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An Engineering Theory of Creep of Frozen Soils
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Most of the existing theories of creep have been developed from two different viewpoints: micro-
mechanistic and macroanalytical. The former deal with events occurring at the atomic level and
provide knowledge of the processes that control creep. The latter are based on certain macroscopic
experimental findings and represent, in fact, an extension of the theory of plasticity to include time
and Memperature effects. Both the micromechanistic and macroanalytical approaches lead to fruitful
resuts and each can benefit from the other. However, although the former has the advantage of being
derived from physical concepts, the use of the latter is often preferred in practice if it provides basic
relations that are broad in scope and can lead to improved procedures for designing structures.

, In this paper, a macroanalytical view of the problem of creep of frozen soils is presented. The
proposed theory of creep has been developed mainly with the purpose of being used as a basis for
solving a specific soil engineering problem, i.e., the bearing capacity of buried footings and anchors.

Since the problem is itself rather complex, it was endeavoured to present the creep information in
a relatively simple mathematical form. The theory, while using certain concepts and data from the
frozen soils literature, follows more closely, nevertheless, the methods usual in certain engineering
theories of creep of metals.

La majorité des théories de fluage existantes ont été développées soit & partir d’un point de vue
micro-mécanistique, soit & partir d’un point de vue macroanalytique. Les premiéres traitent des phé-
nomenes se produisant a I’échelle atomique et tichent d’expliquer des processus qui dirigent le fluage.
Les derniéres, par contre, sont basées sur certaines constatations expérimentales macroscopiques et
représentent, en effet, une extension de la théorie de la plasticité dans laquelle on tient compte des
effets du temps et de la température. Les deux types de théories de fluage sont utiles en pratique et
bénéficient ’'une de 1’autre. Cependant, malgré que les premiéres ont 'avantage d’étre déduites des
conceptions physiques, en pratique on préfére souvent utiliser les deuxiémes si les relations qu’elles
fournissent sont suffisamment générales et en méme temps assez simples pour permettre une ame-
lioration des méthodes de calcul des éléments de construction.

La présente étude montre un aspect macroanalytique du probléme du fluage des sols gelés. La
théorie proposée a été développée avec le but principal de servir de base pour la solution d’un pro-
bléme géotechnique particulier, notamment celui de la capacité portante des fondations enterrées et
des ancrages.

Le probléme étant d’une complexité considérable en soi-méme, on a fait tout effort pour présenter
I'information de fluage dans une forme mathématique aussi simple que possible. La théorie utilise
certaines conceptions et données tirées de la littérature sur les sols gelés. Néanmoins, dans sa con-
ception générale, elle suit de plus prés les méthodes usuelles dans certaines théories du fluage des
métaux 3 haute température.

Introduction

As in metals, research efforts in the field
of the creep of frozen soils have taken two
different paths over the years: one aiming at
an engineering theory of creep to be used in
design work, the other aiming at a physical
theory capable of describing the creep pheno-
mena in terms of already established concepts
of physics.

An engineering or macroanalytical theory
of creep can simply be considered as a col-
lection of laws that are found, by experience,
to describe adequately the observed mani-

festations of creep. The criterion of a sound
engineering theory is that it can describe a
number of different creep manifestations in
simple mathematical terms keeping the num-
ber of material parameters as small as pos-
sible. Typical examples of such theories are
Odquist and Hult’s theory of creep of metals
(Hult 1966; Odquist and Hult 1962), and
Vialov’s theory of creep of frozen soils
(Vialov 1959, 1962, 1963). On the other
hand, the aim of a physical or micromecha-
nistic theory of creep is to establish a set of
laws that would be able to describe the ob-
served phenomena of creep in terms of pre-

1Yisiting scientist, Division of Building Research,
National Research Council, summer 1970.
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viously established quantities and laws of
physics. An example is the theory of soil
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creep proposed by Mitchell er al. (1968)
which is based on the concept of rate proces-
ses developed in statistical mechanics. The
same physical concept has been used by
Andersland and Akili (1967) for describing
the creep behavior of frozen soils.

In analytical terms, the main difference
between the two approaches is that, for ex-
pressing the stress dependence of creep rate,
the former uses mainly a power form while
the latter uses either a hyperbolic sine or an
exponential form. As far as experimental
evidence is concerned the power creep law
has been found to fit experimental steady
state creep data, at least at low and inter-
mediate stress levels, for a large range of
materials such as metals at high temperature
(Dorn 1954, Laks et al. 1957), plastics (Marin
et al. 1951), ice (Glen 1955; Gold 1970),
and frozen soils (Vialov 1959, 1962, 1963).
For the latter, the exponential form has also
been found to fit experimental data at inter-
mediate and high stress levels (Akili 1970;
Andersland and Akili 1967; Andersland
and AlNouri 1970).

In more general terms, as stated by Scott
(1969), ‘““each approach has advantages which
depend on the problem to be studied: one
may be of value in interpreting material
properties from a test, another may be used
in the calculation of a time-dependent stress
or displacement field in the same material.”

The theory shown in this report has been
developed with the main purpose of being
used as a basis for solving a bearing capacity
problem. As the problem to be solved is
itsell’ rather complex, an engineering type
theory, based on a single power term and
leading to relatively simple mathematical
expressions, has been found preferable to a
physical theory. The proposed theory is
similar in concept to Vialov’s but has the
advantage of being derived from a single
concept and of using only normalized forms
with a relatively small number of experi-
mental parameters.

Type of Creep Information Required

It is well known that within the field of
linear viscoelasticity, if the response to a
step input is known (from stress relaxation
and creep experiments) then the response

to any arbitrary input can be calculated
from the superposition integral, a pro-
cedure often known as Boltzmann’s super-
position principle. Solution to many creep
problems can be obtained from the cor-
responding elastic solutions using the Laplace
transform method.

