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Abstract 

 
The long-term performance of pavements depends in good part on the quality and frequency of 
maintenance.  Good maintenance protects the pavement from deterioration, corrects deficiencies, 
and ensures safe and smooth riding.  Crack sealing is practiced on a routine basis as preventive 
maintenance and as part of corrective maintenance prior to an overlay or a large rehabilitation 
project.  A timely and properly installed sealant adds several years of service life to the pavement at 
a relatively low cost.  As a consequence, the selection of an appropriate sealant in a maintenance 
project becomes an important issue.  Current sealant selection is based on ASTM standards that 
consist of quality control tests, not of performance indicators.  These standards do not consider the 
changes in mechanical properties due to aging or the differences in local service temperatures. 
Given the breadth of temperatures in North America and its yearly variation, there is an urgent need 
for performance-based indicators of sealant performance.  In this paper, a series of test that provides 
a systematic approach to help highway agencies select proper sealants is proposed.  These include 
an accelerated aging test, a viscosity test performed at installation temperatures, a dynamic shear 
rheometer (DSR) tests to assess flow in summer temperature, a bending beam rheometer (BBR) and 
a direct tension test (DTT) for cohesive properties at sub-zero temperature, and a blister test for 
adhesive properties. 
 

1. Introduction 

 
ASTM standard D5535 defines a sealant as an adhesive and cohesive material that reduces, and in 
the best case prevents, the penetration of water, brine, grit, stones and other incompressible 
materials into the pavement structure.  Crack sealing is widely used in routine preventive 
maintenance.  After proper installation, the sealant must withstand crack movement, degradation, 
and weathering.   
 
Over the past two decades, polymer-rich crack sealants have been used.  These sealants exhibit 
quite complex behavior compared to the earlier sealants rich in bitumen (1).  Despite this evolution, 
current sealant selection relies on a standard with its basis in World-War II quality control tests: 
ASTM D6690, Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt 
Pavements. This specification provides lilttle or no correlation to the field behavior of the sealants (2) 
because the test conditions are not closely related to the expected in-service conditions (3).  
Sealants with the best and the worst field performance fail to meet the specification, with only the 
average sealants passing the specification (3).  The inconsistency between field performance and 
the current specification system has been widely reported in the literature (4).  Therefore, there is a 
great need for a performance-based specification to select sealants.   
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After acknowledging the deficiencies of the current specification, North-American stakeholders (State 
and Province departments of transportation, manufacturers, cities, and research agencies) partnered 
to develop performance-based guidelines for selecting bituminous hot-poured crack sealants (5).  
One aim of the study was to make use of the existing methods and equipment developed during the 
five-year Strategic Highway Research Program (SHRP) as part of the Performance Grade (PG) 
system for asphalt binders.  This paper provides an insight on the tests adapted or developed for 
sealants. 
 

2. Materials 

 
In general, sealants are composed of bitumen, styrene-butadiene copolymer, and filler.  The styrene-
butadiene (SB) copolymer consists of linked blocks of polystyrene (PS) and polybutadiene (PB).  The 
fillers may include ground tire rubber or mineral filler, or both (5).  The variety of chemical 
compositions for crack sealants can significantly influence their rheological properties.  Therefore, 
thirty-one sealants with varying compositions were used.  These sealants represent the wide North 
American array of rheological behaviors.  Variations in the rheological properties can be attributed to 
different factors including the source of bitumen, its refining process, and the content of polymer, 
filler, and additives.   
 
The characteristics of the thirty one sealants are shown in Table 1 along with the tests results 
according to ASTM D5535.  Sealants with a one character code were studied in a field trial 
conducted in Canada.  They were used to study weathering and accelerated aging.  Sealants with a 
two character code were used to study of sealants at low and application temperatures.   
 

