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LLES FORCES EXERCEES PAR LA GLACE SUR UN PIEU CIRCULAIRE ISOLE

SOMMAIRE

 Le présent article propose un modele mathématique
servant a calculer les forces qulexerce une couver-
ture de glace en mouvement sur un pieu isolé. Le
modele exige une connaissance du rapport entre le
tauxde déformationdans lacglace et le tauxde mouve-
ment de la couverture de glace par rapport au pieu.
On présente une méthode expérimentale et une mé-
thode théorique pour détecminer ce rapport. On sup-
pose que la rupture de compression de la glace dans
la région prés du pieucontrole la poussée contre le
pieu. On suppose égalementque le mode de rupture

_dans cette région est comparable a celui quton re-
trouve dansles tests de corpression uniaxiale en la-
boratoire. Lemodele tientcompte de 1*influence que
le genrede glace, letaux dedéformation, la géomé-
trie du pieu et la température exercent sur la pous-
sée contre le pieu,




Reprinter without change of pagination from the Proceedings from the First International Conference
on Port and Ocean Engineering under Arctic Conditions, Volume I, pp. 73 — 92, 1971.

PORT AND OCEAN ENGINEERING UNDER ARCTIC CONDITIONS
TECHNICAL UNIVERSITY OF NORWAY

ICE FORCES ON AN ISOLATED CIRCULAR PILE

. ki L.W. Gold
R. Freder 1n.g & G Division of Building Research Ottawa
Research Officer & Head . .
. . National Research Council of Canada Canada
Geotechnical Section

This paper presents a mathematical model for calculating the forces

that a moving ice cover will exert against an isolated pile.

The model requires knowledge of the relationship between strain rate in
the ice and the rate at which the ice cover is moving relative to the pile. An

experimental and a theoretical approach to the derivation of this relationship

are advanced.

It is assumed that compressive failure of the ice in the zone adjacent to

the pile controls the thrust on the pile. It is further assumed that the rn‘ode of

failure in this zone is comparable to that for uniaxial compression tests in the
laboratory. The model takes into account the influence of ice type, strain rate,

pile geometry and temperature on the thrust on the pile.
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INTRODUCTION

The prediction of the force that ice can exert on a structure is a design
problem that has still not been solved adequately. This is due to lack of knowl-
edge of the deformation behaviour and strength of ice, insufficient information
concerning the characteristics of ice covers associated with the design condition,
and lack of appreciation of the interaction between ice and structures. The
theoretical investigation of a number of relatively simple cases would result in
useful progress towards establishing design criteria. If the assumptions are
properly chosen, the calculations should give the maximum loads that could be
expected. These studies could also provide a basis for further refinement of the

design method based on additional field, laboratory, and theoretical studies.

One situation that is of interest is that of the force developed on a rigid
circular pile by a laterally-moving ice cover. In this paper a method is pres-
ented for calculating the load for the condition of continuous contact between the
ice and half the circumference of the pile. The model takes into a;ccount the
strain rate dependence of the resistance of ice to deformation, and the effect of

temperature.

DEFORMATION BEHAVIOUR OF ICE

It is necessary to have some knowledge of the deformation behaviour of
ice to properly understand the interaction between an ice cover and a structure.
Under certain loading conditions ice behaves in a viscoelastic manner. If it is
deformed at a constant rate of strain, it exhibits an upper yield stress. The
strain associated with yield depends on the type of ice being deformed and the
rate of deformation. For the more resistant types of ice and the rates of defor-

. ~3
mation that should be considered in design, the strain at yield is about 2 x 10 ™ (1),

If the stress or rate of strain imposed on the ice exceeds a fairly critical
value, crack formation is initiated (2). This cracking activity causes a deterio-
ration of the structure and contributes to the occurrence of yield or failure. For
the loads of interest for design, the deterioration of the structure by crack
formation would be so extensive at yield that the ice could not be assumed to have
the same deformation properties as in the uncracked state., The cracks would
have so relieved internal constraints, however, that it would be reasonable to
assume that the uncracked portions have a resistance to deformation of about the

same value as that observed in an unconfined compression test.



Failure or yield in an unconfined compression test at the rates of strain
under consideration occurs by the formation of a fault zone in which there is a
marked increase in cracking activity. This zone is approximately parallel
to the plahe of maximum shear. For strain rates less than that associated with
the ductile-to-brittle transition in behaviour, the material in the zone remains
intact, but the deformation of the specimen is concentrated in this region (i.e.,
the strain becomes non-uniform). At rates of strain greater than that associated
with the ductile~to-brittle transition in behaviour, the formation of the zone is
abrupt and results in catastrophic failure. It is assumed that a similar ductile
or brittle failure behaviour takes place for the svituation under consideration,
and that the maximum load is associated with compressive yield or failure of the

ice immediately adjacent to the pile.