It is now well recognized, however, that
frozen soils show nonlinear viscoelastic be-
havior to a degree that precludes the adoption
of linear approximations in most practical
problems. Unfortunately, for such materials
the superposition integrals cannot be ap-
plied without considerable modification which
renders them rather intractable. Among
alternative methods that have been proposed
for non-linear viscoelastic materials, the
following three have found increasing ap-
plication in practice.

(1) Hoff’s elastic analogue, which enables
a non-linear viscoelasticity problem to be
solved, under certain conditions, as a non-
linear elasticity problem (Finnie and Heller
1959; Hoff 1954; Odquist 1966; Odquist and
Hult 1962). It is most suitable for predicting
primary and steady state creep behavior of
structures subjected to constant or propor-
tionally varying loads. '

(2) Method of isochronous stress-strain
curves, which transforms a non-linear visco-
elastic-plastic problem into a non-linear
elastic-plastic problem (Smith and Side-
bottom 1965; Vialov 1959, 1962). It furnishes
a direct answer to step inputs of stress only,
but can also be used for a succession of step
inputs with some modification.

(3) Method of time-dependent strength
(Vialov 1959, 1962) or limiting strain (Turner
1966), which enables approximate solutions
of creep failure problems to be found from
the corresponding solutions in the theory
of plasticity.

It is the purpose of this paper to show how
the creep information necessary for the
aforementioned three methods of solution
can be deduced from a set of constant stress
creep tests.

Uniaxial State of Stress

Stress — Strain — Strain Rate Relations

The type of creep curve shown in Fig. 1(a),
obtained by step loading under uniaxial
stress condition and at a constant temperature,
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Fig. 1. Stress and strain rate in constant stress
creep test.

is common to a large number of materials
including frozen soils, plastics, and many
metals at high temperature. Fig. 1(b) presents
the corresponding creep rate, de/dt (note
that definition of symbols is given in the
appendix), versus time. Three periods of
time are observed during which the creep
rate is in order (I) decreasing, (II) remaining
essentially constant, and (III) increasing.
These are often called the periods of primary,
secondary and tertiary creep.

Figure 2 shows a set of such creep curves
as obtained in a series of constant temperature
creep tests, step loaded to different uniaxial
stress levels 0, < 0, < o; < o,

If the type of creep curves shown in Fig. 2
are to be used as a basis for establishing the
constitutive equation of the material, a con-
venient method is that described by Hult
(1966). The method consists in approximating
the creep curves by straight lines, as indicated
in Fig. 2, and in establishing a law that
describes these straight lines rather than
the actual creep curves. It is evident that the
predictions to be derived from such a law
will be in error during the first phase of a

J %

€ 4ii]
€3m

€5l

=

0

t

Fig. 2. Linearized creep curves according to Hult
(1966).

creep process, but the error will decrease
steadily during continued creep. In frozen
soils, according to Vialov (1959), for time
intervals longer than about 24 h, the amount
of strain developed during the secondary
creep period is large compared with the
strain developed during primary creep, so
that the proposed straight-line approximation
seems acceptable for most practical long
term problems. The validity of this method
of time dependent strain prediction for long
periods of time has been checked for various
materials (Marin ef al. 1951).

In the straight line approximation method,
the strain in the secondary creep period is
given by

[ g =g 4 g©

where the pseudo-instantaneous strain &®,
defined as indicated in Fig. 2, is governed

by

[2] e® = F (o, T)
and the creep strain ¢© by the creep law
[3] de@/dt = G (o, T).

The form of the functions F (o, T) and G
(o, T) is determined by plotting the intercepts
e® and the slopes de©/d¢ against the applied
stresses, with the temperature as a para-
meter, as in Fig. 3, and by fitting suitable
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Fic. 3. Constant temperature curves of pseudo-in-
stantaneous strain versus stress (a), and creep rate versus
stress (b).

mathematical expressions to the experimental
curves,

Once the mathematical form of the func-
tions F and G has been determined, the total
strain after the time 7 in a constant tem-
perature creep test step loaded to a stress o,
is from Egs. [1] to [3] given by

[4] e=F(@©0,T)+ G(o, T)t

The strain in a creep process in which the
load is increased in steps, ¢ and T being
constant for each step, can be obtained by a
summation procedure, as shown schematically
in Fig. 4. At any time #, the total strain is
then a function of the complete loading and
temperature history of the process.

If a relation similar to Eq. [4] is assumed
to hold also when o and 7 vary continuously
with time, the total strain is given by

[5] a=F(cs,T)+ftG(c,T)dt
0

from which the total rate of strain
(6] de/dt = (d/df) . F (o, T) + G (o, T).

o
02
|
o] |
|
|
|
| |
’ | |t
| o
I :’r?// I
_,-}"’ i
=" Acll |
; g |
51“1 L { |
I |
0
At !

FiG. 4. Creep curve for step loading.

The pseudo-instantaneous strain €® as
defined above is, in fact, composed of an
elastic (reversible) portion, €6, and a plastic
(irreversible) portion g@»), Hence,

[7] gl = gle) J glp),
The elastic portion of e® can be written as
8] 8@ = o/E(T)

where E(T) is a fictitious Young’s modulus,
smaller than the instantaneous elastic modul-
us, because £ contains also the delayed
elasticity effect. The plastic portion of &®
may often be written as a pure power expres-
sion (Marin et al. 1951; Odquist and Hult
1962)

c k@)
ol w = o | <y ]

in which o, plays the role of a temperature
dependent deformation modulus, the ex-
ponent k > 1 is usually little affected by the
temperature, while g, is an arbitrary small
standard strain unit introdaced only for con-
venience in calculation and plotting of data.

