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Abstract

This paper addresses a semantic tree-to-

string alignment problem: indexing spo-

ken documents with known hierarchical

semantic structures, with the goal to help

index and access such archives. We pro-

pose and study a number of alignment

models of different modeling capabilities

and time complexities to provide a com-

prehensive understanding of these unsu-

pervised models and hence the problem it-

self.

1 Introduction

The inherent difficulties in efficiently accessing

spoken documents raise the need for ways to better

organize such archives. Such a need parallels with

the consistently increasing demand for and avail-

ability of audio content on web pages and other

digital media, which, in turn, should come as no

surprise, with speech being one of the most basic,

most natural forms of human communication.

When intended to be read, written documents

are almost always presented as more than unin-

terrupted text strings; e.g., indicative structures

such as section/subsection headings and tables-of-

contents are standard constituents created manu-

ally to help readers, whereas structures of this kind

are rarely aligned with spoken documents, which

has raised little concern—in most time of history,

speech has not been ready for navigation, un-

til very recently, when recording, delivering, and

even automatic transcription were possible.

Navigating audio documents is often inherently

much more difficult than browsing text. An ob-

vious solution, in relying on human beings’ abil-

ity of reading text, is to conduct a speech-to-text

conversion through ASR, which in turn raises a

new set of problems to be considered. First, the

convenience and efficiency of reading transcripts

are affected by errors produced in transcription

channels, though if the goal is only to browse

the most salient parts, recognition errors in ex-

cerpts can be reduced by considering ASR con-

fidence (Xie and Liu, 2010; Hori and Furui, 2003;

Zechner and Waibel, 2000) and the quality of ex-

cerpts can be improved from various perspectives

(Zhang et al., 2010; Xie and Liu, 2010; Zhu et

al., 2009; Murray, 2008; Zhu and Penn, 2006;

Maskey and Hirschberg, 2005). Even if transcrip-

tion quality were not a problem, browsing lengthy

transcripts is not straightforward, since, as men-

tioned above, indicative browsing structures are

barely manually created for and aligned with spo-

ken documents. Ideally, such semantic structures

should be inferred directly from the spoken doc-

uments themselves, but this is known to be diffi-

cult even for written texts, which are often more

linguistically well-formed and less noisy than au-

tomatically transcribed text. This paper studies

a less ambitious problem: we align an already-

existing hierarchical browsing structure, e.g., the

electronic slides of lecture recordings, with the se-

quential transcripts of the corresponding spoken

documents, with the aim to help index and access

such archives. Specifically, we study a number of

semantic tree-to-string alignment models with dif-

ferent modeling capabilities and time complexities

in order to obtain a comprehensive understanding

of these models and hence the indexing task itself.

Semantic Structures of Spoken Documents
Much previous work, similar to its written-text

counterpart, has attempted to find certain flat

structures of spoken documents such as topic and

slide boundaries (Malioutov et al., 2007; Zhu et

al., 2008), which, however, involve no hierarchical

structures of a spoken document, thought as will

be shown in this paper, topic-segmentation mod-

els can be considered in our alignment task. Re-

search has also resorted to other multimedia chan-

nels, e.g., video (Fan et al., 2006), to detect slide

509



transitions. This type of approaches, however, are

unlikely to recover semantic structures more de-

tailed than slide boundaries.

Zhu et al. (2010) investigate the problem of

aligning electronic slides with lecture transcripts

by first sequentializing bullet trees on slides

with a pre-order walk before conducting align-

ment, through which the problem is reduced to

a string-to-string alignment problem and conven-

tional methods such as DTW (dynamic time warp-

ing) based alignment can then be directly ap-

plicable. A pre-order walk of bullet tree on

slides is actually a natural choice, since speak-

ers of presentations often follow such an order

to develop their talks, i.e., they discuss a parent

bullet first and then each of its children in se-

quence. However, although some remedies may

be taken (Zhu et al., 2010), sequentializing the hi-

erarchies before alignment, in principle, enforces

a full linearity/monotonicity between transcripts

and slide trees, which violates some basic proper-

ties of the problem that we will discuss. More re-

cently, the work of (Zhu, 2011) proposes a graph-

partitioning based model (revisited in Section 4)

and shows that the model outperforms a bullet-

sequentializing model.

