
https://doi.org/10.1109/CSCWD.2011.5960073

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Ontology maintenance in a hierarchical federated collaborative product

development environment
Sun, H.; Fan, W.; Shen, W.; Xiao, T.; Chen, X.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=6f7644d8-99c6-45ff-930c-c9ab6b77245c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=6f7644d8-99c6-45ff-930c-c9ab6b77245c

Ontology maintenance in a hierarchical federated collaborat ive

product development environment

 N R C C - 5 4 4 2 6

S u n , H . ; F a n , W . ; S h e n , W . ; X i a o , T . ; C h e n , X .

A u gus t 20 1 1

A version of this document is published in / Une version de ce document se trouve dans:
15th International Conference on Computer Supported Cooperative Work in
Design (CSCWD 2011), Lausanne, Switzerland, June 8-10, 2011, pp. 1-9

http://www.nrc-cnrc.gc.ca/irc

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://www.nrc-cnrc.gc.ca/irc
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

Ontology Maintenance in a Hierarchical Federated
Collaborative Product Development Environment

Hongbo Sun1, Wenhui Fan1, Weiming Shen2, Tianyuan Xiao1, Xin Chen1

1
 National CIMS Engineering Research Centre, Tsinghua University

Beijing, China, 100084
2
Centre for Computer-assisted Construction Technologies, National Research Council

London, Ontario, Canada, N6G 4X8

sunhongbo02@tsinghua.org.cn

Abstract—This paper presents a novel approach aiming to

dynamically maintain the collaboration ontology in the execution

of an ontology-based federated collaborative product

development system when a federate joins or has resigned from a

given federation. The proposed approach includes two

algorithms: ontology maintenance (+) and ontology maintenance

(-), corresponding to joining and resigning situations. It adopts an

axiom-based deduction ontology fusion strategy, and takes heavy-

weighted ontologies into consideration. It can find all the explicit

and derived inter-ontology relations, and furthermore it reaches

the active upper bounds of implicit equivalent inter-ontology

relations searching. This paper also discusses some

implementation issues on the basis of TH_RTI, a RTI (Run Time

Infrastructure) version developed by National CIMS ERC,

Tsinghua University. The proposed approach has great potential

to improve the efficiency of ontology-based federated

collaboration executions, reduce the work load for adaptive

adjustment of ever-existing platforms, and enhance the

applicability and flexibility of collaborative product development

systems.

Keywords—Collaborative product development (CPD), HLA -

High Level Architecture, Ontology Maintenance.

I. INTRODUCTION
With the rapid advancement of information and

communication technologies, globalized businesses face
extremely complicated operations and, as such, require
greater ability to solve the problems introduced by them.
Adopting CPD makes full use of several independent
development systems, and enhances their ability at the
same time [1]. CPD systems often include functions, such
as collaborative design, collaborative simulation and
collaborative optimization. They require data and
information like CAD digital models, CAE analysis and
optimization results [2]. These requirements also
accelerate the need for dynamic cooperation of existing
computing resources in order to work together
harmoniously. Since simulation is a key characteristic of
CPD, HLA (High Level Architecture) has been adopted as
the basic architecture for these kinds of integrations [3].

However, a HLA federation also possesses several
shortcomings that limit its usage. First, its main purpose is
to solve problems in the realm of collaborative simulation.
When this method is adopted by product development
research areas, other than simulation, a lot of new

challenges remain, for example the charging method,
resources utilization, task scheduling, task immigration
and fault tolerance. Second, it does not touch upon the
latest technologies such as service science, dynamic self
adaptive API, ontology and semantics [4]. Third, the
objective of a given HLA federation is usually a
predetermined simulation and all the preparation is made
for one time simulation. This is not in accordance with the
principle of reusability. Then, the description of
management functions is relatively simple. Some
important functions were not included, such as fault
tolerance, intelligent update and consistent sustain. Last,
but not the least important, is that there are so many
agreements outside the federation system. What is worse
is that they are not guaranteed by any workflow or
software. This does real harm to applicability and the
robustness of federated applications. To address these
problems, a hierarchical federated integration architecture
has been proposed in [5]. In hierarchical federated
integration architecture, there may be several active
application federations at a time, and the integration
software cannot stop to recompile interface codes for
satisfying dynamic collaboration requirements.

On the other hand, in a HLA-based CPD environment,
a FOM (Federation Object Model) file describes the data
and information exchange standard of a given simulation,
and they are keys to mutual understanding during
collaborative operations. But the construction and
modification of a FOM needs multidisciplinary
professional knowledge and technologies [6]. An
ontology-based method has been successfully explored to
use collaboration ontologies as an alternative to the use of
a FOM file in HLA-based systems [7].

In this paper, an ontology maintenance method is
introduced to support the dynamic adjustment of the
collaboration ontology when an existing federate resigns
from its federation or a new federate joins a federation.
Section 2 introduces related efforts towards ontology-
based CPD and reviews the state of art about ontology
maintenance, analyses the requirements of this application
problem, identifies some limitations and discusses the
outline of this research. In section 3, the algorithms
supporting the proposed method are described in depth.
The definitions of basic concept, functions, graphs and
relations used in CPD ontology maintenance are given in a

mailto:sunhongbo02@tsinghua.org.cn

formalized matter. Then two main algorithms are
introduced here: ontology maintenance (+) and ontology
maintenance (-), which are corresponding to federate
joining and resigning, respectively. Section 4 is about
some implementation issues about ontology-basic RTI
(Run Time Infrastructure). The conclusions and some
discussions are reported in section 5.