It is necessary to establish the relationship between the strain rate in the
ice immediately adjacent to the pile and the rate of penetration of the cover if
the foregoing assumptions are to be used in calculations of the maximum load
that can be exerted. This relationship could be established by measurement.
The small amount of information available from field studies indicates that the
shape of the load-penetration curve for approximately constant rate of penetra-
tion is similar to that of the stress-strain curve from constant strain rate
tests (3). If yielding in the immediate vicinity of the pile has the same strain
dependence as in the unconfined constant strain rate tests, comparison of these
laboratory results with field observations on load and penetration would give the
dependence of the strain rate in this area on the rate of penetration. There is,
unfortunately, insufficient published information to allow this comparison to be

made.

In a later section of this paper a theoretical relationship Between the rate
of penetration and the rate of strain in the ice is developed, assuming elastic
behaviour. The assumption of elastic behaviour should be reasonable for a
good proportion of the load build-up prior to yield at the rates of penetration of

interest for design.

SOLUTION FOR PILE LOADING

The situation under consideration is shown in Figure 1. A pile in
contact with the ice cover over the range 6 = * 1, is subject to a force F
x

acting through its centre. The boundary conditions that apply are



= 1 -
Or (a, 8) Or (a, 8) 2mr-n<8<sn (1)
o (a, 8) =0 *(a, 8)=0 ns6s27-n (2)
Tre (a, B8) = Tre’(a, 8) =0 0<9=<2m (3)
u (a, 6) = u t(a, 6) 2m-n<6<sn (4)
r T

where the primed quantities refer to the pile and the unprimed to the ice.

Following Noble and Hussain (4), the stress function for the plane strain,

elastic case that is appropriate for the boundary conditions is

F
X

PG )

2
2(1 - v)rBsinb - (1 - 2Vv) [rznr + %; Jcos@

o

1 + 1
+D£nr+v)_| — .z
[0} B n n-1
2 r

1N 1
(72) w2 | Dacosnt (3
a r

where Dn are constants, a is the radius of the pile, and v is Poisson'!s ratio.

In the ice the radial stress is

c (r, 6) = FX 41 - V) (1 - 2v) 1 iz— cosbB + i)
r T 4m(1-v) r T 2 2
T T
; n+ 2 n
FR - (n+ 1) D _cosnb (6)
n nt+2 n
2 a r T
and the radial strain is
FX 1 2 DO
a
T e — - N - —_— —
2G€r (r, 6) (1) (3 -4V) + (1 - 2v) 5 cosf + >
r T
N n+ 2 (1l -2v) n
+ ., — = - 5 cosnf (7)
= a r r

where G is the shear modulus. Equation (6) indicates that the radial stresses
are compressive, and it was found that the circumferential stresses are tensile.
Equations (6) and (7) form the basis for the solution presented for the pile loading
problem. The foregoing derivation has been for the plane strain case. In the

ice cover at some distance from the pile a plane stress situation would exist.
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In the region very near the contact interface, however, the plane strain case is .
more appropriate (i.e., the thickness of the ice cover is assumed to be much

greater than the region at the interface in which failure is initiated).

Solving for the net resultant force which an ice cover can exert involves,
initially, a consideration of the stress distribution around the pile. Because the
loading is dynamic the stress distribution will depend on the strain rate in the
ice adjacent to the contact interface. From equation (7), the radial strain dis-

tribution at the interface is

F (2 - 3V)

718

D
cosb o

. X (n + 1)
€ = - +4 — +2(1 -2v) vV ———D

2G r(a, 6) (L) - > 2 ( 2v) — ncosne (8)

a 2 a

Equation (8) simplifies to
Fxcose DO

2Ge = . —

+ (a, e) 2ma az (9)

if Poisson!s ratio has the value of % This simplification is considered to be
justified in the present case because of the deterioration of the ice at yield due to
crack formation, and the viscoelastic behaviour of the intact material. If it is
assumed that the solution of Noble and Hussain (4) is still valid, the parameter

Do can be obtained in terms of FX , in which case equation (9) reduces to

F
2Ge = =

- + 1, . 1
- > (cosB 22) (10)

This equation is taken as being representative of the strain and strain rate dis-
tribution around the contact interface. The radial strain rate distribution,
therefore, is

£ 1,22 + cosf

E = = — (b

where & is the radial strain rate at the interface on the line of action of the
force Fx' The normalized strain rate distribution from the above function is

plotted in Figure 2 along with a simple sinusoidal distribution for comparison.