With this previous work available, several im-

portant questions, however, are still open in ob-

taining a comprehensive understanding of the se-

mantic tree-to-string alignment task. First of all,

a basic question is associated with different ways

of exploiting the semantic trees when performing

alignment, which, as will be studied comprehen-

sively in this paper, results in models of different

modeling capabilities and time complexities. Sec-

ond, all the models discussed above consider only

similarities between bullets and transcribed utter-

ances, while similarities among utterances, which

directly underline a cohesion model, are generally

ignored. We will show in this paper that the state-

of-the-art topic-segmentation model (Malioutov

and Barzilay, 2006) can be inherently incorporated

into the graph-partitioning-based alignment mod-

els. Third, the different alignment objectives, e.g.,

that of the graph-partitioning models versus that of

basic DTW-based models, are entangled together

with different ways of exploiting the bullet tree

structures in (Zhu, 2011). In this paper, we discuss

two more quadratic-time models to bridge the gap.

Specifically, this paper studies nine different

models, with the aim to provide a comprehensive

understanding of the questions discussed above.

In the remainder of the paper, we will first review

the related work (Section 2) and more formally de-

scribe our problem (Section 3). Then we revisit

the graph-partitioning alignment model (Section

4), before present all the alignment models we will

study (Section 5). We describe our experiment set-

up in Section 7 and results in Section 8, and draw

our conclusions in Section 9.

2 Related Work

Alignment of parallel texts In general, research

on finding correspondences between parallel texts

pervades both spoken and written language pro-

cessing, e.g., in training statistical machine trans-

lation models, identifying relationship between

human-written summaries and their original texts

(Jing, 2002), force-aligning speech and transcripts

in ASR, and grounding text with database facts

(Snyder and Barzilay, 2007; Chen and Mooney,

2008; Liang et al., 2009). Our problem here,

however, is distinguished in several major aspects,

which need to be considered in our modeling.

First, it involves segmentation—alignment is con-

ducted together with the decision of the corre-

sponding segment boundaries on transcripts; in

other words, we are not finally concerned with

the specific utterances that a bullet is aligned to,

but the region of utterances. In such a sense,

graph partitioning seems intuitively to be more

relevant than models optimizing a full-alignment

score. Second, unlike a string-to-string alignment

task, the problem involves hierarchical tree struc-

tures. This allows for different ways of combining

tree traversal with the alignment process, as will

be studied in detail in this paper. Third, the hi-

erarchical structures as well as the texts on them

are fixed and unique to each document (here a lec-

ture) and knowledge is little generalizable across

different documents. We accordingly keep our so-

lution in an unsupervised framework. Fourth, the

length of transcripts and that of the hierarchies are

very imbalanced, and the former can be as long

as tens of thousands of utterances or hundreds of

thousands of words, which requires a careful con-

sideration of a model’s time complexity.

Building Tables-of-contents on Written Text
Learning semantic structures of written text has

been studied in a number of specific tasks, which

include, but not limited to, those finding seman-

tic representations for individual sentences and
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those constructing hierarchical structures among

sentences or larger text blocks. A notable effort of

the latter kind, for example, is the work of (Brana-

van et al., 2007), which aims at the ultimate goal

of building tables-of-contents for written texts,

though the problem was restricted to generating

titles for each text span by assuming the availabil-

ity of the structures of tables-of-contents and their

alignments with text spans. Our work here can be

thought of as an inverse problem, in which a spe-

cific type of semantic hierarchical structures are

known, and we need to establish their correspon-

dence with the spoken documents.

