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This paper presents the application of a general shape sensitivity equation method (SEM) to unsteady
laminar flows. The formulation accounts for complex parameter dependence and is suitable for a wide
range of problems. The flow and sensitivity equations are solved on 3D meshes using a Streamline-
Upwind Petrov Galerkin (SUPG) finite element method. In the case of shape parameters, boundary
conditions for sensitivities depend on the flow gradient at the boundary. Therefore, an accurate recovery
of solution gradients is crucial to the success of shape sensitivity computations. In this work, solution
gradients at boundary points are extracted using the Finite Node Displacement (FiND) method on which
the finite element discretization is enriched locally via the insertion of nodes close to the boundary
points. The normal derivative of the solution is then determined using finite differences. This approach
to evaluate shape sensitivity boundary conditions is embedded in the continuous SEM. The
methodology is applied to the flow past a cylinder in ground proximity. First, the proposed method is
verified on a steady state problem. The computed sensitivity is compared to the actual change in the
solution when a small perturbation is imposed to the shape parameter. Then, the study investigates the
ability of the SEM to anticipate the unsteady flow response to changes in the ground to cylinder gap. A
reduction of the gap causes damping of the vortex shedding while an increase amplifies the unsteadiness.

Keywords: Shape Sensitivity; Flow Control; Finite elements; Unsteady flows

1. Introduction

Sensitivity analysis is a powerful tool in computational

fluid dynamics. A sensitivity, (the derivative of the solution

with respect to a parameter) indicates how a dependent

variable reacts to variations in a design parameter.

Sensitivity information finds many uses ranging from

driving optimization algorithms, to fast evaluation of flows

on nearby geometries or to computing uncertainty

estimates of the solution. Sensitivities also find appli-

cations in flow control due to their ability to indicate how

the flow responds to changes in design parameters. In all

cases cost-effectiveness is achieved because sensitivities

are obtained at a fraction of the cost of computing the flow.

Sensitivity analysis is a more advanced field in solid

mechanics than in fluid dynamics. Indeed, textbooks have

been written on sensitivity analysis of structures (Haug

et al. 1986, Hien and Kleiber 1997). To our knowledge,

there is only one book on sensitivity analysis of flow

problems (Stanley and Stewart 2001). It is recent and more

specialized than structural mechanics books. Gunzburger

(2002) discusses sensitivity analysis in the context of flow

control and optimization.

There are several means of computing flow sensitivities:

finite differences of flow solutions, the complex step

method (Martins et al. 2003, Lu and Sagaut 2006),

automatic differentiation (Putko et al. 2001), and

sensitivity equation methods (SEM; Borggaard and

Burns 1997, Stanley and Stewart 2001, Turgeon et al.

2002). The finite difference approach is a well-known

technique of estimating derivatives. It is based on the

following approximation of the derivative of a function f:

df

dx
<

f ðxþ hÞ2 f ðxÞ

h
ð1Þ

The truncation error is O(h), and thus this is a first-order

approximation of the derivative. Note that in our case, a

full Navier–Stokes simulation must be performed for each

evaluation of f. Higher-order finite difference stencils

can be derived, at the cost of additional flow evaluations.

This option is thus costly because the problem must be
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solved for two or more values of each parameter of

interest. For example, if a represents a vector of 10

parameters with respect to which we need to compute the

flow sensitivity, then 11 flow evaluations are required; one

for the baseline values of a0, and one per perturbation for

each of the 10 parameters. In the case of a shape

parameter, further technical problems arise because non

matching meshes are obtained for different values of the

shape parameter.

The complex-step method as a computational tool for

evaluating derivatives was demonstrated by Lyness and

Moler (1967). It is a very effective technique based on the

following properties of complex numbers. Consider a

function, f ¼ u þ iv, of the complex variable, z ¼ x þ iy.