II. RELATED WORK
The objective of this research is to establish a

semantics-based environment that supports CPD. Some
effort has already been made and reported in several
papers, such as HLA-based semantic environment,
modeling and consistency checking for domain ontologies,
and domain ontologies fusion to a collaborative ontology.
A hierarchical federated integration has been proposed to
support the HLA-based semantic environment. A FCA-
like modeling method and an automata for transformation
from SOM files to domain ontologies also has been
submitted for publication. Ontology fusion has been
reported in the IEEE International Conference of SMC
2010.

This paper is closely related to hierarchical federated
integration and ontology fusion, so first, a brief
introduction to them is given in this next section.

A. Hierarchical Federated Integration

Since CPD systems accelerate the need for dynamic
cooperation of existing computing resources in order to
work together harmoniously, these requirements brought
much more complexity to contemporary computing
technology and operational problems. They lead to
technical difficulties as well as financial crises. Autonomy,
integration, scalability and mobility are necessary features
of integration software in CPD for harmonious
collaboration in physically distributed and technology
varied application systems.

H. Sun, T. Xiao and S. Tang offered a system
independent, loosely coupled, and flexible integration
method of heterogeneous information systems, which is
named hierarchical federated integration [5].

In that method, System federation defines the environment
of the physical aspects, and application federations define that
of logical ones. The cooperative individuals of a system
federation are projected from real systems which are intended
to collaborate together, and the Meta model of cooperative
individuals that will participate in the application federation is
also defined in system application. The collaboration in system
federation is relatively simple and monotonous, only publishing
sharable resources and candidate application federates. After
the application context is defined, these candidates can sponsor
or join in an application federation to be a real application

federate.

Before collaboration, a domain of interest related to
resources sharing must first be established. When cooperative
individuals project to a domain of interest, the projections from
the same physical node form a System Federate. That is to say,

one system federate can contain more than one projection of
cooperative individuals. When system federates publish their
resources, the static resources go into a sharable resource pool
and the reactive resources become candidate application
federates.

When a subsystem wants to establish a collaborative task,
first, it will look up the candidate application federate pool
After selection of the appropriate candidate application
federates, a message of invitation will be sent to the projection
owner of the involved candidate application federates. If these
owners agree to their responsibilities during the coming
collaboration, they will join this established application

federation one by one and perform the collaboration as the
agreement says. Or, the collaboration sponsor will seek other
alternative participants in the candidate application federate
pool.

B. Ontology fusion

In a CPD environment, there are always several subsystems
in the same environment with independent design goals. And
these subsystems may follow different design or management
rules according to their professional fields [8].In HLA-based
CPD, construction of a FOM needs multidisciplinary
professional knowledge and technologies [6]. It is always time
consuming and expensive.

H. Sun, W. Fan, W. Shen and T. Xiao presented an
ontology fusion approach aiming to establish a mutual
understanding in HLA-based distributed heterogeneous CPD
systems [7]. The proposed approach has three steps: ontology
mapping, ontology alignment, and ontology merging. Ontology
mapping employs a top-down mechanism to explore all bridge
relations between two terms from different ontologies on the
basis of bridge axioms and deduction rules. Ontology
alignment adopts a bottom-up mechanism to discover implicit
bridge relations between two terms from different domain
ontologies on the basis of equivalent inference. Ontology
merging generates a new collaboration ontology from the
discovered equivalent bridge relations.

C. RTI

RTI is a service program that realizes all service procedures
in an interface specification of HLA and provides a series of
interoperation functions among federates. In the
implementation part of ontology maintenance, modification of
RTI is of great importance. In this paper, the implementation
part takes full advantage of TH_RTI, a RTI version developed
by National CIMS ERC, Tsinghua University.

As Figure 1 shows, TH_RTI includes three main parts:
LibRti is an interface library; RTIServer is a global process and
it is server-end software of RTI system; RTIAmb is a local
process, which performs as the RTI Ambassador.

LibRTI: A C++ library for developers, which provides a
series of services mentioned in a HLA interface specification.

A federate invokes RTI services to communicate with
RTIAmb according to libRTI via Windows TCP Socket. The

javascript:showjdsw('jd_t','j_')

HLA interface specifies libRTI services for federates and the
collaboration responsibilities of federates. Within libRTI, class
RTI::RTIAmbassador encapsulates the services provided by
RTI. And the service requirements from federate to RTI are all
realized by RTI::RTIAmbassador invocations. Class
RTI::FederateAmbassador is an abstract class, and it defines
the necessary RTI callback functions of federates.

Figure 1. Software architecture of TH_RTI

RTIAmb Process (RTIA): a local process, which is in
charge of Socket communication between federates and the
RTIServer.

When a new federate joins a federation, the RTIAmb
process will automatically start in the background and monitor
the requirements from federates or RTIServer.

RTISevrer(RTIG)

RTIServer has two functions. One is communication
management for RTIAmb processes, and its importance lies in
that the communication among federates is fulfilled by
RTIAmb processes communication. Another one is gateway
management. When looking at RTIServer as a gateway, the
communication routes can be deemed as a star topology, which
can greatly reduce network workload.

Two processes run at RTIServer: RTI executive process
RtiExec and federation executive process FedExec. Process
RtiExec is a global process for all federations, which controls
the creation and destruction of federation executions. Process
FedExec performs federate joining to or resigning from a given
federation. Within a given federation execution, FedExec is a
global process, but there may exist several FedExec processes
to arrange a federate changing in different federation
executions, respectively.