For a test at a given constant temperature
T, the numerical values of o, and k are ob-
tained from a log-log plot of the pseudo-
instantaneous stress-strain curve, after sub-
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tracting the elastic portion, because Eq. [9]
linearizes as
[10] log [eWm/e,] = k (log 6 — log G,,).

Finally, in case of loading, the total pseudo-
instantaneous strain takes the form

[11] €0 = elo 4 g —
F (o, T).

o/E + g (ofo )t =

Because £p is an irreversible strain quantity,
the second term should be deleted in case of
unloading.

Alternatively, it may be convenient to re-
present F(o, T) by a single mathematical
expression, such as a hyperbola passing
through the origin (Kondner 1963; Kondner
and Krizek 1965).

Similarly, the creep law, G(c, T), may often
be written as a simple power expression
(Hult 1966; Marin et al. 1951; Norton 1929;
Odquist 1966), which seems to be supported
by experimental evidence particularly in the
lower and intermediate stress range (Laks
et al. 1957).

. . (o) (D
€ = dﬁ/dt = & [W]

where o(T) and n(7) arc cieep parameters,
both depending on the temperature, the
latter, however, much less than the former.
The quantity &, is a small arbitrary standard
strain rate, introduced into Eq. [12] to put
it into a normalized form.

The stress quantity o, (7) in Eq. [12] is
the uniaxial stress that causes a constant
creep rate equal to €, and is often called the
creep proof stress (Hult 1966). The magnitude
of o, (T) depends on the value chosen for &,.
Conventionally, for metals, £, is chosen to
be 1072 s—1 or 3.16 9 /yr. For frozen soils,
it may be convenient to take, e.g., ¢ = 10~
min—! which corresponds to 1.44 9/day.
For a constant temperature, the numerical
values of o, and # are obtained from a log-log
plot of experimental stress-strain rate curves
(Fig. 5).

Once experimentally determined for a given
material, the functions F(o, T) and G(o, T)
should be substituted in Eq. [5] to give the
constitutive equation of the material.

[12]

log 01

log o

log (§c)

Fic. 5. Log-log plot of the creep law, Eq. [12].

In its integrated form, which can be used
in connection with step loading problems,
Eq. [5] becomes

[13] & = o/E + ¢, (oo, )¢ + ¢, (o/o ).

Equation [13] represents a family of non-
linear isothermal and isochronous stress-
strain curves (isocurves), each valid for a
constant time ¢ Experimental evidence in
frozen soils (Vialov 1959) shows that for
time intervals greater than about 24 h the
two instantaneous strain terms together be-
come less than 109} of the creep strain. For
time intervals longer than about one day it
may be sufficient, for practical purposes,
to retain only the third term in Eq. [13] for
describing the isocurves:

o= )

Creep Strength

Creep strength is defined as the stress level
at which, after a finite time interval, either
rupture or instability leading towards rupture
occurs in the material. In tensile creep testing,
the creep strength is mostly taken as the stress
at which actual rupture occurs. In compression
creep testing, however, especially of ductile
materials such as high temperature metals
and frozen soils, in which only a plastic type
of failure occurs that is much less clearly
defined, the creep strength is most often
identified with the moment of the test at
which the first sign of instability occurs. In
constant stress creep testing, this moment

[14]
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coincides with the passage from steady state
creep to accelerating creep of the material
(point C, Fig. 1). In a constant strain rate
test, in turn, this sign of instability would
coincide with the first drop of strength after
the peak of the stress-strain curve.

In general terms, the problem of creep
strength prediction consists of finding a
relationship between the creep strength o
and the magnitudes such as: time to failure,
1;; steady state creep rate, £©; strain at
failure, &;; and temperature, 7.

From the geometry of a constant stress
creep test, (Fig. 1a and 2), it follows that

[15]

from which

g = €0 4 1,60

g, —eld

= J_ =
[16] t o
One of the easiest ways of relating the time
to failure to the secondary creep rate is to
consider the numerator in Eq. [16] to be a
constant,

[17] t; = ClE©.

This simple relationship, saying that the
time to failure in creep is inversely related
to the steady state creep rate, which in turn
can be related to the applied stress and tem-
perature, has proven to be very successful
in predicting the creep rupture behavior of
high temperature metals and has been adopted
as the basis for a number of creep rupture
criteria (Garofalo 1965). In fact, however,
for larger creep rate intervals it is found that
the numerator in Eq. [16] is not a constant
but is itself some function of creep rate,
strain, and temperature. A more general
form of Eq. [17] is, therefore:

[18] t, = Fe, &, T)j¢

According to Monkman and Grant (1956),
for a large number of alloys at high tem-
perature, Eq. [18] can be approximated very
closely by the empirical expression

(19]

where C and m are parameters, constant for
a given temperature. Comparing Eqs. [18]
and [19], it follows that, according to the
two authors

tf = Cé—m

[20] F(e,§, T) = C &t—n,

They find, however, that the exponent m is
close to unity (0.77 < m < 0.93) for a large
variety of materials which justifies the re-
placing of the function F in Eq. [18] by a
constant, at least within a limited interval
of strain rate variation.

In compression creep of frozen soils it is
often found that the amount of permanent
strain at the onset of tertiary creep is ap-
proximately constant for a given temperature
and type of test, at least in the quasi-static
loading range (Sayles and Epanchin 1966,
Vialov 1962). Physically, the phenomenon
may be interpreted by saying that instability
in creep occurs when total damage done by
straining attains a certain value. There seems
to be some experimental justification, there-
fore, for using a constant permanent strain
as a basis for creep failure criterion in frozen
soils. The criterion, in addition to being con-
venient in application to problem solving,
has the advantage of limiting the total strain
to acceptable values in the design.