Table 1  Sealant Identification and Characteristics 

Penetration Flow Resilience ID Penetration Flow Resilience
ID 

25°C (dmm) 60°C (mm) 25°C  
25°C 

(dmm) 
60°C 
(mm) 

25°C 

A 86 0.5 57 CC N/A 0 65 

B 68 0.5 64 DD 80 1.5 50 

C 78 0 59 EE 47 0 51 

D 67 0.5 62 GG 66 0 75 

E 124 1 73 HH N/A 0 44 

F 122 2 42 MM 120 1 70 

G 50 0.5 51 NN 75 0 70 

H 93 0.5 48 PP 130 1 44 

J 66 6 48 QQ 22 0 36 

K 67 0 64 SS 122 0.1 63 

L 76 0.5 63 UU 62 1.5 N/A 

M 53 0.5 61 VV N/A N/A N/A 

AB 40 N/A 23 WW N/A N/A N/A 

AD N/A 1 80 YY 42 N/A N/A 

AE N/A N/A N/A ZZ 42 N/A N/A 

BB 148 0 80     

 

3. Performance-Based Specification 

3.1 Weathering and Accelerated aging 

Sealants weather in the field.  It is therefore an important task to develop an effective accelerated 
aging test.  For an aging test to be effective, it must quickly provide an aging as close as possible to 
reality.  Figure 1 shows how this can be done.  To this effect, true aging was determined from the 
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physico-chemical analysis of twelve sealants, A to M, weathered in Montreal, Canada, for nine years 
(Table 2).   
 
To mimic the effect of weathering on sealants, several accelerated aging methods were compared 
(alone or in combination) after various aging times and temperatures, including, small-kettle aging, 
microwave aging, pressure aging, oven aging, and vacuum oven aging.  The results of physico-
chemical analysis of sealants weathered in the field were compared to those for sealants aged 
quickly in the laboratory.  The oxidation of the sealant bitumen, the change in the polymer molecular 
weight, and the change is sealant viscosity between –40°C and 40°C served to validate the aging 
methods (Figure 2).   
 
It was found that microwave heating could mimic the aging of sealants that contain mineral filler, but 
not the others. The method thus lacked general application. Pressure aging was also found to be 
inappropriate as it often led to insufficient bitumen oxidation, but excessive thermo-degradation of the 
polymer.   Vacuum oven aging was found to be the most appropriate method to simulate sealant 
weathering. Details will be provided in a series of publications. 
 

 

Determine aging rate and mechanism 
for weathered sealants  

Simulate aging on un-aged sealants 

Validate 
aging test 

 
Figure 1  Development of an aging procedure 

Table 2  Physico-chemical method to characterize aging 
Method Output Use 

GPC Separation of bitumen and polymer Quantify polymer; degradation rates and mechanisms 

FTIR Fingerprint of composition 
Oxidation; identification of polymer and filler; semi-
quantitative analysis; degradation mechanism 

TG Weight loss upon heating 
Contents of filler and light, medium, and heavy 
hydrocarbon components 

DSR Stiffness, relaxation Effect of temperature and aging on mechanical properties 

Note: Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), 
thermogravimetric analysis (TG), dynamic shear rheometry (DSR). 
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Figure 2  Complex viscosity of a weathered sealant compared to that after accelerated aging.
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3.2 Sealant Viscosity During Application 

Sealant flow increases with temperature.  During installation, sealants are heated to a liquid so that 
they can be poured into cracks or routs. They must be heated to a viscosity low enough to provide a 
good bond with the asphalt concrete but high enough for the sealant not to flow deep into the 
pavement or out of the bottom end of a sloping crack.   
 
A viscosity test was devised to reproducibly measure sealant flow at installation temperatures.  This 
test uses a Brookfield viscometer with an SC4-27spindle rotated at 60 rpm. A 20min sealant melting 
time followed by 30-s lag before data collection ensures consistent results (7).  Precision was 
established through a round-robin test amongst seven laboratories.  The viscosity of several sealants 
at different temperatures is shown in Figure 3.   
 