If f is analytic, then the Cauchy–Riemann equations apply

›u

›x
¼

›v

›y
ð2Þ

›u

›y
¼

›v

›x
ð3Þ

The first condition can be used to write the following

approximation

›u

›x
¼ lim

h!0

vðxþ iðyþ hÞÞ2 vðxþ iyÞ

h
ð4Þ

where h is a real number. We can set y ¼ 0, u(x) ¼ f(x)

and v(x) ¼ 0 because the original problem involved only

real variables so that equation (4) can then be rewritten as

›f

›x
¼ lim

h!0

I½ f ðxþ ihÞ�

h
ð5Þ

For a small discrete h, this can be approximated by

›f

›x
<

I½ f ðxþ ihÞ�

h
ð6Þ

This complex-step derivative approximation is very robust

and is not subject to subtractive cancellation errors, since

it does not involve a difference operation. However, it

requires a complete rewrite of the software in complex

variables. While this can be automated, it has a significant

impact on performance.

Automatic differentiation (also known as algorithmic

differentiation or computational differentiation) is a well

established method for estimating derivatives. The method

is based on the application of the chain rule of

differentiation to each operation in the program simulating

the flow. It is equivalent to differentiating the discrete

equations to generate a system of equations for the

discrete sensitivities. It is powerful because it automati-

cally generates the code for calculating sensitivities

(Griewank 2000). In many cases, implementation requires

human intervention to ensure efficiency of the code.

Automatic differentiation for first-order flow sensitivities

is discussed by Sherman et al. (1996) and Putko et al.

(2001).

Approaches to calculating sensitivities also differ

depending on the order of the operations of approximation

and differentiation. In the discrete sensitivity equation

approach, the total derivative of the flow approximation

with respect to the parameter is calculated (Haug et al.

1986), whereas in the continuous SEM one differentiates

the continuum equations to yield differential equations for

the continuous sensitivities (Borggaard and Burns 1997).

See Hien and Kleiber (1997) for a discussion of the two

approaches. We have adopted the latter approach.

Continuous SEMs may be found in Borggaard and

Burns (1997), Godfrey and Cliff (1998, 2001), Limache

(2000) and Turgeon et al. (2001) for aerodynamics

applications. Application to heat conduction is reported by

Blackwell et al. (1998). Sensitivities for incompressible

flows with heat transfer may be found in several references

(Turgeon et al. 2000, 2002, 2003). Sensitivity analysis for

turbulence models is detailed in the works by Godfrey and

Cliff (2001) and Turgeon et al. (2004). Solution of the

sensitivity equations for the transient incompressible flow

of non-Newtonian fluids is presented by Ilinca et al.

(2005). A wide variety of flow regimes were treated by the

authors, Turgeon et al. (2000, 2002, 2003, 2004). This

body of work has shown that, sensitivities provide an

enriched basis of information on which to develop an

understanding of complex flow problems.

The work presented here is an extension to shape

parameters of the unsteady SEM by Hristova et al. (2006)

and Ilinca et al. (2007) for laminar flows. A methodology

for computing the continuous shape sensitivities is

presented by Duvigneau and Pelletier (2005). For shape

parameters, first derivatives of the solution appear in

Dirichlet boundary conditions for the sensitivity variable.

Second derivatives appear in the case of Neumann

boundary conditions. The observed lower accuracy of

boundary derivatives seem to occur because the

derivatives extracted by most methods are not compatible

or consistent with the solution field at or near the

boundary. Duvigneau and Pelletier (2006) have recently

proposed a Taylor series based constrained least squares

procedure to extract high accuracy boundary derivatives

that are compatible with the imposed Dirichlet conditions.

However, the cost of the Taylor series least-squares

method is too high for practical 3D applications.

In this paper, high accuracy nodal derivatives of the

finite element solution are computed using the Finite Node

Displacement (FiND) method, which was proposed by

Ilinca and Pelletier (2007) for scalar convection-diffusion

equations. For boundary nodes this approach is based on

inserting an additional mesh node close to the boundary

point, and on solving a small local problem on the patch of

elements surrounding the node. The only unknown to this

problem is the value of the solution at the additional point.

The location of the additional point is given by applying

a finite displacement to boundary nodes in the direction

normal to the boundary and towards the interior of

F. Ilinca and D. Pelletier256
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the domain. A finite difference between the solution at the

additional point and that at the boundary node yields the

normal derivative at the boundary. The method provides

nodal gradients that are consistent with the auxiliary fluxes

(Hughes et al. 2000) on Dirichlet boundary nodes.

Boundary nodal derivatives computed with this new

method are much more accurate than those provided by

the superconvergent patch recovery technique of Zienkie-

wicz and Zhu (1992).