According to this latter criterion, which is
analogous to Garofalo’s (1965) criterion in
the metal creep literature, the numerator in
Eq. [16] is not a constant but is a function of
the pseudo-instantaneous plastic strain (),
that, in turn, can be related to stress. Eq.
[16] becomes

[21]

Substituting in Eq. [21] for ei» and ¢© from
Egs. [9] and [12], one gets

t = (g — e@)/g©,

g — g (o/cy)
¢, (cfo))

Sometimes, in frictional materials, it is found
that the secondary creep rate becomes prac-
tically zero when the applied stress is lower
than a finite value o, called “long term
strength” (Vialov 1962). If o, exists, Eq. {22]
may be written as

[22] f =

& — & (c/c,)

. [0 — op\"
€, —G
[4

When 7 tends to infinity, the creep strength
tends to zero according to Eq. [22], and to a
finite value, o, according to Eq. [23] (Fig. 6).

23] 1 =
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For a very long time interval, the pseudo-
instantaneous portion of strain can be ne-
glected relative to the time-dependent portion,
and Eq. [22] becomes

(24] l; = &lé (s/o.)

which now becomes analogous to Eq. [17].
As Eq. [24] has the same analytical form as
Eq. [12], the time to failure, f;, and the creep
strength, o, can be obtained directly from the
plotted creep law in Fig. 5, as is shown in
Fig. 7. For this purpose, it is only necessary

to read the values at the abscissa in terms of 109 T

log (¢s/¢,), where

ol

1

it

F1G. 6. Creep strength versus time curves.

log o

[25] & = sit,

From Egs. [24] and [25], the creep strength
after a long time interval and at a constant
temperature T, is given by

[26] o = o, (T) (E/f8,) 1.

In Fig. 8 experimental steady-state creep
rate data obtained for a silty-sandy loam
(Vialov 1962) in uniaxial compression have

log o,

log (—g:)

Fic. 7. Creep strength determination according to
Eq. [26].

100

kqfcm?
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Log-log plot of creep rate data for Callovian silty-sandy loam in uniaxial compression

at three different temperatures, (from Vialov (1962), Table 7, p. 106).



70 CANADIAN GEOTECHNICAL JOURNAL. VOL, 9, 1972

been plotted against the corresponding stres-
ses in a log-log plot. It is seen that for each
particular temperature, the creep rate data
can be approximated by two straight lines,
defining two separate power creep laws.
For example, at T = —5 °C, and with

¢, = 1078 s—1, one gets
[27] For 0 £ ¢ < 17 kg/cm?, €©

= 10-8 (5/1.0)L-25% and
[28] For 17 < ¢ < 35 kgjem?, €0

=108 (o/11.07)8-28,

For the creep strength evaluation according
to the proposed method, additional infor-
mation about the average creep failure strain,
g, is needed. From Fig. 40 in (Vialov 1962),
it is found that for the soil considered, at
-5 °C, & = 0.12 is a reasonable average
value of the failure strain for the range of
¢ > 20 kg/cm?. Using Eq. [28] as a basis,
Eq. [26] yields

The values of o; for times to failure between
10 min and 24 h, predicted according to Eq.
[29] are shown graphically in Fig. 9, curve A.

It is obvious that Eq. [24] overestimates the
time to failure, because it neglects the pseudo-
instantaneous plastic strains in calculating
the average creep rate. For the same reason,
Eq. [26] overestimates the creep strength,
especially for short time intervals. A better
prediction should, therefore, be obtained
by using Eq. [22] instead of Eq. [26].

For example, from the data in (Vialov 1962),
for the same soil at —5 °C, one finds (Vialov
1962, Table 10, p. 120) for the instantaneous
stress strain curve (# = 1 min)

66.5 (10—3)0.28
= 9.61 kg/cm?

k =1/m = 1/0.28 = 3.57

31 o, = A er =

(32]

where 4 and m are Vialov’s parameters.
With the above values of o, and k, Eq.

[29] o, = 11.07 (108 gpo0-12t [24] becomes
in which 3] f = 105 120 — (0/9.61)3-57
[30] & = 0.12/1, 4 (6/11.07)8-28
and # is in seconds. Curve B in Fig. 9 shows the creep strength
40 T T T
=
3 30 -
5
T
o
=
=
»© 20 =
(=9
ﬁ B(Egs. 22 and 33)
o
o
10 l I ! |
0 5 10 15 20 25
TIME 70 FAILURE, tf, HOURS

Fic. 9. Calculated creep strength curves for the Callovian silty-sandy loam at —5 °C (Curves A
and B). Curve C: Measured creep strengths for Callovian sandy loam (Vialov 1962).
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o; calculated according to Eq. [33]. Curve C,
shown for comparison, represents actually
measured creep strengths at rupture of a
sandy loam at —5 °C (Vialov 1962, Table 11).
It will be seen that the values of o, predicted
by this method are lower, and correspond
more to the onset of tertiary creep stage
actually observed for this soil (Vialov 1962,
Fig. 40 (A), (O)).

Finally, Fig. 10 presents schematically a
unified plot of all creep information according
to this concept.

Effect of Temperature on Creep Rate and
Strength

Experimental evidence showing that creep
in metals involves thermally activated proces-
ses has been available for some time (Kauz-
mann 1941). These processes show a rate
dependence on temperature through the factor
exp (—U/RT), where U is the apparent

&le) = (o) //

- de
strain ruiel e'dt

0 Y
|

71

activation energy for the process or processes
which are controlling, R is the universal gas
constant, and T is the absolute temperature.