To provide appropriate sealant flow, upper and lower viscosity limits are recommended.  An upper 
limit of 3.5Pa·s ensures that sealant is liquid enough to pour, whereas a  lower limit of 1 Pa·s 
prevents the application of an excessively fluid sealant.  Application temperatures should thus 
provide viscosities of 1.0 to 3.5 Pa·s, which also helps provide good adhesion between sealant and 
pavement.  
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Figure 3  Viscosity of sealant at different temperature 

 
3.3 Sealant Flow in Summer Temperatures  

Bituminous sealants applied to cracked pavements sometimes fail due to deformation under the 
combined action of shear stresses and summer temperatures (5, 8).  In an attempt to define 
performance parameters, a dynamic shear rheometer (DSR) was used and subjected to increasing 

stresses at temperatures increasing between 46°C and 82°C.  These conditions were meant to 
mimic the effect of various traffic levels and temperature maxima in the field.  Plots of low shear 

viscosity (ηL) versus shear rate ( ) indicated that many sealants were susceptible to shear thinning.  

Their apparent viscosity decreased with an increase in shear rate, or temperature, or both (

•

γ
Figure 4).  

This indicated that in summer temperatures, high traffic loads or volumes would affect the extent of 
sealant flow when it is under stress. 
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Figure 4  Examples of low shear viscosity as a function of shear rate. For each curve, the 
stress doubles for each point from left to right, starting at 25 Pa.   

Plots of ηL vs  were interpreted based on the Ostwald power law model.  This model provided two 

parameters: a flow coefficient (C) and a shear-thinning coefficient (P).  These coefficients correlated 
well with sealant pseudo-field performance as measured by tracking (7).  

•

γ

Figure 5 shows the 
relationship between these factors and performance during the pseudo-field test.  The solid markers 
indicate the sealants that did not fail during the pseudo-field test and the open markers show those 
that failed.  The semi-log scale in Figure 5 serves to highlight the high-failure regions (open 
markers).  Limiting values for P and C can be established to limit the risk of sealant failure.  Each 
pair of C and P represents possible performance criteria.   
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Figure 5  Semi-log plot of the Ostwald parameters and possible performance limits, areas A to 
D. 
 
In the absence of effective limiting criteria (area A in Figure 5), the sealant failure rate due to tracking 
is 39% (Table 3).  As C and P limits are raised, the risk of tracking failure is reduced. Area E defines 
the limits within which no tracking failure was observed. With such demanding criteria, 33% of the 
sealants are above the pass limits.  Any limits in C and P can be used to define the level of sealant 
performance, but the most interesting performance criteria may be that defined by area D, where 
limits of C = 4000 Pa.s and P = 0.70 provide for a failure risk of only 3% and a sealant acceptance 
rate greater than 50%. The other limits have greater acceptance rates, but the risk of failure is 
disproportionately higher (Table 3). 
 

Table 3  Lower limits in C and P and their relationship with tracking performance 

Area
a
  C P Passing

b
 Tracking

c
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A 300 0.46 145 (99%) 39 % failure 
B 1000 0.64 123 (84%) 24 % failure 
C 2500 0.64 98 (66%) 14% failure 
D 4000 0.70 76 (52%) 3 % failures 
E 10000 0.80 49 (33%) No failures 
a
Area in Figure 5. 

b
From DSR: Number of samples above C and P limits. Total number of samples is 147. 

c
From the pseudo-field test (5): ratio empty/all marker within the given plot area. 

 
3.4 Low Temperature Test 

3.4.1 Modified Bending Beam Rheometer 

Bituminous crack sealants are viscoelastic.  As such, they can become brittle at low temperature, 
and they may fail when they are subject to rapid shear loads associated to traffic or to tensile loads 
related to pavement contraction and crack opening.  Therefore, sealants must be flexible enough to 
deform at low temperatures. To measure sealant flexibility, the bending beam rheometer (BBR) was 
adapted to sealants (9).  A constant creep loading is applied to a thick rectangular beam for 240s 
and the 60s flexural stiffness is determined.  To decide on test conditions, temperature history at 
several locations in the US was reviewed; it showed that upon cooling, sealants can be under tensile 
strain for 6 to 10h and that internal stresses had 3 to 7 hours to dissipate by stress relaxation when 
temperatures become constant and cracks and joints are static.  From time-temperature 
superposition, the 240s stiffness at a given temperature can be used to predict the stiffness after 5 
hours of loading.  Given the variation in sealant response to temperature changes, a 6°C shift was 
deemed appropriate (10).   
 