The paper is organized as follows. First, we present the

equations describing time-dependent laminar flow along

with their boundary and initial conditions. The shape

sensitivity equations and their boundary/initial conditions

are then described in detail. The recovery of the solution

gradient at the boundary is then presented. The approach is

applied to the flow around a circular cylinder in ground

proximity. The methodology and its finite element solver

are first verified on a steady state problem. The paper then

focuses on unsteady flows and the ability of sensitivities to

anticipate important changes in the flow response due to

shape changes. We use the example of vortex shedding

behind a cylinder in ground proximity. We study to what

extent sensitivities can predict amplification/damping of

vortex shedding when the ground to cylinder gap varies.

The paper ends with conclusions.

2. Flow equations

The flow regime of interest is modelled by the momentum

and continuity equations:

r
›u

›t
þ u·7u

� �

¼ 27pþ f þ 7·½2mgðuÞ� ð7Þ

7·u ¼ 0 ð8Þ

where r is the density, u is the velocity, p is the pressure,

m is the viscosity, t represents time, f is a body force and

gðuÞ ¼ ð7uþ 7uTÞ=2 is the strain rate tensor.

2.1 Initial and boundary conditions

The above system is closed with a proper set of initial

conditions

uðx; t ¼ 0Þ ¼ U0ðxÞ in V ð9Þ

and Dirichlet and Neumann boundary conditions

uðx; tÞ ¼ UDðx; tÞ on GD ð10Þ

t ¼ ½2pIþ 2mgðuÞ�·n̂ ¼ FN on GN ð11Þ

where UD is the value of the velocity imposed on the

boundary GD, I is the identity tensor, and FN is the

imposed boundary value of the surface traction force t.

2.2 Finite element solution

The flow equations are solved by a finite element method

on 3D meshes. For simplicity, robustness and cost

effectiveness of the simulations we use equal order

interpolation for velocity and pressure (P1–P1 tetrahedral

elements) that need stabilization terms to avoid velocity–

pressure decoupling (Hughes et al. 1986, 1989, Franca and

Frey 1992). Stabilization can also avoid spurious

oscillations in convection-dominated flows. In this work

a Streamline-Upwind Petrov Galerkin (SUPG) finite

element method is used. Time is discretized by an implicit

Euler scheme.

The SUPG variational formulation of the momentum-

continuity equations is (Franca and Frey 1992, Ilinca et al.

2000):

ð

V

r
›u

›t
þ u·7u

� �

2 f

� �

vdV2

ð

V

pð7·vÞdV

þ

ð

V

2mgðuÞ : gðvÞdV þ
X

K

ð

VK

r
›u

›t
þ u·7u

� ��

þ 7p2 7½2mgðuÞ�2 f

�

tuðru·7vÞdVK

þ
X

K

ð

VK

ð7·uÞdð7·vÞdVK ¼

ð

GN

FNvdGN ð12Þ

ð

V

ð7·uÞqdVþ
X

K

ð

VK

r
›u

›t
þ u·7u

� ��

þ 7p2 7½2mgðuÞ�2 f

�

tu7qdVK ¼ 0 ð13Þ

where v and q denote the velocity and pressure test

functions respectively and VK denotes the volume of

element K. The integrals over the entire domain identify

the Galerkin contribution, while the stabilization terms are

integrated only on the element interiors (i.e. terms in the

summations). The stabilization parameters tu and d are

defined as (Tezduyar et al. 1990, Ilinca et al. 2000):

tu ¼
2r

Dt

� �2

þ
2rjuj

hK

� �2

þ
4m

mkh
2
K

� �2
" #

21=2

ð14Þ

d ¼
h2K
2tu

ð15Þ

Here Dt is the time step, hK is the size of the element K and

mk is a coefficient set to 1/3 for linear elements (Tezduyar

et al. 1990, Franca and Frey 1992).
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3. Sensitivity equations