D. Ontology maintenance

Ontology once confined to the world of philosophy has
recently been moved to the regime of computer science. One of
the most challenging aspects of using ontology is to keep it

consistent, up-to-date and synchronized [9] with other such
ontologies developed by similar developers and designers. This
research area is called ontology maintenance.

However, different researchers define this term differently.
Rafi, et al. [10] believe ontology maintenance is a broader term
that encompasses in it a large number of complex activities like:
combining, merging, integrating, aligning, mapping,
articulation, translating, transforming, version and versioning.
They investigated a Multi-Agent Based approach towards
support for fully automatic ontology maintenance. Luczak-
Rosch [11] deems ontology maintenance is an ontology
engineering problem related to ontology evolution. He defined
an agile ontology maintenance methodology because it is
focused on continuously evolving ontologies in an application-
dependent context. In this paper, ontology maintenance is a
term which is related to the dynamic adjustment of
collaboration ontology in the hierarchical federated integration
environment when federates join in or resign from a given
federation. When new federates join an existing federation, it
may bring new collaboration requirements in the form of new
collaboration concepts. In this circumstance, ontology
maintenance can be deemed as an ontology merging problem,
which is also part of ontology integration. However, when
existing federates resign from a given federation, some
collaboration concepts may not be useful. There is a need for
separating these kinds of concepts from collaboration ontology.
If these redundant concepts are ignored, the efficiency of a
given federation execution cannot be guaranteed after running a
long time. .

Because HLA-based CPD always involves multiple
disciplinary domains, the terms which they use are often very
different. It is very difficult to find equivalent relations by
literature similarities. And before collaboration starts, there is
no instance of collaboration concepts in the whole system.
Instances-based merging is not applicable here. Most of the
well known ontology integration tools cannot satisfy these
requirements, as some of them are based on literal-based
similarity computing methods (OntoMerge[12], PROMPT[13],
ONION, Anchor-PROMPT). Some of them are also too simple,
and weak in their description abilities (OntoMap[14]) and some
are instances-based merging (GLUE[15]).

III. ONTOLOGY MAINTENANCE
The objective of this paper is to develop a novel ontology

maintenance algorithm which can be used in ontology-based
dynamic CPD processes. To address this issue, related formal
definitions are given first.

A. Definitions

Because the algebraic system defined on the concept set of
CPD and the partial order relations of these concepts have the
same upper bound and lower bound, it can be deemed as a
concept lattice [16]. This paper formally defines related
concepts as follows:

Definition 1: CPD ontology

O ∷= (C, HC, RC, HR, M, RM , A)

CPD ontology O is defined as a seven tuple. C denotes a
collaboration concept set of CPD. HC defines a set of partial
orders on concept set C, which gives the inherit relations
among the concepts involved. The concepts set and inherit
relations defined on that set form a Directed Acyclic Graph
(DAG) whose source is the given model of the collaborative
product and whose sink is binary fragments. RC denotes a set of
non-inherit partial order relations on concept set C,
corresponding to concept attributes. HR defines inherit relations
on partial order relation set RC . M is a series of collaborative
product meta ontology concepts, which give a series inheritable
instances of RC . RM denotes a set of partial order relations
under M, which describe the relations among elements in a
meta ontology set, and are also the basis for collaborative
product ontology reasoning. A defines a set of axioms among
an ontology concept set and meta ontology relation set, which
provide the major premises of CPD ontology reasoning.

Definition 2: Ontology-based CPD ontology maintenance (+)

maintain+ ∷= O × Ofuse(SETO) ⇀ Ofuse(SETO+O),
 (∀e ∈ Ofuse(SETO+O)⋀e ∈ O → ∃f. e ⇔ f, f ∈ Oi, Oi ⊂ SETO:

maintain+�O, Ofuse(SETO)� = Ofuse(SETO+O))

It is a partial order mapping from a Cartesian product to an
updated collaboration ontology. The Cartesian product is
composed of a new ontology and the fusion result of a given
ontology set SETO. The term e ∈ E may be concept, or relation.
To any term e in the output ontology Ofuse(SETO+O), if e also
belongs to the new Ontology O it can find at least one
corresponding equivalent term in an ontology of a prepared
ontology set SETO.

Ontology maintenance (+) (maintain+�O, Ofuse(SETO)�) and
ontology fusion (fuse(SETO + O)) can reach the same result
collaboration ontology, but they have a basic difference.
Ontology maintenance (+) adds new equivalent bridge relations
to an existing collaboration ontology, but ontology fusion
creates a new collaboration ontology from scratch.

Definition 3: Ontology-based CPD ontology maintenance (-)

maintain− ∷= O × Ofuse(SETO) ⇀ Ofuse(SETO−O),
 ((∀e ∈ O → ∄f. e ⇔ f, f ∈ Ofuse(SETO−O)) ∨

(∀e ∈ O, ∃f. e ⇔ f, f ∈ Ofuse(SETO−O) → ∃f ′, f ⇔ f ′, f ′∈ Ofuse(SETO−O)):
maintain−�O, Ofuse(SETO)� = Ofuse(SETO−O))

It is a partial order mapping from a Cartesian product to an

updated collaboration ontology. The Cartesian product is
composed of the collaboration ontology and one ontology in a
given ontology set SETO . The term e ∈ E may be concept or
relation. To any term e in the selected ontology from ontology
set SETO , if it can find an equivalent term f in the result
collaboration ontology Ofuse(SETO−O), then there must exist one
term f ′ in the resulting collaboration ontology which equals to
term f . The output collaboration ontology of ontology
maintenance (maintain−�O, Ofuse(SETO)�) is the same as the
one of ontology fusion (fuse(SETO − O)).