Rhetoric Analysis In general, analyzing dis-

course structures can provide thematic skeletons

(often represented as trees) of a document as well

as relationship between the nodes in the trees. Ex-

amples include the widely known discourse pars-

ing work of (Marcu, 2000). However, when the

task involves the understanding of high-level dis-

course, it becomes more challenging than finding

local discourse conveyed on small spans of text;

e.g., the latter is more likely to benefit from the

presence of discourse markers. Specifically for

spoken documents, speech recognition errors, ab-

sence of formality and thematic boundaries, and

less linguistically well-formedness of the spoken

language, will further impair the conditions on

which an reliable discourse-analysis algorithm is

often built. In this paper, we study a less ambi-

tious but naturally occurring problem.

3 Problem

We are given a speech sequence U =
u1, u2, ..., uN , where ui is an utterance, and

the corresponding hierarchical structure, which,

in our work here, is a sequence of lecture

slides containing a set of slide titles and bullets,

B = {b1, b2, ..., bM}, organized in a tree structure

T (ℜ,ℵ,Ψ), where ℜ is the root of the tree that

concatenates all slides of a lecture; i.e., each slide

is a child of the root ℜ and each slide’s bullets

form a subtree. In the rest of this paper, the word

bullet means both the title of a slide (if any) and

any bullet in it. ℵ is the set of nodes of the tree

(both terminal and non-terminals, excluding the

root ℜ), each corresponding to a bullet bm in the

slides. Ψ is the edge set. With the definitions,

our task is herein to find the triple (bi, uj , uk),
denoting that a bullet bi is mapped to a region

of lecture transcripts that starts from the jth

utterance uj and ends at the kth, inclusively. Con-

strained by the tree structure, the transcript region

corresponding to an ancestor bullet contains those

corresponding to its descendants; i.e., if a bullet

bi is the ancestor of another bullet bn in the tree,

the acquired boundary triples (bi, uj1 , uk1) and

(bn, uj2 , uk2) should satisfy j1 ≤ j2 and k1 ≥ k2.

4 Graph-partitioning Models: A Revisit

To facilitate our discussion later in this paper,

we briefly revisit the graph-partitioning alignment

model proposed in (Zhu, 2011), which, inspired

by (Malioutov and Barzilay, 2006; Shi and Malik,

2000), extended a graph-partitioning model to find

the correspondence between the bullets on elec-

tronic slides and transcribed utterances.

Consider a general, simple two-set partitioning

case, in which a boundary is placed on a graph

G = (V,E) to separate its vertices V into two

sets, A and B, with all the edges between these

two sets being removed. The objective, as we

have mentioned above, is to minimize the follow-

ing normalized-cut score:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )
(1)

In equation (1), cut(A,B) is the total weight of

the edges being cut, i.e., those connecting A with

B, while assoc(A,V ) and assoc(B,V ) are the

total weights of the edges that connect A with all

vertices V , and B with V , respectively. In general,

minimizing such a normalized-cut score has been

shown to be NP-complete. In our problem, how-

ever, the solution is constrained by the linearity of

segmentation on transcripts, similar to that in topic

segmentation (Malioutov and Barzilay, 2006). In

such a situation, a polynomial-time algorithm ex-

ists (Zhu, 2011).

Consider a set of sibling bullets, b1, ..., bm, that

appear on the same level of a bullet tree and share

the same parent bp. For the time being, we as-

sume the corresponding region of transcripts has

already been identified for bp, say u1, ..., un. We

connect each bullet in b1, ..., bm with utterances

in u1, ..., un by their similarity, which results in

a bipartite graph. Our task here is to place m − 1
boundaries onto the bipartite graph to partition the

graph into m bipartite graphs and obtain triples,

e.g., (bi, uj , uk), to align bi to uj , ..., uk , where

bi ∈ {b1, ..., bm} and uj , uk ∈ {u1, ..., un} and

j <= k. Since we have all descendant bullets to
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help the partitioning, when constructing the bipar-

tite graph, we actually include also all descendant

bullets of each bullet bi, but ignoring their orders

within each bi. We find optimal normalized cuts in

a dynamic-programming process with the follow-

ing recurrence relation:

C[i, k] = min
j≤k

{C[i− 1, j] +D[i, j + 1, k]} (2)

In equation (2), C[i, k] is the optimal/minimal

normalized-cut value of aligning the first i sib-

ling bullets, b1, ..., bi, with the first k utterances,

u1, ..., uk . It is computed by updating C[i − 1, j]
with D[i, j + 1, k], for all possible j s.t. j ≤ k,

where D[i, j + 1, k] is a normalized-cut score for

the triple (bi, uj+1, uk) and is defined as follows:

D[i, j + 1, k] =
cut(Ai,j+1,k, V \ Ai,j+1,k)

assoc(Ai,j+1,k, V )
(3)

where Ai,j+1,k is the vertex set that contains the

bullet bi (including its descendant bullets, if any, as

discussed above) and the utterances uj+1, ..., uk ;

V \ Ai,j+1,k is its complement set.

Different from the topic segmentation prob-

lem (Malioutov and Barzilay, 2006), the graph-

partitioning alignment model needs to remem-

ber the normalized-cut values between any region

uj , ..., uk and any bullet bi in our task, which re-

quires to use the additional subscript i in Ai,j+1,k,

while in topic segmentation, the computation of

both cut(.) and assoc(.) is only dependant on the

left boundary j and right boundary k. Also, the

similarity matrix here is not symmetric as in topic

segmentation, but m by n, where m is the number

of bullets, while n is the number of utterances.

As far as time complexity is concerned, the

graph-partitioning models discussed above are

quadratic with regards to N , i.e., O(MN2), where

M ≪ N ; M and N denoting the number of bul-

lets and utterances, respectively, with the loop ker-

nel computing and filling D[i, j, k] in equation 3,

which is a M × N × N matrix. Zhu (2011) ap-

plied the algorithm deterministically in traversing

a bullet tree top-down: starting from the root, the

normalized-cut algorithm finds the corresponding

regions of transcripts for all the direct children of

the root, fixes the regions, and repeats this process

recursively to partition lower-level bullets. This

whole algorithm is still quadratic O(MN2) but

outperforms a bullet-sequentializing baseline.

5 Alignment Models

Now, we discuss the models that we will study fur-

ther in this paper to address the problems rise ear-

lier in the introduction section.

5.1 The O(MN4) Models

As discussed, Zhu (2011) proposed a graph-

partitioning alignment model and applied it in a

deterministic way along with a top-down traversal

of bullet trees. Though such models could be very

competitive in performance, an important ques-

tion, however, is with regard to the performance of

models that can optimize a global score rather than

local ones on each set of sibling bullets, which

requires a study of models with more modeling

capability (containing the deterministic hierarchi-

cal models as a special case) and with higher time

complexities.

Naively, searching all possible partitions to op-

timizing a global score needs to consider an ex-

ponential space in terms of the number of tran-

scribed utterances, while applying dynamic pro-

gramming similar to those used in syntactic pars-

ing would keep the solution to be polynomial. In

this section, we introduce such alignment models;

or in another viewpoint, we formulate the align-

ment task in a parsing-like setting. A dynamic

programming approach, e.g., that used in a con-

ventional CYK parser, can be adapted to solve

this problem, in which one can replace the splitter

moving in each text span in the classic CYK with

the quadratic bipartite-graph partitioning model

discussed above. However, in our task here, the

trees, unlike in a general parsing task, are given

and fixed, meaning that the cells of a parsing ta-

ble can be filled in a fixed order, i.e., a post order,

so that the search speed can be improved by some

constant.