The continuous sensitivity equations (CSE) are derived

formally by implicit differentiation of the flow equations (7)

and (8)with respect to parametera.We treat the variableu as

a function of space, time and of the parameter a. This

dependence is denoted by u(x,t;a). Defining the flow

sensitivities as the partial derivatives su ¼ ›u/›a and sp ¼

›p/›a, and denoting the total derivatives of the fluid

properties and other flow parameters by a (0), differentiation

of equations (7) and (8) yields

r0
›u

›t
þu·7u

� �

þr
›su

›t
þu·7suþ su·7u

� �

¼27spþ f 0 þ7 m0ð7uþð7uÞTÞþmð7suþð7suÞ
TÞ

� �

ð16Þ

7·su ¼ 0 ð17Þ

3.1 Initial and boundary conditions

Initial conditions for the sensitivity equations are obtained

by implicit differentiation of equation (9)

suðx; t ¼ 0Þ ¼
›U0

›a
ðxÞ in V ð18Þ

Dirichlet and Neumann boundary condition are obtained

in a similar manner. However, if a is a shape parameter,

the position of the boundary is also parameter dependent.

Therefore, the differentiation must account for the

dependence on a of both the boundary data and the

boundary location. For Dirichlet boundary conditions we

require that the material derivative of the flow velocity be

equal to that of UD:

Du

Da
¼

DUD

Da
on GD ð19Þ

›u

›a
þ 7u

›x

›a
¼

›UD

›a
on GD ð20Þ

thus we get

su ¼
›UD

›a
2 7u

›x

›a
on GD ð21Þ

Similar reasoning leads to the following Neumann

condition:

½2spIþ 2ðmgðsuÞ þ m0gðuÞÞ�n̂

¼
›FN

›a
2 7½2pIþ 2mgðuÞ�

›x

›a

� �

·n̂

2 ½2pIþ 2mgðuÞ�
›n̂

›a
on GN ð22Þ

Equation (21) shows that the flow gradients at the wall are

needed to evaluate Dirichlet boundary conditions for the

sensitivities. Equation (22) reveals that second derivatives

of velocity are needed in the case of a Neumann boundary

condition for a shape parameter. This introduces

numerical difficulties when solving CSE, since approxi-

mate boundary conditions are used. In this work only the

Dirichlet boundary conditions are dependent on the shape

parameter. Sensitivity boundary conditions are evaluated

by extracting the normal derivatives from local finite

element problems on patches of elements surrounding the

boundary nodes (see Section 3.4).

3.2 Finite element solution of sensitivity equations

In theory the CSE can be solved by any numerical method.

In practice, it is convenient and cost effective to use the

same finite element method for the flow and the CSE.

Indeed, we note that the CSE amounts to a Newton

linearization of the Navier–Stokes equations. Thus, if one

uses Newton’s method for solving the finite element

equations for the flow, the flow sensitivity equations will

have the same finite element matrix. Only the right hand

side will differ. This results in substantial savings since the

matrix of the sensitivities need not be recomputed. In

practice the solution for the sensitivity with respect to one

parameter is obtained at approximately 10% of the cost of

solving the flow equations.

Here the sensitivity equations are solved by the same

SUPG method used for flow equations. For simplicity we

present here the finite element method in the case of

constant properties flows:

ð

V

r
›su

›t
þ u·7su þ su·7u

� �

2 f 0
� �

vdV

2

ð

V

spð7·vÞdVþ

ð

V

2mgðsuÞ : gðvÞdV

þ
X

K

ð

VK

r
›su

›t
þ u·7su þ su·7u

� �

þ 7sp

�

2 7½2mgðsuÞ�2 f 0
�

tuðru·7vÞdVK

þ
X

K

ð

VK

ð7·suÞdð7·vÞdVK ¼

ð

GN

›FN

›a
vdGN ð23Þ

ð

V

ð7·suÞqdVþ
X

K

ð

VK

r
›su

›t
þ u·7su þ su·7u

� ��

þ 7sp 2 7½2mgðsuÞ�2 f 0
�

tu7qdVK ¼ 0 ð24Þ

The integrals over the entire domain represent the

Galerkin contribution, whereas the integrals over the
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element interiors represent the SUPG stabilization terms

for the sensitivity equations.

