of penetrat ion will have to  cover s eve ra l  decades ,  therefore ,  to  de termine  

proper ly  the validity of the equation f r o m  field investigations. 

CONCLUSIONS 

It has been shown that  the dependence of the th rus t  exer ted  on a c i r cu la r  

rigid pile of d i ame te r  d by a moving ice cover of thickness h i s  given by 



where  6 i s  the relat ive r a t e  of movement  between the pile and the ice ,  a i s  an  

exponent that depends on the type of ice,  and N i s  a f ac to r  taking into account 

t empera tu re  effects ,  s t r a in  dis tr ibut ion about the pile,  s t rength  of the ice,  e l a s t i c  

p rope r t i e s  of the i ce  and pile and geome t r i c  f ac to r s .  It gives an  upper  l imit  t o  

the predicted load, i s  sufficiently s imple  t o  be readi ly  checked by f ield m e a s u r e -  

m e n t s ,  and provides a bas i s  fo r  fu ture  developments  and re f inements  of design 

c r i t e r i a  fo r  ice  t h rus t  on pi les .  

Th i s  paper  i s  a contribution f r o m  the Division of Building Resea rch ,  

National Resea rch  Council of Canada,  and i s  published with t he  approval  of the 

D i r ec to r  of the Division. 
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Q = 20 KCAL/MOLE (COLUMNAR GRAINED RIVER ICE) 

R =  1.98 x 10-3 K C A L / M O L E  O K  

T  = ICE SURFACE TEMPERATURE -DEGREE KELVIN 
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ICE S U R F A C E  TEMPERATURE - D E G R E E S  C E L C I U S  

F I G U R E  4 

TEMPERATURE C O R R E C T I O N  F A C T O R  F O R  C O L U M N A R  G R A I N E D  
I C E  C O V E R S  
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