The equivalent and mutual exclusive graph is an
enhanced graph G′ based on equivalent graph G with the
exclusive relations added (no longer a DAG). The mutually
exclusive relation between concepts (Ci, Cj) in CPD ontology is
a symmetrical relation, and any instance of Ci and its sub
concepts will not be the instance of Cj and its sub concepts. The
equivalent and mutual exclusive graph denotes these relations
by ↔ between Ci and Cj . One mutual exclusive relation may
contain another one. In that case, two ancestor concepts mutual
exclusion implies descendant concepts mutual exclusion. This
mutual exclusive relation is named as a trivial mutual exclusive
relation.

B. Algorithms

When adopting ontology-based CPD, new collaboration
partners may emerge from time to time. At the same time,
existing partners also have the possibility to secede from the
collaboration ally. Ontology maintenance technology is most
useful under this circumstance. It can find the relations of given
concepts and those in existing ontology so as to reuse data and
interoperate among various applications [17]. Ontology
maintenance technology enhances flexibility and adaptability
of ontology-based product development systems.

Ontology maintenance (+) algorithm

The input of an ontology maintenance(+) algorithm is
domain ontology set {Om} (domain ontologies of existing
participants), ontology O∗ (domain ontology of adding
participant), bridge equivalent concepts pair list EC, bridge
mutual exclusive concepts pair list IC, domain axiom set DA
and collaboration ontology FON. The output is FON′ , the
updated collaboration ontology.

The ontology maintenance (+) algorithm can be divided
into three stages: mapping, alignment and merging. In the
mapping stage, the equivalent bridge relations and the mutual
exclusive relations between concept in O∗ and the ones in {Om}
are found. In the alignment stage, all potential equivalent
concept pairs between concept in O∗ and the ones in {Om} are
compared. In merging stage, O∗ is added into the collaboration
ontology FON according to its equivalent structure graph G∗.
Algorithm 1. Ontology_maintenance + (O∗, {Om}, EC, IC, DA, FON)

Input: O∗ ontology of the new participant
 {Om} ontology set of collaborative participants

 EC bridge equivalent concept pair list
 IC bridge mutual exclusive concept pair list
 DA domain axiom set
 OFON collaboration ontology
Output: OFON

1 foreach (Oi) in {Om} do
2 EC ← {(Ck(Oi), Cl(O∗)

)}
 // find domain equivalent bridge axiom from DA

3 IC ← ∅

/*Extract equivalent (mutual exclusive) graphs */
4 G�i ← Equivalent(Mutual_Exclusive)_Relation_Travel(Oi)
5 G�∗ ← Equivalent(Mutual_Exclusive)_Relation_Travel(O∗)

/*Simplify equivalent (mutual exclusive) graphs by deleting
trivial equivalent (mutual exclusive) relations (Thing, data type
equivalent, trivial mutual exclusive relations and independent
concept nodes)*/

6 Gi ← Simplify(G�i)
7 G∗ ← Simplify(G�∗)

/*According to {(Ck(Oi) , Cl(O∗)
)} , mark {Ck(Oi)} of Gi , and mark

{Cl(O∗)
} in G∗, iteratively delete un-marked concepts of zero in-

degree and their m-out-arc */
8 G′i ← Bridge_simplify(Gi)
9 G′∗ ← Bridge_simplify(G∗)

/*Inferring bridge equivalent relations, only equivalent graphs of
G′i and G′∗, G′i= and G′∗= , are used here and all the discussions
below are all based upon structure equivalent relations*/

10 foreach unmarked concept Ci in G′i= do
11 if(∃ one-one bridge equivalent relation between two ancestor

concept sets of Ci and Cj , any concept of G′∗ in structure
equivalent relations) then

12 EC← EC + (Ci, Cj)
// duplicate elements eliminated

13 elseif(∃ one-one bridge equivalent relation between two
ancestor concept sets of Ci and Cj , any concept of G′∗ . The
attributes, constraints, partial order relations between concept
and its attributes are also equal, and the concepts in constraint
paths also have corresponding equivalent bridge concepts in
mixed equivalent relations.) then

14 EC← EC + (Ci, Cj)
15 end if

16 end

 /* Extract structure graphs.*/
17 GiS ← Travel(Oi)
18 G∗S ← Travel(O∗)
19 {(SC(Oi), SC(O∗))} ← OCi × OC∗

// Cartesian product of concept set in Oi and O∗

/* According to mutual exclusive bridge relations simplify
{(SC(Oi), SC(O∗))} */

20 while(∃{(ICm(OI),ICm(OĨ))} in IC and ICm(OI) ≡ SCk(OI)) do

//{ICm(OI)
|GOI}⊤ is the concept set which includes concept ICm(OI)

and all its ancestors //according to the structure graph GOI of
OI

21 {(SC(Oi), SC(O∗))} ← {(SC(Oi), SC(O∗))} − {(ICm(OI)
×

{ICm(OĨ)}⊥)}
22 {(SC(Oi), SC(O∗))} ← {(SC(Oi), SC(O∗))} − {(ICm(OI)