The unconfined compressive yield or failure strength for a given ice type
is a function of both temperature and strain rate. Let it be asswmed that this

function is separable (i.e., oyp =0, (TY - o_ (£)). Over the ductile range of

2
behaviour at a given temperature, the dependence of the yield strength on strain



rate is found to have the form

o =4
YP

ma] Mre

(12)
o
where § and & are experimentally determined and éo is arbitrarily selected to
maintain the dimensionless form of the equation. Combining equations (11) and
(12) gives for the strain rate dependence of the stress distribution around the
pile for maximum load
71.22 + cos§

5 2.22 : (13)

[SOESIN

g =30
yP

Gold and Krausz (1) found that for columnar-grained ice at -10°C G = 565 kg
and @ = 0.25 over the strain rate range of 2 x 10_7 to 10_3 sec_1 where o

éo =1 sec—l. The maximum value for the yield strength occurred at the ductile-
to-brittle transition, which was associated with a strain rate of about 2 x 10_4

-1
sec .

Equation (13) implicitly assumes that the maximum stress corresponding
to the strain rate has been mobilized simultaneously over the full surface of
contact. In reality this will probably not occur. When the load on the pile is
maximum, part of the contact surface will have undergone deformation in excess
of that for yield and part may not have undergone sufficient deformation to attain
the maximum stress condition. The load calculated using equation (13) should,
therefore, be greater than the actual load for the assumed conditions. It should
not be very much greater, however, because the stress depends on the strain
rate raised to the 1/4 power, and the stress at yield is relatively insensitive to

the strain (i.e., the stress-strain curve has a maximum at yield).

The normalized form of equation (13) is plotted in Figure 3 for a = 0, 25.

Shown also is the normalized stress for a sinusoidal stress distribution, i.e.,

“vp 0.25
= (cosH) . (14
£ 10.25
.
g iT
é
o

The net force per unit thickness of ice cover, f, is given by



f= o cosf a db (15)
yp

ol

where n is one-half the angle of contact. Values for the angle of contact,
which depend on the elastic properties of the pile and ice, and are usually less

than T, are given by Noble and Hussain (4).

Substituting equation (13} into (15} gives
n

m] Of-

/1. +
/1,22 + cosb a cosB df.

. 2.22 ; (16)
o

lll

Sample calculations showed that the force per unit thickness of the cover was
reduced by less than 5 per cent uéing the sinusoidal stress distribution given by

equation (16) with @ = 0.25 and G = 565 kg/cmz; i.e.

?

K Qa
- g (% coss ) * cosb df. (17)

This reduction would balance, at least partially, the overestimation of theforce
due to the assumption that the yield stress is mobilized over the full contact
surface. The calculation does indicate the relative insensitivity of the load to

small changes in strain rate.

The yield strength of ice is temperature dependent. This dependence is

of the form

mIo
(’)-l o)

(18)

o =37 exp %

1
( T )
O
where Q is the apparent activation energy
R is the gas constant (1.98 x 1072 kcal/mole °K)

T is the temperature in degrees Kelvin and

50 is a constant for temperature equal to To'

Observations indicate that the apparent activation energy has about the same



value as that found from creep studies, i.e., about 20 kcal/mole (5).

M odifying equation (17) to take into account temperature gives
gl
. a
1 1 g l1+a
Q e {'.— a {(cos8) dé (19)
T
d
where f is now the load per unit thickness at the level in the ice cover for which

the temperature is T.

Integrating equation (19) gives for the total load exerted on the pile by an

ice cover of thickness h

i
€ \& Q /1 1 1+a
z ) a exp R (\T - TO ) dz (cosf) db. (20)

e} e} -N

The temperature in the cover will vary from the equilibrium freezing
temperature at the ice-water interface, to some value at the upper surface de-
termined by the weather and snow cover. If it is assumed for design that the
temperature decreases linearly from T _  at the ice-water interface to some
value, TS, at the surface (i.e., T = Ts + (Tm - Ts) 2 Where zis positive

h
downwards from the surface and h is the ice sheet thickness), then equation (20)

gives
(T a
™m
a
- € h 1 1 1+a
F=0 - a —— exp — - - = dT (cosB) d6
o €O Tm - Ts R T To
JTs i
. a
= K(T) L(6) G, |3 ah (21)
o

where K(T), a temperature correction function, is a constant for a giveﬁ tem -
perature of the surface and the ice-water interface, and 1.(8), a geometry
function, is a constant for given relative elastic properties of the pile and the ice.
Both of these functions can only be evaluated numerically. The temperature
correction function is plotted in Figure 4 and the value of the geometry function
for the case of a rigid pile is 1.80. Eguation (21) indicates that the ratio of the

total load to the product of the pile diameter, d, and ice thickness, h, has the
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following dependence on strain rate