For unfrozen soils, the validity of this type
of relationship has been demonstrated by
Mitchell er al. (1968). For frozen soils, the
same relationship has been found valid by
Andersland and Akili (1967), Akili (1970),
and Andersland and AlNouri (1970).

For everything else constant, the tem-
perature dependence of the creep rate ac-
cording to the above theory is given by An-
dersland and AlNouri (1970):

[34] £ = A4 exp (—L/T)
where
[35] L = UIR

in units of temperature.

1,20
e{ll el |

| /tg
—=l A3

== t4'
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T
strength o;
|

o;= t)

FiG. 10. A unified plot of creep data.
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For varying temperature, the values of 4
and L in Eq. [34] can be found by plotting
natural logarithms of the observed creep
rates against the reciprocal of the absolute
temperature.

If Eq. [34] is used together with the power
creep law, such as Eq. [12], as has been done
for ice (Glen 1955, Gold 1970) and for metals
at high temperature and lower stress range
(Laks et al. 1957), one can write

[36] O =& (cfo )" = A exp (—L/T).

In order to eliminate 4, let 6,; = o, when
T = 273 °K. Then

[37] €© = & (ofo,)* = A exp (—L/273).
Dividing Eq. [36] by [37] one finds

or\  _ exp(—L[T)
o, ~ exp (—LJ273)
from which
B L (273-T)
[39] 6.+ = o, exp [—27W
Egs. [36] and [39] give

o s (5 " _LQ2713~-T)
[40] € £, ( 0_w) exp[ 737 |
The meaning of the term &, (o/c,)" is seen
to be the creep rate at a temperature close to
the melting point. (T = 273 °K).

If, after Vialov, 0 is defined as the ab-
solute value of negative temperature in °C,

[41] 6 (°C) = 273 — T (°K),
then Eq. [39] can be written as

Lo
[42] 6,7 = o, exp [m] =0,/ ©).

Because, in practical frozen soil problems,
6 is much smaller than 273 degrees, Eq. [42]
can be written approximately as

0
43 o = oy |t =0, ®

(38]

]E%ﬂn

where the term 2732 »/L is a constant tem-
perature in °C. It is seen that both para-
meters, 6,, and L, can be determined by
plotting logarithm of o, against 6, as in
Fig. 11 and 12.

|Og o T| > Tz> T3

6<8:<6,

o —
-~ TTy=273°K
~ | —=— EXTRAPOLATED FROM FIG. I2

=" log Oz
log T¢o 1

é
| -
og(%)
FiG. 11. Creep rate versus stress plot for different
temperatures.

log gz

0, 0
Fi6. 12. Temperature dependence of o.r according
to Eq. [43].
From Eq. [43],
L Aln o,
[44] 2730 A0
and, using the slope of the line in Fig. 12,

L = 2.303 X 273n

A log o,
143] a0

in °C. The apparent activation energy is then
[46] U=RL

where R = 1.987 cal/mol °C. Some reported
values of L = UJR are: L = 4274 °C for
frozen saturated Ottawa sand (Andersland
and AlNouri 1970); L = 56 000 °C for frozen
Sault Ste. Marie clay (Akili 1970); L = 10 000
°C for polycrystalline ice (Gold 1970).

It should be noted, however, according to
Hoekstra (1969), that the activation energy
calculated by this method does not neces-
sarily correspond to its physical definition,
since in frozen soil not only the thermal
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energy of the moving molecules changes with
temperature but in addition a gradual phase
change also occurs. As a result, when the
theory of rate processes is applied to creep
of frozen soils, activation energies are ob-
tained as high as 93 keal/mol, which is much
higher than 20 kcal/mol obtained for the
creep of polycrystalline ice (Gold 1970).
Moreover, the same theory, Eq. [40],
predicts an exponential increase of creep
strength for a linear decrease in temperature,
which is only partially supported by experi-
mental results. For example, from the experi-
mental evidence shown by Sayles (1966,

1968), (Fig. 13), it seems that this type of
strength variation is limited mainly to clays.
For coarser-grained frozen materials such as
silts and sands, the observed strength increase
with temperature decrease is found to be
more nearly linear or even parabolic, levelling
off after about —100 °C. The latter type of
strength variation with temperature can be
seen also in Vialov’s work (1962). There
may, therefore, be some justification in adopt-
ing alternatively for the effect of temperature,
Vialov’s power relationship which can be
written in the following normalized form
(Assur 1963)
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Fic. 13. Temperature dependence of unconfined (uniaxial) short term compression strength for

various frozen materials (after Sayles 1966).
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147] =0, +6/6)° = o, f;(0)

where 6, is an arbitrary temperature, say 1
°C, and 6 as defined by Eq. [41]. The value of
the exponent o in Eq. [47] can be obtained
by plotting o, vs (I + 6/6,) in a log-log
plot as in Fig. 14.

S.r

A log o
48 = . — o 7d  _ ¢ :
48] Alog(l +6/6,) an ¢
For limited temperature intervals, @ = 1,

and the power law Eq. [47] reduces to
[49] G (1 + 9/90) = wa4 (e)

The corresponding linear plot is shown in
Fig. 15.

Finally, the temperature dependent uni-
axial creep strength is obtained by sub-
stituting for o(7) in Eq. [26] o, multiplied
by any of the temperature functions 7, (0)
to f; (8), giving

[50] O = o, (&/6) 11" £ (8).