×
{ICm(OĨ)}⊤)}

23 end while

24 {(RIC(Oi),RIC(O∗))} ← {(SC(Oi), SC(O∗))}

/*According to equivalent bridge relations simplify
{(RIC(Oi),RIC(O∗))} */

25 while (∃{(ECm(OI), ECm(OĨ))} in EC and ECm(OI) ≡ RICk(OI)) do
26 {(RIC(Oi),RIC(O∗))} ← {(RIC(Oi),RIC(O∗))} −
 {{(ECm(OI)

)}⊤ × {ECm(OĨ)}⊥}
27 end while

28 {(REC(Oi), REC(O∗))} ← {(RIC(Oi),RIC(O∗))}

/*Inferring equivalent bridge relations.*/
29 {(RMC(Oi), RMC(Oj))} ← {(REC(Oi), REC(O∗))}

30 foreach (RECm(OI), RECn(OĨ)) in {(REC(Oi), REC(O∗))} do

31 if(data type construction is different according to data type
meta class definition of meta ontology) then

 //the difference of data type construction include data type
unit number inconsistency and //data type inheritable

32 {(RMC(Oi), RMC(O∗))} = {(RMC(Oi), RMC(O∗))} −
 (RECm(OI), RECn(OĨ))
33 end if
34 end

35 {(RUC(Oi) , RUC(O∗))} ← Confirmed({(RMC(Oi) , RMC(O∗))})
 //confirmed by domain experts

36 end

37 EC ← EC ∪ {(RUC(Oi), RUC(O∗)), Oi ⊆ {Om}}

/* simplify structure graph of O∗according to bridge equivalent
concept pair list EC. */

38 GE∗ ← Equivalent_travel(EC, O∗)
/*Extract structure graph of OFON. */

39 GFONS ← Travel(OFON.)
40 let C� tGE∗ = top node of GE∗
41 let (C(OFON), C� tGE∗) ∈ EC
42 if(C(OFON) ∈ GFONS) then

 Add C� tGE∗ into bridge equivalent concept chain of C(OFON)
43 else

44 Add C� tGE∗ into OFON as a direct child of its root

45 Add C(OFON) into bridge equivalent concept chain of C� tGE∗
46 end if

47 {C(O∗)} ← child(C� tGE∗ , GE∗)
48 if({C(O∗)}! =null) then
49 foreach(C(O∗) in {C(O∗)})
50 let (C(OFON′), C(O∗)) ∈ EC

51 if(C(OFON′) ∈ GFONS) then

52 Add C(O∗) into bridge equivalent concept chain of C(OFON′)

53 else

54 Add C(O∗) into OFON as a direct child of its direct parent

according to GE∗

55 Add C(OFON′) into bridge equivalent concept chain of C(O∗)
56 end if

57 {C(O∗)} = {C(O∗)} + child(C(O∗), GE∗)
58 end

59 end if

60 return OFON

In ontology maintenance (+) algorithm, line 1 to line 37
is a loop of every ontology in the domain ontology set {Om}.
This loop performs ontology mapping and alignment between
new adding domain ontology O∗ and existing domain
ontologies. Line 2 to line 16 is the ontology mapping part.
Line 2 searches domain equivalent bridge axioms from
domain axiom set DA. Line 4 to line 9 gets the simplified
equivalent (mutual exclusive) graphs of two ontologies. Note
that the former equivalent (mutual exclusive) graphs of
existing federates in the ontology fusion process are different
from these, because new bridge equivalent relations may add
to this collaboration. Line 10 to line 16 is another loop to infer
new bridge equivalent relations. Line 17 to line 37 is the

ontology alignment part. Line 17 to line 19 gets all possible
equivalent concept pairs SC. The loop from line 20 to line 23
simplifies SC by mutual exclusive bridge relations. The loop
from line 25 to line 27 simplifies SC by equivalent bridge
relations. The loop from line 30 to line 34 simplifies SC by
datatype of concept attributes. Line 35 confirms simplified SC
by domain experts. Line 38 to line 59 adds new concepts into
collaboration ontology OFON. The top concept of O∗ (adding
domain ontology) equivalent tree is first added to the proper
position of collaboration ontology in line 42 to line 46. Line
49 to line 58 performs a breadth-first search of equivalent
structure tree GE∗ , and adds every node to the proper position of
collaboration ontology OFON.

Ontology maintenance (-) algorithm

The input of the ontology maintenance (-) algorithm is
ontology O∗(domain ontology of resigned participant), bridge
equivalent concepts pair list EC and collaboration ontology
FON. The output is FON′, the updated collaboration ontology.
The ontology maintenance (-) algorithm removes concepts {C}
in ontology O∗ from collaboration ontology FON.
Algorithm 2. Ontology_maintenance - (O∗, EC, FON)

Input: O∗ ontology of the new participant
 EC bridge equivalent concept pair list
 OFON collaboration ontology
Output: OFON

/*simplify structure graph of O∗ according to bridge equivalent
concept pair list EC*/

1 G∗ ← Equivalent_travel(EC, O∗)
2 {C(O∗)} ←breadth_first_travel(G∗)

3 {C(OFON)} ←breadth_first_travel(OFON)

4 foreach(C(O∗) in {C(O∗)})
5 do
6 C(OFON)=first({C(OFON)})
7 {C(OFON)} ←remove_first({C(OFON)})
8 while(C(OFON) ! = C(O∗))

 // more than 2 equivalent concepts

9 if(C(OFON). bridge_equivalent_concept_chain.length > 2) then
10 Remove C(O∗) from bridge equivalent concept chain of C(OFON)
11 else
12 Remove concept C(OFON) and its bridge equivalent concept
chain from OFON
13 Add children of C(OFON) to its direct parent in OFON
14 end if

15 end

16 return OFON

This algorithm just removes concepts of resigning
federate ontology from their bridge equivalent chain in
collaboration ontology. If only one concept left, the node in
collaboration ontology also would also need to be removed, or
else just removing the concept would be enough. Line 1 gets
the equivalent structure graph G∗ of resigning ontology
according to the bridge equivalent concept pair EC. Line 2 and
line 3 output the concepts in G∗ and OFON in a breadth-first
travel manner. Line 4 to line 15 performs the remove. The
loop from Line 5 to line 8 searches for a corresponding

equivalent concept. Line 9 to line 14 performs the removal
according to different situations.