— =3 (22)

i.e., the normalized load on the pile is proportional to the yield strength of the

ice in contact with the pile,

THEORETICAL RELATION BETWEEN STRAIN RATE AND PENETRATION
RATE

To give the proper perspective to the discussion presented in this section,
consider equation (21) which shows that the pile loading depends on the strain
rate raised to the power &, where O is a small number (for columnar-grained
river ice @ = 0,25). Even an approximate relation, therefore, between strain

rate and penetration rate would be useful for predicting the load.

Integrating equation (7) for the radial strain gives

FX az DO
j = . —m,—— - 4\J - 1 - Vv —_— -
ZGU.r (r, 6) T (3 ) 4nr - ( 2V) > cosB m
2r
2 ln+2(1 -2v) 1 n 1
Tl n-1 2 n-1 n+l n+1 (n+1)Dncosn6+ £(6) (23)
2 a T r

where f(6) is an odd function of 6. The natural boundary condition to use to de-
termine this function would be u, = 0 for r = » , but it cannot be applied easily
because of the 4nr term. This difficulty can be circumvented by choosing an
arbitrary radius, £, for which the displacement is negligible. Applying this con-

dition to equation (23) and assuming a Poisson?s ratio of 3 gives

Fx r 1 1
ZGur (r, B) = ~ T ,@nz'COSS'FDO 77
o ht 1 1 1 1
- n n+ n-
- - - 4
[, n-1 2 n-1 n-1 nr 1| Pn cosnd (24)
2 a r £ r

where £2 >> a .

]
o

For r = a and 6



pis 1 1
a
= e e— —_ —_ . = - N
2Gu (a, 0) > in + D 7

(25)

Using the solution given by Noble and Hussain (4) to determine DO and D in
n

terms of FX, and combining the result with equation (10) with 8= 0 gives

e a
T - 2,22 (26)

u {a, 0) a a _
r 1,22{2 }+£n£ 0.616

The dependence of the strain-displacement ratio on a/Z is shown in Figure 5,

All ice covers and floes are finite. Figure 5 shows that once the size of
the floe or sheet exceeds approximately 50 times the pile radius, the ratio of the
strain to the displacement evaluated at the pile-ice interface is relatively insen~

s . . -2
sitive to it {(e.g., a decrease in a/z from 5x 10

to 10_3 causes a corresponding
decrease in Sra/ur from 0,45 to 0,25). For a given floe size the ratio is a

constant.

Rearranging equation (26) and differentiating with respect to time gives

l'J.r(a, 0)
¢ (a, 0) = - =0 (27)
where d is the diameter of the pile and
k = 0,225 [1.22 (2-1)+ zn%—o.élé}. (28)

The dependence of k on a/Z is shown in Figure 6. Equation (27) indicates that for
a given floe size, the strain rate in the ice at the pile varies inversely with the
pile diameter. Equation (27) agrees with that given by Korzhavin (6} if k is set

equal to 2 (i.e., a/l = 10—3).

Substituting equation (27) into equation (21) gives

. a
w[ . (29)

2 kdeo

For a given material behaviour and temperature condition equation (29) reduces

to
u\

=N () (30)

E
hd
where N is a proportionality factor that takes into account temperature effects,

strain distribution around the pile, strength properties of the ice, relative

elastic properties of the ice and pile, and the geometry factor relating strain
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rate and penetration rate.

The normalized force, % » 1s plotted against the strain rate in Figure 7
for the case of TO = -10°C, 50 = 565 kg cnq-z, a = 0.25, ice surface tempera-
ture -10°C, ice-water interface temperature 0°C and floe diameter forty times
the pile diameter (i.e., é = 40, k =1,25). Note the strain rate of 2 x 10—4
sec—l, which is the rate associated with the ductile-to-brittle transition for
columnar-grained ice at -10°C, For strain rates less than 2 x 10_4 sec—1 the
ice would be expected to behave in a ductile manner. For strain rates greater
than about 2 x 10—4 sec_l, laboratory observations indicate that the strength in
simple compression is constant or even decreases with increasing rate (7). The
normalized force at the strain rate associated with the ductile-to-brittle transi-
tion would, therefore, be the maximum that could occur for the assumed con-

ditions. Bear in mind, however, that this transition strain rate is temperature

dependent.