Figure 1 shows an algorithm, in which we insert

the bipartite graph partitioning model that works

on sibling bullets (as discussed in Section 4) into

a parsing search process (line (12)). We call this

model PrsCut. Note that there are more than one

way to conducting such a search, but they should

yield the same results once the objective function,

e.g., the normalized-cut score here, is the same.

Specifically, the Main function in Figure 1 takes

as input an M ×N similarity matrix, where, same

as before, M and N denote the number of bul-

lets and transcribed utterances in a lecture, re-

spectively. The Main function first computes the
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Figure 1: An algorithm of optimizing a global

normalized-cut score.

cutCostTab, which saves the D[i, j + 1, k] val-

ues defined by equation (3). Then the parsing

table prsTab is built with a post-order traversal

algorithm Build-Parsing-Tab, followed by a de-

coding process that finds the optimal partition-

ing tree. As sketched in Figure 1, the Build-

Parsing-Tab algorithm builds a 3-dimensional ta-

ble prsTab, each cell saving a value that linearly

combines the corresponding cutCostTab value of

the current node/bullet curNd and the optimal par-

titioning score bestScr value calculated on its de-

scendent, if any (see line (13)); or if the current

node curNd is a leaf itself, its bestScr score is

zero; in such case, the prsTab value is initialized

with the cutCostTab value (line (5)). The recur-

sive algorithm traverse the bullet tree in a post-

order walk, which, as discussed above, utilizes the

given, fixed bullet tree structures to fill the pars-

ing table prsTab. The weight w in line (13) is

set in a held-out data and note that if w is set to

be 0, the model degrades to be the deterministic

hierarchical model discussed in (Zhu, 2011) and

referred to as HieCut below in Section 5.2, since

in this case the prsTab is same as costCustTab.

As far as time complexity is concerned, the whole

algorithm is O(MN4), shown by the nested for-

loops of line (10)-(15) that contain the O(MN2)
bigraph-partitioning alignment in line (12). Simi-

larly, we can insert a standard DTW-based align-

ment model into the line (12) here, which we call

the PrsBase model. Note that the real algorithm

is a little more complicated; e.g., we need to allow

a parent bullet to have a different starting position

than its first child, same as in (Zhu, 2011).

5.2 The O(MN2) models

Sequential Alignment Models As discussed ear-

lier, in a simplified situation, our problem here can

be formulated as a sequential alignment problem,

based on a fairly reasonable assumption (Zhu et

al., 2010): a speaker follows a pre-order walk of

a bullet tree to develop the talk, i.e., discussing

a parent bullet first, followed by each of its chil-

dren in sequence. Accordingly, the models first

sequentialize bullet trees with a pre-order walk

before conducting alignment, through which the

problem is reduced to a string-to-string alignment

problem and conventional methods such as DTW-

like alignment can then be applicable. Such a pre-

order walk has also been assumed by (Branavan et

al., 2007) to reduce the search space in their table-

of-contents generation task, a problem in which a

tree hierarchy has already been aligned with a span

of written text, while the title of each node on the

tree needs to be generated.

With this formulation, we first included here the

baseline model in (Zhu et al., 2010), which ap-

plies a typical DTW-based alignment. We refer

to the model as SeqBase. In addition, we applied

the graph-partitioning based models discussed in

(Zhu, 2011) to align the sequentialized bullets and

the corresponding transcribed utterances, and we

call this model SeqCut. The motivation of study-

ing SeqCut is to further understand the benefit of

graph-partitioning based models. For example, it

allows us to disentangle the benefit of the deter-

ministic graph-partitioning models in (Zhu, 2011):

whether the benefit is due to the modeling advan-

tage of the proposed partitioning objective or its

avoiding sequentializing bullet trees.