These algorithms are defined on the equivalent structure
graph-based knowledge representation and an attribute group
comparison-based merging mechanism. Compared with the
lightweight ontology integration method t is only based on
structure and terms, the main advantage is that, when
maintaining ontologies, the heuristic information, such as the
equivalent structure graph and semantic equivalence of the
attribute, is also taken into consideration. The efficiency and
accuracy of ontology maintenance have been greatly improved.

IV. IMPLEMENTATION ISSUES
RTI is key software supporting HLA-based product

development. Supporting from RTI is very important to
semantics-based federated CPD environment. All the work
mentioned below is on the bases of TH_RTI, a RTI version
developed by National CIMS ERC, Tsinghua University.

A. The framwork of ontology-enabled RTI(ORTI)

As Figure 2 shows, the main framework of ORTI is similar
with that of TH_RTI. The main parts are federate end and
server end (RTI gateway). The federate part includes the
ontology enabled RTI ambassador (ORTIA) and federates
ambassador (ORTIFA). The server end is the ontology enabled
RTI gateway (ORTIG). The communications on the network
are performed by TH_RTI. Prot é g é enabled container is
introduced to parse, operate, store and generate ontology
instances.

Figure 2 framework of ORTI

The federate end of ORTI is composed of 4 parts: federate
model, ORTIA, ORTIFA and the ontology enabled container.
The difference between ORTIA, ORTIFA and RTIA, RTIFA is
that ontology enabled Ambassador classes do not pass

instances of object classes or interaction classes as invocation
parameters, while they use instances of the corresponding
concepts in the collaboration ontology. Serialization and anti-
serialization functions are used for transmitting concept
instance on the network.

Federate End

Theoretically, RTI is independent with federates. In
implementation of ontology-enabled RTI the parameters of
functions for communication between federates and ORTI
involves instances of collaboration ontology concepts. If there
is no transforming middleware, the collaboration interface of
federates needs to make some change to comply with ontology
related interactions. In ORTI, the Protégé enabled container is
this kind of middleware, so federates can use ORTI in a
TH_RTI compatible manner.

The container performs most ontology management
functions within ontology-enabled federated collaborations. In
the preparation stage, domain ontologies are well established
and stored in the container. The main functions of the Protégé
enabled container include ontology management, instance
generation and instance parsing. Ontology management
provides domain ontology manipulating functions as inquiry,
read and modification to federates. Instance generation
generates concept instances of objects and interactions
according to the collaboration requirement based on the
collaboration ontology. Instance parsing translates a received
concept instance and output to a given federate in a TH_RTI
compatible way.

The concept instance substitutes object class or interaction
class instance in the ORTI system. After being generated by the
ontology container, ORIA sends the concept instance to
ORTIG by network socket. When ORTIG receives a new
concept instance notification, it looks up the subscription list of
this concept instance and distributes the new instance or
reflects the attribute values to federates which have subscribed
to the given concept or attribute. The concept instances from
ORTIG to ORTIFA are first parsed by the ontology container
and then reflected to federates in callback functions with
TH_RTI compatible formats.

Because interactions of some management services, such as
time management and ownership management, do not involve
instance of ontology concepts, there is no change for this kind
of management services.

RTI Server

The RTIServer end is the main operational part of RTI
related functions. ORTIG inherits 6 management services of
TH_RTI which are specified in the HLA standard. Ontology
related management includes declaration management, object
management, federation management and data distribution
management. Besides these, ORTIG provides some other
functions as a federation monitor (displays real-time interaction
states of federates), access control, result analysis, and
collaboration evaluation.

There is a central Protégé enabled container in ORTIG.
Before collaboration starts, collaboration ontology OFON and
related information are stored in this container. The
information includes equivalent structure graph and
transformation rules between semantic equivalent concepts.
This container also provides ontology inquiry, store and read
functions of OFON. The modification of OFON can only be done
by ontology maintenance algorithms after the collaboration
starts.

Compared with an FOM file, ontology enabled RTI
improves the dynamic performance of the HLA-based
collaborations. The domain ontology represents collaboration
requirements of federates. When a given federate is going to
join in another federation, it does not necessarily need to
rewrite the code of collaboration interfaces; a few changes in
the domain ontology may already be enough. The
transformation rules for semantic equivalent concepts also
reduce the workload of the collaboration interface’s
modification. At the same time, because the container is
introduced, there can be several virtual federates corresponding
to one physic federate. The ontology enabled RTI can support
intersecting federation executions.

B. ORTI services

ORTI’s main changes to services of TH_RTI are
declaration management, object management and data
distribution management. This section focuses on the changes
of these management services and the implementation of
ORTIG.