O =

log oy

Iog(!+-gc)

Fi1G. 14. Temperature dependence of o7 according
to Eq. [47].
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F1G. 15. Temperature dependence of o.7 according
to Eq. [49].
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An experimental evidence of an approxi-
mately linear temperature dependence of
frozen soil strength down to ~20 °C can be
found in Vialov (1962). From his plot (Vialov
1962, Fig. 51),

o, = 4.56 kgjcm? and 6, = 3.5 °C,
giving
[51] o = 4.56 (108 £)0-121 (1 + 6/3.5).

For example, for 8 = 5 °C and t = 1 h,
Eq. [51] gives o; = 29.5 kg/cm?. The cor-
responding value of o, shown in Vialov (1962
Fig. 51) is 33.5 kg/cm?. The small difference
between the two values is due to a slightly
different creep failure criterion adopted by
Vialov.

Multiaxial States of Stress

No Effect of Hydrostatic Pressure

Assuming the validity of the von Mises
plasticity rule and the volume constancy for
all plastic deformations including the creep
deformations, the power laws adopted in the
uniaxial case (Eqgs. [9] and [12]) can be gener-
alized for the multiaxial state by expressing
the power laws in terms of equivalent stresses,
strains and strain rates, as shown by Odquist
and Hult (1962),

[52] 8e(ip) = & (Ge/cku)k
and
[53] €, = £, (c,/0,)"

where o,, €, and £, are the equivalent stress,
strain and strain rate respectively, defined
in terms of stress and strain invariants or
explicitly in terms of principal stresses and
strains,

[54] o2 = %[(61 —0,)2 + (0, ~ ;)2 + (05— 51)2]’
[55]€2 = g[(?’l — &) + (g, — ) + (g5 — 81)2],

3618 = §f 6=t + a2 + G |

In Egs. [52] and [53], subscript » has been
added to the stress parameters o, and o,
to denote that they refer to the uniaxial
state of stress.
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The equivalent stress and strain parameters
are defined so that, for the uniaxial state of
stress, i.e.,forc;, = 6,0, =0,0; =0¢g =
£,8, = — 3,8 = — 3¢, Eqgs. [52] and [53]
transform into previous uniaxial form of
Egs. [9] and [12] respectively.

For an axially symmetric state of stress,
Eqgs. [52] and [53] become

k
G, —0C
6 <_1~_3> snd
Sty
G, —0C "
(52)
Ceu .

For a plane strain condition, i.e., for o ,

1
o, = 36, + 03),0;,andg ,& = 0,8 =

— & , One gets
G, — C k
1 3
K ( )
Sku

[59] e = (_\_?)
2
Seu >

[60] &0 — (l/;>

Effect of Hydrostatic Pressure

Expected influence of hydrostatic pressure —
Unconsolidated frictional earth materials yield
usually at very low shear stresses, so that
permanent strains occur practically through-
out the whole straining up to failure. Con-
sequently, the laws of plasticity rather than
elasticity should be valid for describing their
stress-strain behavior even in prefailure state.
In frictional earth materials, it is expected
therefore, that hydrostatic pressure would
affect not only the peak strength but also
the whole stress-strain-strain rate behavior
in the pre-failure state. The effect can be
expressed by using either a two or a three
parameter failure theory, as shown in the
following.

Two-principal-stress Failure Theory

Failure state (peak strengthy — According
to Vialov (1962), if the same testing pro-
cedure as for uniaxial compression is repeated
for uniaxial tension and triaxial compression,
one can derive a set of failure envelopes of
Mohr circles at failure (or at the onset of the
third stage of creep), where each envelope
corresponds to a given time to failure (Fig. 16).
Since the envelopes usually seem to have a
parabolic shape, they can be expressed con-

(57}

giiD)

(58]

Be

(e+1)

(nt+1)

T tes
tp
t
> ti> s
8 = const.
| 0 ' o
fffr‘u” % _[

Fig. 16. Time dependence of failure envelopes.

veniently by an equation of the form proposed
by Fairhurst (1964) for rocks

[61] 1 =[(s = Drl oy [1 + r (o/o,)]*
where
[62] r = oloy)

is the ratio between the uniaxial compressive
and tensile creep strengths, both of which
are time and temperature dependent, and

[63] s =( + D

According to the quoted test results (Vialov
1962, Figs. 63 and 66), while the position of
the envelopes changes with time and tem-
perature, the envelopes remain practically
homothetic. This means that in Eq. [61]
c,, varies with time and temperature while r
and s remain practically constant. For ex-
ample in Vialov (1962, Fig. 63 and 66) for
the Callovian sandy loam one finds that, at
a constant temperature of —10 °C, 3.5 <
r < 3.8 when 24" > ¢ > 1*, and r = 3.5 at
t = 24" when the temperature varies from
-5 °Cto —20 °C.

This experimental fact enables Eq. [61]
to be written as

1
2

—1 c
0) |1 —_—
’ Ofy (t,0) |: + r o @, e)]

in which according to Eq. [50], for a long
time interval

[65] oy, (1, 8) = G0 /€N [ (8).

The stress o,,, denotes as before the proof
stress in uniaxial compression extrapolated

[64] © =*
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to 0 °C. Some values of the ratio r reported
in literature for various types of frozen soils
are: Ottawa sand (Sayles 1969), 5 < r < 8,
Callovian sandy loam (Vialov 1962), 3 < r <
4, Bat Baioss clay (Vialov 1962), 1.5 < r < 2.