In principle, sequentializing bullet trees before

alignment enforces a full linearity/monotonicity

between transcripts and these bullet trees, which,

though based on a reasonable assumption and is

fairly effective (as will be shown in our com-

prehensive comparison later), misses some basic

properties of the problem. For example, the gen-

erative process of lecture speech, with regards to

a hierarchical structure (here, bullet trees), is char-

513



acterized in general by a speaker’s producing de-

tailed content for each bullet when discussing it,

during which sub-bullets, if any, are talked about

recursively. By the nature of the problem, words

in a bullet could be repeated multiple times, even

when the speaker traverses to talk about the de-

scendant bullets in the depth of the sub-trees. That

is, the content of a bullet could be mentioned not

only before its children but also very likely when

the speaker traverses to talk descendant bullets, if

any, which violate the pre-order-walk assumption.

Though with shortcomings, an important ben-

efit of formulating the task as a sequential-

alignment problem is its computational efficiency:

solutions can be acquired in quadratic time. This

is of particular importance for this task, consider-

ing that the length of a document, such as a lecture

or a book, is often long enough to make less effi-

cient algorithms practically intractable. A natural

question to be ask is therefore whether we can, in

principle, model the problem better, but still keep

the time complexity quadratic, i.e., O(MN2).

Deterministic Hierarchical Models Determinis-

tically deciding bullets’ boundaries on transcribed

utterances when traversing the bullet tree can keep

the solution within a quadratic time complexity

and avoid a sequentialization of bullet trees be-

forehand. For example, in (Zhu, 2011), the graph-

partitioning alignment model, as discussed above,

is applied in such a deterministic way; the model

recursively traverses a bullet tree by first determin-

ing transcript boundaries of the direct children of

the root, fixing the boundaries found, and then de-

termining boundaries for the descendant bullets re-

cursively1. We refer to this model as HieCut in

this paper. Note that though working deterministi-

cally, this models utilize the similarities associated

with all descendant bullets of the current sibling

bullets under concern, to find the optimal bound-

aries between these siblings. In addition, we in-

clude a standard DTW-based alignment model in

such a deterministic-decision process, called the

HieBase model in the remainder of this paper.

One major benefit of the deterministic hierar-

chical alignment models is their time complex-

ity: still quadratic, same as the sequential align-

ment model discussed above, though models like

HieCut can achieve a very competitive perfor-

1A pre-order walk can be used here (not for sequentializ-
ing bullet trees though); other top-down transversing methods
are also applicable, e.g., a breadth-first search, once a parent
bullet is visited before its children.

mance, which we will discuss in detail later. Also,

the deterministic hierarchical models need less

memories than the corresponding O(MN4) mod-

els and even the sequential models. For example,

the memory needed by HieCut is proportional to

the maximal number of sibling bullets in a tree,

not the total number of bullets.

6 The Topic-segmentation Model

Up to now, we have discussed a variety of align-

ment models with different model capabilities and

time complexities, which, however, consider only

similarities between bullets and utterances. Cohe-

sion in text or speech, by itself, often evidenced by

the change of lexical distribution (Hearst, 1997),

can also indicate topic or subtopic transitions, even

among subtle subtopics (Malioutov and Barzilay,

2006). In our problem here, when a lecturer dis-

cusses a bullet, the words used are likely to be

different from those used in another bullet, sug-

gesting that the spoken documents themselves,

when ignoring the alignment model above for the

time being, could potentially indicate the seman-

tic boundaries that we are interested in here. Par-

ticularly, the cohesion conveyed by the repeti-

tion of the words that appear in transcripts but

not in slides could be additionally helpful; this

is very likely to happen considering the signifi-

cant imbalance of text lengths between bullets and

transcripts, from which the alignment models by

themselves may suffer.