With a BBR method adapted to sealants, several products were loaded between +2°C and –40°C, 
and two performance parameters were selected to evaluate sealant softness: the flexural stiffness at 
240s and the average creep rate (ACR).  The ACR was used to assess the rate of sealant 
deformation upon loading.  These parameters can distinguish between sealants (11).  Figure 6 
shows sealant stiffness at 240s for fifteen tested sealants.  The dash line shows the recommended 
thresholds of 25MPa.  Figure 7 shows the ACR and the suggested threshold of 0.31.  The thresholds 
were determined after a correlation with results from sealants of known field performance, as 
measured in Montreal, Canada (2).   
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Figure 6  Stiffness at 240s of Tested Sealants at Various Temperatures 
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Figure 7  Average Creep Rate for Sealants at Various Temperatures 

 

3.4.2 Direct Tension Test (DTT) 

As indicated earlier, sealants are in tension during winter.  Therefore, a direct tension test, a slow 
isothermal pull of the sealant, was considered a suitable test to simulate sealant movement in the 
field at low temperature.  A dog-bone shaped specimen was fixed at one end and pulled from the 
other end at a constant strain rate of 6%/min.  Sealant extensibility is also important as crack 
opening can beach 100% (12-15).  Unfortunately, the standard sample size and set-up only allow for 
a 33% extension of the sample.  To circumvent this difficulty, specimens of 24mm by 6mm by 3mm 
(length, width, thickness) were used.  This change in sample geometry and size allows for 
extensions up to 95% (16).   
 
Two performance parameters can be obtained from DTT: the extensibility and the percent modulus 
decay.  The extensibility is obtained as the percent strain at the peak load, or as the strain reaches 
95% of its extension (Figure 8).  The percent modulus decay is calculated as the rate of modulus 
change after 10s of loading.  This gives an indication of how fast the sealant can release the 
imposed load (Figure 9).  The suggested extensibility criteria at -4°C, -10°C, -16°C, -22°C, -28°C, -
34°C, and -40°C are 10%, 25%, 40%, 55%, 70%, 85% and 85%+, respectively, as shown by the red 
dash in Figure 8.  For instance, if the extensibility is greater than 10% but less than 25% at -4°C, a 
sealant will pass the extensibility criteria at a -4°C grade.     
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Figure 8  Extensibility of Sealants at Various Temperatures 
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Figure 9  Percent Modulus Decay of Sealant at Various Temperatures.   

 

3.4.3 Adhesion Test 

Adhesive failure is a most common failure mode (17).  It refers to the separation of sealant from the 
crack wall. For the sealant to perform well, it must develop and maintain a strong bond with crack 
walls.  Considering that aggregates make 95% (by weight) of the asphalt concrete, sealant 
performance is governed by its interaction with aggregates.  In the development of a standard test, 
aluminium found to be an appropriate substitute for aggregates (18).  A 3-level approach was used 
for characterize sealant adhesion, a) compatibility with aggregates, which aims to help sealant 
producers with formulation, b) tensile adhesion, which aims to help with sealant selection, and c) 
blister test, which helps to study the effects of various factors on interfacial bonding.  
 