3.3 Normal component of velocity sensitivity at the

boundary

For incompressible flows, the boundary conditions for the

sensitivities of the velocity satisfy strict relationships

where Dirichlet boundary conditions are imposed on the

flow. Without loss of generality we restrict ourselves to

the case of homogeneous Dirichlet conditions. In this

specific case, and for shape parameters, the sensitivity of

the velocity is always tangent to the surface. To prove this

we begin with the equation (21) for UD ¼ 0:

su ¼ 27u
›x

›a
ð25Þ

which has the following scalar components:

su ¼ 2
›u

›x

›x

›a
þ

›u

›y

›y

›a
þ

›u

›z

›z

›a

� �

ð26Þ

sv ¼ 2
›v

›x

›x

›a
þ

›v

›y

›y

›a
þ

›v

›z

›z

›a

� �

ð27Þ

sw ¼ 2
›w

›x

›x

›a
þ

›w

›y

›y

›a
þ

›w

›z

›z

›a

� �

ð28Þ

The normal component of the velocity sensitivity is

given by:

2su·n̂ ¼
›u

›x
nx þ

›v

›x
ny þ

›w

›x
nz

� �

›x

›a

þ
›u

›y
nx þ

›v

›y
ny þ

›w

›y
nz

� �

›y

›a

þ
›u

›z
nx þ

›v

›z
ny þ

›w

›z
nz

� �

›z

›a
ð29Þ

where n̂ ¼ ðnx; ny; nzÞ is the outward unit normal to the

boundary and the derivatives of the velocity satisfy the

incompressibility condition (8):

›u

›x
þ

›v

›y
þ

›w

›z
¼ 0 ð30Þ

Consider now the first bracket on the right hand-side of

(29) in which we replace ›u/›x by 2 ((›v/›y) þ (›w/›z))

using (30), to obtain:

›u

›x
nx þ

›v

›x
ny þ

›w

›x
nz ¼

›v

›x
ny 2

›v

›y
nx

� �

þ
›w

›x
nz 2

›w

›z
nx

� �

ð31Þ

Because u vanishes on the boundary, the derivative of the

velocity in any tangential direction t̂ to the boundary is

zero: 7u·t̂ ¼ 0. Thus, the two terms on the right hand-side

of equation (31) vanish, because (ny, 2nx, 0) and (nz, 0,

2nx) define two tangent directions and the derivatives of v

and w along these directions are zero. A similar treatment

applies to the other two brackets of equation (29) so that

we obtain:

su·n̂ ¼ 0 ð32Þ

indicating that the normal component of the velocity

sensitivity is zero at the boundary. This is a very useful

tool for assessing the accuracy of the approximate

boundary conditions for the sensitivities.

In the case of a non-homogeneous Dirichlet boundary

condition the normal component of the velocity sensitivity

is non-zero but it can be determined in terms of the

velocity boundary condition. In either case, the normal

component is known and can be used as an error estimate

to test the accuracy of the computed sensitivity boundary

conditions.

3.4 Evaluation of velocity gradient at Dirichlet

boundary nodes

The accuracy of the shape sensitivity solution depends

mainly on our ability to recover accurate flow derivatives

at the boundary. We apply here the FiNDmethod proposed

by Ilinca and Pelletier (2007) for convection-diffusion

equations. In this work the procedure is extended to the

estimation of velocity gradients on Dirichlet boundary

nodes. The proposed approach improves the accuracy of

the nodal flow derivatives over previous recovery

techniques. For simplicity we restrict ourselves to the

case where Dirichlet conditions are specified on the

parameter dependent boundary segment. For this case flow

gradients at the wall are needed to evaluate boundary

conditions via equation (21). To improve accuracy we

express the derivatives in the normal and tangential

directions as follows

›u

›n
¼

›u

›x
nx þ

›u

›y
ny þ

›u

›z
nz ð33Þ

›u

›t1
¼

›u

›x
t1x þ

›u

›y
t1y þ

›u

›z
t1z ð34Þ

›u

›t2
¼

›u

›x
t2x þ

›u

›y
t2y þ

›u

›z
t2z ð35Þ

where n̂ is the boundary outward unit normal and

t̂1 ¼ ðt1x; t1y; t1zÞ, t̂2 ¼ ðt2x; t2y; t2zÞ are two orthogonal unit
vectors tangent to the boundary. On boundaries with

homogeneous Dirichlet conditions the tangential deriva-

tives are zero, ›u/›t1 ¼ 0, ›u/›t2 ¼ 0, and we need only

determine the velocity derivative in normal direction.
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The derivative of u in the direction n̂, the nodal normal

to the boundary, is given by

›u

›n
ðxPÞ ¼ 2 lim

dxn!0

uðxP þ dxnÞ2 uðxPÞ

dxn
ð36Þ

where xP is the coordinate of the boundary node P where

the normal derivative is computed and dxn ¼ 2dxnn̂ is a

displacement of magnitude dxn in the normal direction

towards the interior of the domain (the minus sign appears

because the finite element normal vector n̂ is the unit

outward normal). To extract the normal derivative we

must first determine the solution u(xP þ dxn) in equation

(36). To this end, an additional point P0 is inserted in the

mesh at xP þ dxn. A local problem is solved for the

solution at P0.