C[i, k] = min
j≤k

{C[i− 1, j] + λ1D[i, j + 1, k]

+(1− λ1)S[j + 1, k]} (4)

where,

S[j + 1, k] =
cut(Aj+1,k, V \Aj+1,k)

assoc(Aj+1,k, V )
(5)

In fact, a state-of-the-art topic-segmentation

model (Malioutov and Barzilay, 2006) (also called

a cohesion model in this paper) can be nat-

urally incorporated into the graph-partitioning

alignment models that we have discussed. That

is, we can augment the SeqCut, HieCut, and

PrsCut models with the cohesion models to form

three new models SeqCutTpc, HieCutTpc, and

PrsCutTpc, respectively. To achieve this, we

modify equation (2) to equation (4), where S[j +
1, k] is calculated as in (Malioutov and Barzilay,
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2006), which denotes the normalized partition cost

of the segment from utterance uj+1 to uk, inclu-

sively. For complexity, since the cohesion model

is O(MN2), linearly combining it would not in-

crease the time complexities of the corresponding

polynomial alignment models, which are at least

O(MN2) by themselves.

7 Experiment Set-up

Corpus Our experiment uses a corpus of four

50-minute university lectures taught by the same

instructor, which contain 119 slides composed

of 921 bullets. The automatic transcripts of the

speech contain approximately 30,000 word to-

kens, roughly equal to a 120-page double-spaced

essay in length. The lecturer’s voice was recorded

with a head-mounted microphone with a 16kHz

sampling rate and 16-bit samples, while students’

comments and questions were not recorded. The

speech is split into utterances by pauses longer

than 200ms, resulting in around 4000 utterances.

The slides and automatic transcripts of one lec-

ture were used as the development set. In practice,

each lecture is divided into three roughly equally-

long pieces in all our experiments discussed be-

low, for pragmatic computational consideration of

calculating the O(MN4) models quickly enough.

Building the Graphs The transcripts were

generated with the SONIC toolkit (Pellom,

2001), with the models trained as suggested by

(Munteanu et al., 2007), in which one language

model was trained on SWITCHBOARD and the

other used also corpus obtained from the Web

through searching the words on slides. Both bul-

lets and automatic transcripts were stemmed with

the Porter stemmer and stopwords were removed.

The similarities between bullets and utterances

and those between utterances were calculated with

different distance metrics, i.e., cosine, exponential

cosine (Malioutov and Barzilay, 2006) for topic

segmentation, and a normalized word-overlapping

score used in summarization (Radev et al., 2004),

from which we chose the one (regular cosine) that

optimizes our baseline. Our graph-partitioning

models then used exactly the same setting. The

lexical weighting is same as in (Malioutov et al.,

2007), for which we split each lecture into M

chunks, the number of bullets. Finally, we ob-

tained a M-by-N bullet-utterance similarity matrix

and a N-by-N utterance-utterance matrix to opti-

mize the alignment model and topic-segmentation

model, respectively, while M and N , as already

mentioned, denote the number of bullets and ut-

terances of a lecture, respectively.

Evaluation Metric The metric used in our eval-

uation is straightforward—automatically acquired

boundaries on transcripts for each slide bullet are

compared against the corresponding gold-standard

boundaries to calculate offsets measured in num-

ber of words, counted after stopwords having been

removed, which are then averaged over all bound-

aries to evaluate model performance. Though one

may consider that different bullets may be of dif-

ferent importance, in this paper we do not use

any heuristics to judge this and we treat all bul-

lets equally in our evaluation. Note that topic

segmentation research often uses metrics such

as Pk and WindowDiff (Malioutov and Barzilay,

2006; Beeferman et al., 1999; Pevsner and Hearst,

2002). Our problem here, as an alignment prob-

lem, has an exact 1-to-1 correspondence between

a gold and automatic boundary, in which we can

directly measure the exact offset of each bound-

ary.

8 Experimental Results

Alignment Models Table 1 presents the exper-

imental results obtained on the automatic tran-

scripts generated by the ASR models discussed

above, with WERs of 0.43 and 0.48, respectively,

which are typical for lectures and conference pre-

sentations in realistic and less controlled situa-

tions (Leeuwis et al., 2003; Hsu and Glass, 2006;

Munteanu et al., 2007).