Declaration management. Declaration management
provides a data filter at the class level and declares inter-
federate interactions at the logical level. It includes publication,
subscription and supporting control functions.

To every subscribing or publishing object classes:
- getObjectClassHandle service is used to get its

unique handle, which is corresponding to a given
concept in collaboration ontology OFON.

- Static function create of ORTI class
AttributeHandleSetFactory is used to create the
attribute handle set AttributeHandleSet(AHS).

- Function getAttributeHandle is used to get the
attribute handle from collaboration ontology OFON ,
and adds this handle to AttributeHandleSet.

- publishObjectClass services is used to publish object
classes and their attributes.

- Federate invokes subscribeObjectCalssAttributes to
subscribe its attributes. After ORTI invokes the
callback function startRegistrationForObjectClass,
the publisher can register and update instances of the
given object class.

- When there is no valid subscriber of a given object
class in the collaboration, ORTI informs the
publisher to invoke the callback function of
stopRegistrationForObjectClass to stop the publisher

form registering and updating instances of given
object class.

- The publisher federate uses unpublishObjectClass to
declare the end of publishing of a given object class.

- Empty and delete attribute handle set.

Publication/subscription routines of interaction classes are
similar with that mentioned above, and the instances of
interaction classes are also used in management objects in
MOM (Management Object Model).

The class inheritance relations are implied in the concept
inheritance relations of collaboration ontology OFON.

Object management. Object management realizes
information transmitting among federates when the
collaboration runs, which includes register and discovery of
object class instances, updating and reflecting of attribute
values, as well as receiving and sending of interaction class
instances.

After federate uses the function publishObjectClass publish
object classes, registerObjectInstance is used to generate an
object instance of a given object class in federation
execution. The instance is named by the publisher. The
instance generated in ORTI federation execution is a
concept instance of collaboration ontology OFON, and only
the instance owner can change its attribute value in the
federation execution. When the collaboration does not
need the instance any more, the federate invokes
deleteObjectInstance to delete the instance from a given
federation execution.

The workflows of object class instance updating/
reflecting are almost the same as those in TH_RTI. But the
parameters of service updateAttributeValues and
reflectAttributeValues need to change. The attribute handle
set AttributeHandleValuePairSet is changed to concept
instances ObjectClassInstance, corresponding to object
classes. Modification of the concept instance can be sent
to ORTI by updating/reflecting functions, and federates
get their attribute values by instance parsing.

The processes of sending/receiving interaction class
instances are very similar to those of object classes. The
creation process uses ORTI::InstanceValueSetFactory::

create to create concept instances
InteractionClassInstance. Please note that the concept
instance corresponding to interaction classes has a
transient existing; after the subscriber receives it, ORTI
will automatically delete it. However, the handle for this
concept instance is still unique in a federation execution.

Data distribution management

Ontology fusion is an important preparation for ontology-
based federated CPD. Because the objective of ontology fusion
is to find a union of bridge equivalent intersections in a domain
ontology set, only bridge equivalent relations can be found in
resulting collaboration ontology. Thus, most of the data
distribution functions have been satisfied in the ontology fusion

process. Most of TH_RTI data distribution functions are
enough for ontology-based federated CPD, except ontology
concepts need an additional attribute of routing space
information, which is useful for intersection determination of a
concept instance to the subscriber’s requirements.

ORTIG service realization. Compared with RTIG,
ORTIG uses an ontology container to store and manipulate
collaboration ontology OFON. Its equivalent structure graph
and equivalent concept chain implies
publication/subscription relations between ontology
concepts from different federates and indicates a series of
equivalent transformation entity sets. There is great
potential to use artificial intelligent tools to automatically
transform one concept to another concept in the same
equivalent transformation entity set.

Besides functions that TH_RTI already has, some
new/updated functions add to ORTIG in order to support
ontology-based federated CPD (Table 1).

Table 1. Functions of Protégé enabled container

Service Type Function

Basic communication Instance generation
 Instance parsing
Declaration Management Acquire/return concept handle
 Acquire/return instance handle
 Acquire/return attribute handle
 Activate object concept
 Inactivate object concept
 Activate attribute concept
 Inactivate attribute concept
Object Management Object/interactive concept instance

generation
 Update concept instance attribute
 Reflect concept instance attribute
 Destroy concept instance
Data Distribution Management Equivalent concepts transformation

V. DISCUSSION AND FUTURE PLANS
Ontology maintenance is very similar to the process of

ontology fusion. They all work at collaboration ontology. They
have similar processes.

However, there are still some remarkable differences.
Although the collaboration ontology definition forms abelian
monoids which make ontology fusion a linear complexity
problem, the objective of ontology fusion is n × n relations
among an ontology set with length n . Ontology
maintenance just occurs between one ontology and an
ontology set with length n, and its computing complexity
is inherent O(n) . Ontology fusion is an important
preparation for ontology-based federated CPD, while
ontology maintenance happens in the collaboration
execution stage. In other words, ontology fusion is sort of
“static” and ontology maintenance is more “dynamic”.
Ontology fusion makes collaboration bigger and bigger,

and ontology maintenance sometimes removes the concept
from collaboration ontology.

Let n denote the average concept number in one
ontology; m is the length of the ontology set, and l
represents the length of the DA (Domain Axiom set). The
complexities of ontology fusion are O(m × max {n ∙ l, n2}),
the complexity of ontology maintenance (+) is O(m ∙ n2)
which is almost as much as that of ontology fusion, and
the complexity of ontology maintenance (-) is O(n ∙ log2 n).
Hence, although collaboration ontology can get by using
ontology maintenance (+) n − 1 times, it is not
recommended.