Sometimes, for practical purposes, it is
convenient to approximate the parabolic
failure envelopes by a set of straight lines,
at least within a limited interval of normal
pressure. The Coulomb-Mohr envelopes ob-
tained in that way are defined by

CANADIAN GEOTECHNICAL JOURNAL. VOL. 9, 1972

mostly concentrated in the value of oy,
For example, for a long time interval, ac-
cording to Sanger (1968), one may expect
to find the following values of ®: Sands: @ =
30°; Silts: @ = 20°; and Clays: @ = 0 to 10°.
A set of Mohr-Coulomb envelopes cor-
responding to Eq. [66], assuming a constant
temperature and different times to failure,
are shown in Fig. 17. Alternatively, a set of
creep strength curves according to Eq. [71]
for constant temperature and different con-
fining pressures are shown schematically in

[66] T=c(0) +otan® Fig. 18. It is interesting to note that this
or analytical form gives, for an infinite time to
failure or an infinitely slow creep rate, a
[67] 1 =[H(6) +o]tan® finite value of a purely frictional threshold
purely
where strength which agrees well with experimental
findings in many earth materials.
(68] H(1,0) = c(2,0) cot @ Pre-failure state — If the Coulomb-Mohr
and theory of failure is assumed to be valid also
[69] ¢ (1, 0) = o, (1, 0)2Vf 4 tes
S being the flow value, defined by t2
. t
1 4+ sin® fl
[70] f - 1 ——sin (I)- // 9=CO.I'IS'_
t,=
Alternatively, in terms of principal stresses, = FZ e
the stress difference at failure - A
e
-~
(711 (oy — Gs)f = Op, (t,0) + o, (f—- b /,ﬂqs /// C/
Again, similarly as the ratio r, the angle @ - T
is found to depend only little on time and H Oy

temperature within their practically interesting
interval of variation, and the effect remains

4

(07-03)s

0'3(2 ) )0’;”

0

8 = const

FiG. 17. Straight-line approximation of time de-
pendent failure envelopes.

>O'3E°]

Fic. 18. Dependence of creep strength on confining pressure, Eq. [71].
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in the pre-failure state, the dependence of
strain and strain rate on normal, or confining,
pressure can be deduced from Egs. [65] and
[71] as follows:

[72] 0, — 65 = 0,0 EQV[E)"f(6) + o5 (f — 1)
from which the steady state creep rate

o _ c Y2
s = ¢ | L f 3
° & I:ccuo f (e):l

and the creep strain after the time ¢

€O = &1 [9—_f6] :
ccuOf (e)

For f = 1, Eq. [73] reduces to the originally
adopted form of Eq. [12] and coincides with
Eq. [58]. Figure 19 shows schematically a set
of isochronous stress-strain curves implied by
Eq. [74] for the pre-failure and Eq. [71] for
the failure state, respectively.

It is noted that Eq. [73] can also be written
in terms of the mean normal pressure c,, =
1 (6, + o, + o;). For example, if 5, = o3,
one gets

N

Another equation, based on exponential
forms but serving the same general purpose
as Eq. [75], has been proposed by Andersland
and AlNouri (1970). In our notation, the latter
can be written as,

[73]

[74]

A exp N (o, — ;)
FT) exp (m o,)

where A, N and m are experimental para-
meters, and

glo) =

[76]

(0'|' 0'3)
o2
o 3(l)
U3= o

L

o> ai">0
t, = const.
0 = const.

0

€ €

Fic. 19. Stress-strain curves according to Egs.
[71] and [74).

[77] F(T) = exp (L|T).

It can be shown, for example, that the
experimental data on strain-rate-dependent
strength behavior of frozen saturated Ottawa
sand at —12 °C (Andersland and AlNouri
1970, Fig. (20)), presented in the form of
aqg = (o, — o3)/2 versus p = (o; + 03)/2
plot, with € as parameter, can be approximated
fairly well not only by the exponential law
proposed by the authors but also by the
power law as shown in Egs. [65] to [75].

Using the authors’ exponential form, Eq.
[76], and the values of creep parameters given
in their paper, it is found that the mentioned
experimental data can be approximated by

(78] ¢ = 61.7 In(1.1X105¢) 4- 0.595 p

in which ¢ and p are in p.s.i., and € is in min—L.
On the other hand, the same data can be
approximated very closely by Eq. [75] by
taking: n = 2.485, o, f(6) = 228 ps.i,
¢, = 105 min~tand f = 4 (@ = 36.6°,
which gives the expression

[79] g = 54.75 (105 €)0-402 4- 0.595 p.

Unfortunately, neither Eq. [75] nor Eq.
[76], as formulated above, are able to cover
the whole region of pre-failure strain rates,
as they both give non-zero strain rates at
zero stress difference, if fand m are constants,
as assumed. Their application should, there-
fore, be limited either to strains close to
failure or to those contained within a narrow
range of mobilization of internal friction, the
latter with the corresponding reduced values
of f and m.

The limitation may be overcome by writing,
instead of Eq. [72,]

1

[80] oy — o5 = (g(/E)/" 6.0/ (®) +05(f— 1)
from which

81] &0 = s[

Gy — O3 ]n
Sao/®) + 05 (f — D]’
Equation [81] yields zero strain rate at o, =
o, as required. However, at failure, instead
of Eq. [71] one gets from Eq. [81]:
[82] (o, — o3); = oy, (1, 0)
+ o5 (f — D Efe)m

which implies a time-dependent angle of
friction if & is kept constant, or an ¢;increasing
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linearly with time, if the angle of friction is
made independent of time. For the former as-
sumption, fin Eq. [81] denotes the flow value
at the strain rate &, = ¢,.

A still simpler form may be obtained if
only the strength and not the whole stress-
strain behavior is made dependent on normal
pressure. This is in fact a usual assumption
made for dense solid materials, such as rocks
and concrete and may be found acceptable
also for many practical problems in frozen
soil mechanics. One evidence supporting the
latter assumption can be seen in Fig. 9 in
the paper by Andersland and AlNouri (1970),
showing a relatively small effect of confining
pressure on pre-failure behavior of a sand-
ice material.