The results show that among the four quadratic

models, i.e., the first four models in the table,

HieCut achieves the best performance. The

results also suggest that the improvement of

HieCut over SeqBase comes from two aspects.

First, the normalized-cut objective used in the

graph-partitioning based model seems to outper-

form that used in the baseline, indicated by the bet-

ter performance of SeqCut over SeqBase, since

both take as input the same, sequentialized bul-

let sequence and the corresponding transcribed

utterances. The DTW-based objective used in

SeqBase corresponds to finding the optimal path

that maximizes the similarity score between the

bullet sequence and the transcripts. Second, the

better performance of HieCut and SeqCut shows

that HieCut further benefits from avoiding se-

quentializing the bullet trees. However, this two
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aspects of benefit do not come independently,

since the former (performance of an alignment ob-

jective) can significantly affect the latter (whether

a model can benefit from avoiding sequentializ-

ing bullets). This is evident in the inferior per-

formance of HieBase. Manual analysis of its

errors shows that HieBase is less accurate than

HieCut on higher-level bullets and the errors in

turn severely impair the decisions made on lower-

level bullets in the deterministic decision process:

the errors propagate severely in such a determinis-

tic process.

Models WER=0.43 WER=0.48

SeqBase 15.19 18.44

SeqCut 12.87 16.16

HieBase 21.06 24.25

HieCut 12.13 15.95

PrsBase 15.05 18.18

PrsCut 12.05 15.20

Table 1: The performances of different alignment

models.

A closer examination of errors made by

HieBase suggests that in a DTW-based align-

ment, a large subtree is likely to be aligned to

a region larger than it should be, particularly for

higher-level bullets (e.g., slides), where the sub-

tree sizes vary more, e.g., some slides contain-

ing much textual content and others containing

little. It seems that HieCut could counteract

this effect with its capability of normalizing par-

tition sizes (see the denominators in both equa-

tion (1) and (3)). The usefulness of the normal-

ization has also been discussed in other tasks such

as image segmentation (Shi and Malik, 2000).

Compared with those of HieBase, segments in

the SeqBase model are smaller (all non-leaf bul-

lets do not include its descendants after being se-

quentialized) and the pre-order walk constrains the

alignment range of bullets, which often avoid er-

rors of long offsets. Again, the HieCut model is

quadratic in time, it uses less memories than the

O(MN4) models and even the SeqCut model,

and it achieves a very competitive overall perfor-

mance.

The results in Table 1 also shows that the

(O(MN4)) models, which conduct a more thor-

ough search, improve the performance in all situa-

tions.

Effect of Topic-segmentation Models The effect

of the topic-segmentation model is presented in

Table 2. To facilitate reading, we also copy here

the relevant results from Table 1. The results

show that incorporating text cohesion addition-

ally reduces the errors consistently for all models,

though the specific improvement varies.

Models WER=0.43 WER=0.48

SeqCut 12.87 16.16

SeqCutTpc 12.77 15.14

HieCut 12.13 15.95

HieCutTpc 11.82 15.28

PrsCut 12.05 15.20

PrsCutTpc 11.34 14.62

Table 2: The effect of topic-segmentation models.

9 Conclusions

In addressing the semantic tree-to-string align-

ment problem described, this paper proposes and

studies a number of models with different mod-

eling capabilities and time complexities. Exper-

imental results show that among the quadratic

alignment models (O(MN2)), HieCut consis-

tently achieves the best performance, while the

O(MN4) models that optimize a global ob-

jective score further improve the performance,

though such models are, pragmatically, much

more computationally expensive. This paper also

relates alignment models with topic-segmentation

models by showing that a state-of-the-art topic-

segmentation models can be inherently incorpo-

rated into the graph-partitioning based alignment

models. The experimental results show the benefit

of considering such cohesion knowledge.
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