In collaboration ontology, all concepts in one
equivalent concept chain are supposed to be
distinguishable. That is to say, all concepts in
collaboration ontology have their federate identification.
Two concepts from different federates, even use the same
name, but are different in the collaboration ontology. This
helps to find corresponding domain ontologies and
furthermore is easy to track and maintain the collaboration
ontology.

In HLA-based CPD, the most difficult issue is to not
establish a collaborative system, but to adaptively adjust
interface codes of existing systems and to negotiate
among multidisciplinary domains. This paper proposes a
novel method to dynamically maintain the collaboration
ontology when federates dynamically join in or resign
from a given federation. The main part of this method
includes two algorithms: ontology maintenance (+) and
ontology maintenance (-).

Although, from the view of complexity analysis, this
approach may not be the best choice, it still enjoys several
sound advantages which are more suitable for ontology-
based federated CPD:

- This method is built on firm theoretical
foundations and formalization definitions.

- It enables a dynamic adjustment of collaboration
ontology, which can keep the collaboration going
smoothly and correctly.

- It avoids federates from rewriting interface codes,
stopping the collaboration execution to recompile
these codes.

- Different from most other ontology integration
tools using literature distance, this method
employs heavy-weighted ontology to perform
ontology maintenance functions. Axioms, bridge
axioms, equality rules and attribute set equality
conditions are all taken into consideration.

- Since ontology is used in this method, the reuse of
resources, flexibility and expandability of existing
systems are greatly enhanced.

ACKNOWLEDGMENT
This work is supported by Chinese national high-tech

research and development program (863 program, grant no.
2009AA110302) and Chinese nature science foundation (grant
no. 60874066).

REFERENCES
[1] W. Shen, Q. Hao and W. Li, Computer supported collaborative design:

Retrospective and perspective, Computers in Industry. 59 (2008), 855–
862.

[2] W. Fan, W. Wang and T. Xiao, Multidisciplinary Collaboration
Simulation Optimization Platform for complex product design,
Proceedings of the 2nd International Conference on Pervasive
Computing and Applications, 2007 (ICPCA 2007). Birmingham, UK,
2007,174 -178.

[3] H. Zhang, H. Wang and D. Chen, Integrating web services technology to
HLA-based multidisciplinary collaborative simulation system for
complex product development, 12th International Conference on
Computer Supported Cooperative Work in Design, 2008, Xi'an, China,
2008, 420-426.

[4] K. L. Morse, M. Lightner, R. Little, B. Lutz and R. Scrudder, Enabling
Simulation Interoperability, Computer, The Institute of Electrical and
Engineers, Inc. New York, 2006, 115-117.

[5] H. Sun, T. Xiao and S. Tang, Research on Federation-Based Pragmatic
Integration Framework, Proceedings of 2009 World Congress on
Computer Science and Information Engineering (CSIE 2009). Los
Angeles/Anaheim, USA, Apr. 2009,vol. 7, 535–539.

[6] IEEE Computer Society, “IEEE standard for modeling and simulation
(M&S) high level architecture (HLA)-object model template (OMT)
specification(IEEE Std 1516.2- 2000)”, NewYork: The Institute of
Electrical and Engineers, 2001.

[7] H. Sun, W. Fan, W. Shen and T. Xiao, Ontology Fusion in HLA-based
Collaborative Product Development, Proceedings of 2010 IEEE
International Conference on Systems, Man, and Cybernetics: SMC 2010.
Istanbul, Turkey, 2010, 2526-2532.

[8] S. Tang, T. Xiao and W. Fan, “A collaborative platform for complex
product design with an extended HLA integration architecture”.
Simulation Modelling Practice and Theory. 18(8) (2010), 1048-1068.

[9] S.C. Flavio and J. Agusti-Cullell, Knowledge Coordination, WILEY,
USA, July 2003.

[10] M. Rafi, H. Qureshi and H. Khatoon, Ontology Maintenance via Multi-
Agents, 2009 Fifth International Joint Conference on INC, IMS and
IDC, Seoul, Korea, 2009, 955-959.

[11] M. Luczak-Rosch, Towards Agile Ontology Maintenance, 8th
International Semantic Web Conference, ISWC 2009, Chantilly, VA,
USA, 2009, 965-972.

[12] D. Dou, D. McDermott, and P. Qi, Ontology Translation on the
Semantic Web, Journal on data semantics II, 3360 (2005) , 35-57.

[13] N. F. Noy and M. A. Musen, The PROMPT Suite: Interactive Tools For
Ontology Merging And Mapping, International Journal of Human-
Computer Studies, 59 (6)(2003), 983-1024.

[14] H. Schnurr and J. Angele, Do not use this gear with a switching
lever!Automotive industry experience with semantic guides, 4th
International semantic web conference, Galway, IRLANDE, 2005, 3729
(2005) 1029-1040.

[15] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, Learning to map
between ontologies on the semantic web, Proceedings of the 11th
international conference on World Wide Web, Honolulu, Hawaii, USA,
2002, 662-673.

[16] K. Qu, J. Liang, J. Wang and Z. Shi, The algebraic properties of Concept
Lattice, Journal of Systems Science and Information, 2(2) (2004), 271-
277.

[17] J. Yu, and Y. Dang, Review on Ontology Integration, Computer Science,
China, 35 (7)(2008), 9-14.