DISCUSSION

The theory developed is for cold ice (i.e., temperature less than 0°C) in
intimate contact with a rigid cylindrical pile. The equations obtained should give
an upper limit to the thrust that can be induced, and their form is sufficiently
simple that it should be relatively easy to determine their validity through field

measurements,

For many situations significant movement of the ice relative to a structure
only occurs during spring breakup (e.g., many pier sites), Values of loads that
have been obtained for this condition are shown in Figure 7. Neill's results (8)
are for two sites with pier diameters of 0.85 and 2.3 m. The bars indicate the
range in velocities and ice floe sizes observed. It should be noted that the
2.3 m pile was inclined at 23° from the vertical. The observed loads are not
much smaller than the maximum predicted by equation (21) for an ice cover at
0°C throughout. Figure 7 indicates the large range in strain rates that must be

taken into consideration, both in design and research,

Also shown in Figure 7 are results obtained by Nuttall and Gold (9) from
laboratory tests simulating pile loading by columnar-grained ice carried out at
-10°C. The theoretical curve for a temperature of -10°C throughout the ice is
shown for comparison., The strain rates were evaluated at the point where
creep strain was equal to the assumed strain at yield (2 x 10_3). In all cases

this strain occurred in the region of primary creep. Note that the observed
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loads are smaller than the theoretically predicted ones. If the strain rates
associated with the secondary creep stage are used in the calculations, the

predicted loads for given conditions are less than the ones applied,

It would be expected that an ice cover would be in intimate contact with a
pile only during the very initial period of its movement relative to it. Once the
failure process had been induced, contact between the ice and pile would probably
no longer be continuous. It would be expected that stress concentrations would
exist at the points of contact from which failure could continue with relative ease.
The load resulting from such partial contact conditions would be less than that

predicted assuming intimate contact.

During spring breakup the ice cover can be expected to be at 0°C through-
out, and the width of the floes must be equal to or less than that of the channel.
Laboratory studies indicate that the strength of melting ice is less than that which
would be predicted by equation (18), (6). The foregoing factors must be taken
into consideration in field investigations and when establishing design criteria.
They could account, along with the possible decrease in strength with increase in
strain rate in the brittle region, for the difference between the predicted and

observed forces shown in Figure 7.

Equation (30) indicates that the normalized load decreases as the pile
diameter increases. It might be considered that this is a geometry effect, but it
is in reality a strain rate effect. This can be appreciated by referring to equation
(27) which indicates that the strain rate in the ice at the pile varies inversely as
the pile diameter. This possibility must be taken into consideration if the rela-
tion between rate of penetration and strain rate in the ice at the pile is to be

determined by comparison of field and laboratory observations.

As the value of the exponent, @, in equation {30) is probably less than
0.5, the unit load developed on the pile will not be strongly dependent on rate of
penetration and pile diameter in the ductile region. The range of diameter and
rate of penetration will have to cover several decades, therefore, to determine

properly the validity of the equation from field investigations.

CONCLUSIONS

It has been shown that the dependence of the thrust exerted on a circular

rigid pile of diameter d by a moving ice cover of thickness h is given by
Fo_oy (52N
dh = T \d
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where U is the relative rate of movement between the pile and the ice, @ is an
exponent that depends on the type of ice, and N is a factor taking into account
temperature effects, strain distribution about the pile, strength of the ice, elastic
properties of the ice and pile and geometric factors. It gives an upper limit to
the predicted load, is sufficiently simple to be readily checked by field measure-
ments, and provides a basis for future developments and refinements of design

criteria for ice thrust on piles.

This paper is a contribution from the Division of Building Research,
National Research Council of Canada, and is published with the approval of the

Director of the Division.
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K(8)

TEMPERATURE CORRECTION FACTOR,

B K(e) = R(27§-T) exp(]gj
RT
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RT Q

T

Q=120 KCAL/MOLE (COLUMNAR GRAINED RIVER ICE)
R= 1.98x 1073 KCAL/MOLE °K

T, = 263 °K

T = ICE SURFACE TEMPERATURE -DEGREE KELVIN

l | l | !

0 -5 -10 -15 -20 -25 -30 -3

ICE SURFACE TEMPERATURE - DEGREES CELCIUS

FIGURE 4
TEMPERATURE CORRECTION FACTOR FOR COLUMNAR GRAINED
ICE COVERS
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