If the latter assumption is retained, the
isochronous curves will have the shape
similar to those in Fig. 20, and will be defined
by Eq. [58] in the pre-failure state and by
Eq. [71] in the failure state.

It is obvious that the adoption of the
Mohr’s two-parameter failure criterion im-
plies that the projection on the n-plane in
the principal stress space of any failure surface
is an irregular hexagon. Alternatively, as
shown in the following, one may adopt the
extended von Mises criterion of failure,
which is represented by a circular cone in
the principal stress space. There is, however,
a large amount of experimental evidence in
unfrozen soil mechanics literature showing
that, in frictional earth materials, the former
criterion may be closer to reality. It is clear
that, even in the opposite case, the former
may still be of interest because it is simpler
and contains an additional factor of safety
against failure.

(0-03) o
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8 = const.
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FI1G. 20. Stress-strain curves according to Egs.
[58] and [71].

Three-principal-stress Failure Theory

Failure state — For materials with low
friction such as frozen clays or sands with
high ice content, the use of a three-principal-
stress failure theory such as the von Mises
failure criterion may be more appropriate
than the Mohr criterion. The extended von
Mises criterion is represented in the principal
stress space, by a circular cone which can be
defined by

2 3r =1
[83] Gfe 7 +1 r + 1 O
in which o, is the failure value of equivalent
stress o, given by Eq. [54], o, is given by
Eq. [65], 7 is the strength ratio given by Eq.
[62], and o, is the mean (or octahedral)
normal stress.

For a constant value of », and a constant
temperature, Eq. [83] represents a set of
concentric, homothetic circular conical sur-
faces in the principal stress space, each valid
for a given time to failure.

Pre-failure state — For the pre-failure
state as long as r remains constant, Eq.
[83] can be written as

cju (t’ 9) +

[84] G, = Seuo f(e)

2
+1

oyt 2= Do,
from which the creep rate equation is

r + Do, —3(r — l)cm]"
2 chOf(e)

Equation [85] is a proper extension of Eq.
[53] to hydrostatic pressure dependent ma-
terials, and it reduces to the latter for r = 1.

For the special case of axial symmetry,
(6, = o;), Eq. [85] becomes

.v+n@—@—w~n%T
86] £ = ¢,

[ ] ' l: 2 Scuo f (9)

or in terms of confining pressure o;

. . - 3r — D27
§0 =, o —o;( :I
! [ chof(e)
which is similar in form to Eq. [73].
Again, similarly as before, if in Eqs. [85]
to [87] the ratio r is assumed to be constant,

[85] £© = s[

(87]
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the validity of these equations is limited to a
narrow range of strain close to failure.
Another form of creep equation avoiding

this difficulty is
(r+ 1o, ]”

o

[88] K K |:2 Uruﬂ‘f (B) + 3 (r - 1) O
This would, however, lead to a creep

strength equation

(89] o =

2
i o, (¢, 0)

r—1 ..
+ 30, P (Efe)tm
with the same implications as in case of Eq.
[82]. If & is kept constant, the parameter r
in Eq. [89] denotes the ratio of uniaxial com-
pressive to uniaxial tensile strength at the
strain rate &, = €.

Conclusions

A unified engineering theory of time, tem-
perature and normal pressure dependent de-
formation and strength of frozen soils has
been developed and compared with the
existing theories and the available experi-
mental information.

In developing the theory, basic concepts
and methods used in creep theories for metals
have been followed. This enabled the creep
and creep failure information to be expressed
in a relatively simple analytical form using a
minimum number of experimental para-
meters. Due to its simple and systematically
normalized form, it is hoped that the theory
will find useful application as a framework
for generalizing experimental information as
well as a basis for solving various frozen soil
mechanics problems.

Finally, it is found that, in spite of the
apparent abundance of published experi-
mental data on frozen soil behavior, a clear
answer to a number of questions is still
lacking. In particular, it is felt that the effect
of mean normal pressure on creep and creep
failure of frozen soils requires a systematic
and thorough investigation.
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Appendix : Symbols

c = cohesion intercept

E = Young’s modulus

f = flow value, Eq. [70]
F() = function

G( ) = function

H = ccot®

k

= exponent in stress-strain equation

L = U/R

m = exponent

n = exponent in creep equation

14 = ratio of uniaxial compressive to
uniaxial tensile strength

R = universal gas constant

s = (r + 1)?

t = time

I = time to failure

T = absolute temperature

U = activation energy

g©@ = creep strain

g® = pseudo-instantaneous (intercept)
strain

glic) = elastic portion of €®

glip) = plastic portion of ¢®

g = arbitrary strain in stress-strain
equation

£, = arbitrary strain rate in creep
equation

£e = ecquivalent strain, Eq. [55]

f = creep failure strain (at the onset of
tertiary creep)

g,6,6; = principal normal strains

= absolute value of negative tem-

perature, Eq. [41]

0, = arbitrary temperature (positive)

0, = temperature intercept in Fig. [14]
(positive)

o = uniaxial normal stress

o, = proof stress in creep equation

S, = o, for freezing temperature close to
0°C

O.r = o, for temperature T

G, = o, for creep in uniaxial compression

6,0 = o, for freezing temperature close
to 0 °C

c,r = o, for temperature T

c, = equivalent stress, Eq. [54]

oy, = proof stress in pseudo-instantaneous
stress strain equation

oy = long term strength

o; = creep failure stress

G, = oy in uniaxial compression

c;,® = o in uniaxial tension

0,0,0; = principal normal stresses

1 = shear stress

P = angle of internal friction

® = exponent in temperature equation

Note: Dot over strain symbols denotes time
rate,