The procedure is illustrated in figure 1 for 2D problems

and linear triangular elements. Integration of the finite

element equation for node P is performed in the two-

element patch VP, and GP denotes the portion of the patch

boundary ›VP coinciding with the domain boundary.

Insertion of the point P0 splits VP into two sub-volumes

denoted by VP0 and vP as shown in figure 1.

The solution at node P0 is obtained by solving a local

finite element problem corresponding to the original

equations on the elements surrounding the node P0:

ð

V

r
›u

›t
þ u·7u

� �

2 f

� �

vP0dV2

ð

V

pð7·vP0ÞdV

þ

ð

V

2mgðuÞ : gðvP0 ÞdVþ
X

K

ð

VK

r
›u

›t
þ u·7u

� ��

þ 7p2 7½2mgðuÞ�2 f

�

tuðru·7vP0 ÞdVK

þ
X

K

ð

VK

ð7·uÞdð7·vP0 ÞdVK ¼ 0 ð37Þ

ð

V

ð7·uÞqP0dVþ
X

K

ð

VK

r
›u

›t
þ u·7u

� ��

þ 7p2 7½2mgðuÞ�2 f

�

tu7qP0dVK ¼ 0 ð38Þ

where vP0 and qP0 denote the velocity and pressure test

functions associated to the inserted node P0. We assume

that the insertion of P0 will not affect the values at the

vertices of the patch VP. Thus the only unknowns are the

values of u and p at node P0. Once this local problem is

solved, a finite difference between the values of the

solution at the new node P0 and boundary node P yields

the normal derivative:

›u

›n
ðxPÞ ¼ 2

uðxP þ dxnÞ2 uðxPÞ

dxn
ð39Þ

In practice dxn is chosen a few orders of magnitude

smaller than the size of the element patch surrounding

node P (1024 to 1023 of hK; see Ilinca and Pelletier (2007)

for details).

Finally, cartesian derivatives of the velocity are

obtained by solving equations (33), (34) and (35). Because

the gradient of the velocity is in the direction normal to the

boundary this reduces to solving

›u

›x
¼

›u

›n
nx ð40Þ

›u

›y
¼

›u

›n
ny ð41Þ

›u

›z
¼

›u

›n
nz ð42Þ

Additional accuracy is achieved if derivatives in equations

(40), (41) and (42) are constrained to satisfy the continuity

equation. This is done by, minimizing

J ¼
1

2

›u

›x
2

›u

›n
nxyz

� �2

þlDT ›u

›x
ð43Þ

where DT ¼ (1, 0, 0, 0, 1, 0, 0, 0, 1), l is the Lagrange

multiplier associated to the incompressibility constraint

and {›u/›x}, {(›u/›n)nxyz} denote

›u

›x

� �T

¼
›u

›x
;
›u

›y
;
›u

›z
;
›v

›x
;
›v

›y
;
›v

›z
;
›w

›x
;
›w

›y
;
›w

›z

� �

ð44Þ

›u

›n
nxyz

� �T

¼
›u

›n
nx;

›u

›n
ny;

›u

›n
nz;

›v

›n
nx;

›v

›n
ny;

›v

›n
nz;

›w

›n
nx;

›w

›n
ny;

›w

›n
nz

� �

ð45Þ

With this notation, minimization of the first term in the

right handside of (43) leads to equations (40), (41) and

(42), while minimization of the second term enforces the

Figure 1. Extracting the normal derivative on boundary nodes: (a)
element connectivity of boundary node P, (b) element connectivity of
inserted node P0.
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incompressibility of the velocity field:

DT ›u

›x
¼

›u

›x
þ

›v

›y
þ

›w

›z
¼ 0 ð46Þ

The resulting system of equations is thus written as

I9£9 D

DT 0

" #

›u

›x
l

8

<

:

9

=

;

¼

›u

›n
nxyz

0

8

<

:

9

=

;

ð47Þ

with I9£ 9 the 9 £ 9 identity matrix. The solution of the

system (47) yields the derivatives of u, v, w consistent with

ð›u=›xÞ þ ð›v=›yÞ þ ð›w=›zÞ ¼ 0. This values are used to

evaluate the sensitivity boundary conditions.