The compatibility with aggregates is based on the calculation of the surface energy and the work of 
adhesion for each sealant-aggregate pair.  To calculate the work of adhesion, the surface energy of 
each sealant and the angle between a droplet of sealant and the substrate (aggregate or aluminium) 
is measured (19).  The work of adhesion between aluminium and seven sealants is shown in Figure 
10.  As can be seen, this method can differentiate between various pairs.  
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Figure 10  Work of Adhesion between Sealants and Aluminum 

 
In the tensile adhesion test a sealant-aggregate pair is brought apart in the DTT, for which a test 
fixture was developed (19). An assembly consists of two half-cylinders of aluminium and a half 
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cylinder, open at the upper end. The mold is placed between the two aggregates and it is filled with 
hot sealant. Before pouring the sealant, a 12.5x2mm notch is placed on the edge of one of the 
aluminium pieces to ensure that adhesive failure occurs. The sealant is cured at room temperature 
for 1h before it is trimmed.  It is then immersed in the DTT cooling bath for 15min. before it is 
demolded and placed back to the bath for an additional 45min before testing. During the test, the end 
pieces are moved apart at 0.05mm/s, until sealant debonds from an aluminium end piece.  The 
maximum load to failure, Pmax is recorded as an indication of bond strength.  The load to failure for 
several sealant-aluminum pairs is shown in Figure 3.  
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Figure 11  Maximum Load to failure, Pmax for Sealant-Aluminum Assemblies 

 
The blister test is used to measure a fundamental parameter, the interfacial fracture energy (IFE), for 
each pair of sealant-aluminium.  To prepare the specimen, sealant is cast on an annular aluminium 
plate and cured for 1 hour in room temperature and trimmed, after which it is placed in cooling bath 
for 15 minutes, demolded and placed back to the bath for 20 minutes before testing (18).  To run the 
test, a servohydraoulic pump injects alcohol at sealant-aluminm interface through the opening in the 
aluminum plate.  Alcohol pressure creates a blister on top of opening, the blister keeps growing until 
sealant completely debonds from the aluminium plate.  Pressure and blister height are recorded 
during the test.  The peak pressure and the corresponding blister height is used to calculate the IFE.  
Figure 4 shows IFE value for sealant- aluminium pairs.   
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Figure 12  IFE Values for Several Sealants- Aluminium Pairs 
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4. Procedure of Performance-Based Specification Guideline 

 
A goal of this work was to provide a systematic screening process to help users select bituminous 
hot-poured crack sealants.  Such a process is shown in Figure 13 where the viscosity of a sealant is 
first obtained at the suggested application temperature.  Viscosity limits are 1.0 to 3.5 Pa.s.  Other 
tests are conducted on aged sealant.  Resistance to tracking in summer temperatures is measured 
with the DSR, the performance criteria being the flow and shear thinning coefficients. If a sealant 
does not meet the performance criteria at a selected temperature, the test is repeated at a lower 
temperature until it does.  This sets the sealant grade for summer temperatures. The process is 
similar for the low temperature grade. The sealant is tested in the BBR for flexural stiffness and 
average creep rate followed by the assessment of extensibility in the DTT. The sealant low 
temperature grade is obtained if bond strength is sufficient.  If it does not, but the extension is greater 
than 10%, the low temperature grade is determined from the BBR cohesive test.  Otherwise, the 
sealant is rejected for use at the test temperature and grade.   
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Figure 13  Screening process for the selection of bituminous roadway sealants. 

 

5. Conclusion 

 
Crack sealants are used in the preventive and corrective maintenance of roadways.  Sealants are 
currently selected with an ASTM specification whose results do not allow for the selection of the 
better performing sealants.  New sealant tests were developed based on the performance and aging 
of twelve sealants tested in the field and on the characterization of nineteen other sealants used in 
North America.   These test provide fundamental sealant properties. They include a viscosity test to 
evaluate the workability of a sealant at its suggested pouring temperature, a vacuum oven aging test 
to simulate sealant weathering, a DSR test to assess tracking resistance in summer temperatures, a 
BBR test to measure stiffness in low temperatures, a DTT test to evaluate extensibility, also in low 
temperatures, and finally surface tension measurements, tensile bond strength, and blister testing to 
measure sealant adhesion.  These test are used in cascade to assess the suitability of sealants for 
use in the diverse climatic regions of North America.   
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