4. Implementation

The flow and sensitivity equations are solved on 3D

meshes. Time is discretized by an implicit Euler scheme

and the equations are linearized with Newton’s method.

The solution algorithm works as follows:

- At each time step

. Iterate over the non-linear Navier–Stokes equations

(12) and (13) until convergence. A few steps of

successive substitution (Picard’s method) are per-

formed at the beginning of the first time step and the

Newton’s linearization is used afterward.

. Evaluate the solution gradient at the boundary and

impose boundary conditions for the sensitivity

equations.

. Use the matrix from the last Newton iteration on the

flow problem and solve the linear system for the

sensitivities equations (23) and (24). This step requires

the evaluation of one right hand side and one linear

equation solve for each parameter.

Element matrices are constructed using a numerical

Jacobian technique and assembled in a compressed sparse

row format. Flow and sensitivity global systems are solved

by BiCG preconditioned iterative methods.

5. Numerical results

We consider the flow around a circular cylinder in ground

proximity and study the effect of the ground to cylinder

gap size s. The computational domain and boundary

conditions are shown on figure 2. Because the problem is

2D a slab was meshed with one layer of tetrahedral

elements. The mesh, shown on figure 3, was designed to

provide adequate resolution for both the flow and its

sensitivity. The inflow velocity U0 is uniform. The initial

conditions are obtained from a steady state solution of the

flow and its sensitivities with respect to s. The Reynolds

number Re ¼ rU0D/m is set to 100.

5.1 Verification

As shown in Section 3, the Dirichlet boundary conditions

for the flow sensitivity must be tangent to the cylinder

surface. The values of the normal components of the

sensitivities are then an indicator of the accuracy of

Dirichlet sensitivity boundary conditions. Figure 4 shows

the normal and tangential components of the sensitivity

boundary condition. The variable on the x axis represents

the angle u measured counter clockwise from the rear

stagnation point on the horizontal axis (ranges from 0 for

the point x ¼ D/2, y ¼ 0, to p/2 for x ¼ 0, y ¼ D/2, and

so on until 2p for x ¼ D/2, y ¼ 0). As can be seen, the

normal component of the sensitivity is very small and it is

practically negligible when compared to the tangential

component. This indicates that the method for recovering

the flow gradients at the wall performs well.

Further verification is done by computing the flow

sensitivities with respect to s by finite differences (FD). To

this end, the distance to the ground s is changed by a small

amount ds and the solution is recomputed. In order to

minimize the influence of the mesh changes on the

solution, the topology of the mesh is kept the same. Only

nodes near the cylinder and found in the box [20.75D,

Figure 2. Flow around a circular cylinder in ground proximity: domain and boundary conditions.
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0.75D] £ [20.75D, 0.75D] are deplaced when changing s.

The accuracy of the sensitivity is then verified at locations

outside the subdomain where the nodes are allowed to

move. Here we use points located at x ¼ D, one diameter

downstream of the centre of the cylinder. The reference

finite difference flow sensitivity is determined from

›u

›s

� �

FD

¼
uðsþ dsÞ2 uðs2 dsÞ

2ds
ð48Þ

in which ds is taken very small compared to s. In this work

we consider ds ¼ 0.001D. The accuracy of the solution

gradient from equation (48) is of the order O(ds 2).

Figure 5 compares the CSE predictions to FD

approximations of su, sv and sp at x ¼ D for steady

state flow and s ¼ 0.75D. As can be seen, the two sets of

results agree extremely well indicating that the SEM

performs well. It also indicates that the flow gradients are

computed accurately at the Dirichlet boundary points.

5.2 Sensitivity analysis of the unsteady flow

The flow past a cylinder induces steady-state recirculating

vortices for small gap values. When the distance to the

wall increases above a critical value, vortex shedding is

triggered behind the cylinder resulting in the well known

Karman vortex street. We first look at results for the case

s ¼ D for which the vortex street develops rapidly. This

is clearly seen on figure 6 which shows vorticity contours

for times t ¼ 104, 106, 108, and 110 (the time scale is set

equal to D/U0). To quantify the effect of the wall distance

on the vortex street formation, simulations were also

carried out for a gap size s ¼ 0.75D. Vorticity contours are

shown in figure 7 for t ¼ 118–124, that is at latter times

than for the case s ¼ D (figure 6). As can be seen, the

vortex street develops more slowly and with smaller

amplitudes than for the case s ¼ D. This is also seen in

figure 8 which compares the time signal of the vertical

velocity v at the point (x ¼ 4D, y ¼ D) for both cases.

Shape sensitivities with respect to the wall distance s

were computed for s ¼ 0.75D. The time signals at

(x ¼ 4D, y ¼ D) for the flow and its sensitivities are

shown in figure 9. The flow solution is shown in the left

column of the figure. The SEM sensitivities are compared

with a central finite difference approximation with

ds ¼ 0.001D (FD in figure 9). The following observations

can be made:

. The periods of the sensitivity signals are the same as

those of the flow;

. The amplitudes of the oscillation in sensitivities (su, sv,

sp) are larger and increase at a faster rate than those of

the flow;

. In all cases the SEM sensitivities agree very well with

the finite difference approximation.

Figure 10 presents the time variations of the oscillation

amplitude of the v component of velocity and that of its

sensitivity. Both sets of data are plotted on a logarithmic

scale. Note that the amplitude of the sensitivity signal is

much larger and increases faster than that of the flow

Figure 3. Mesh for the flow around a circular cylinder in ground proximity.

Figure 4. Components of the velocity sensitivity boundary condition on
the cylinder surface.
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solution. This is an important observation because it

indicates that the sensitivities appear to be reacting faster

and more strongly than the flow to changes in the

parameter values. In other words, sensitivities appear able

to foretell the transition from the steady-state solution to

the vortex shedding before it becomes visible in the flow

signal. This may prove very useful in flow control

applications.

Figure 5. Steady state flow: verification of the computed sensitivity at
x ¼ D.

Figure 6. Flow around a circular cylinder at s ¼ D from the wall: Von
Karman vortex street.

Figure 7. Flow around a circular cylinder at s ¼ 0.75D from the wall:
initiation of unstable flow.

Figure 8. Time signal of the vertical velocity at (x ¼ 4D, y ¼ D).
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5.3 Fast evaluation of flows on nearby geometries

We now show how to use sensitivities for fast evaluation of

flows on nearby geometries. Consider for example what

happens to the u-velocity, when the gap parameter s is

subject to a variation ds from its reference value s0. First

order Taylor series expansion in s yields:

uðx; y; z; t; s0 þ dsÞ < uðx; y; z; t; s0Þ þ
›u

›s

	

	

	

	

s0

ds: ð49Þ

Using the baseline solution obtained at s ¼ 0.75D, we

compare the flow estimates from the Taylor series for u and

v to a full flow reanalysis at the perturbed values of the

parameter, i.e. equation (49) vs u(x,y,z,t;s0 þ ds). Results

for two values of s, one lower (s ¼ 0.74D) and the other

larger (s ¼ 0.76D) than the baseline value are shown in

figures 11 and 12 for the point (x ¼ 4D,y ¼ D). Note that

the location of this point relative to the ground is maintained

unchanged when the ground to cylinder gap changes (i.e.

the ground is kept fixed and the cylinder is deplaced).

Figure 9. Time signal of the flow and its sensitivities with respect to s at (x ¼ 4D, y ¼ D) for s ¼ 0.75D.
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The reconstructed solutions are very close to those obtained

by reanalysis at the perturbed value of s. The Taylor series

approximations of the flow response are in very good

agreement with the CFD reanalysis at early times.

Agreement deteriorates very slightly at later times, probably

because higher order derivatives in the Taylor series

expansion become important. Observe also that sensitivities

provide other quantitative information concerning trends of

the flow response. They predict the damping of the vortex

shedding when s decreases (figure 11) and the amplification

of unsteadiness when the cylinder to ground gap increases

(figure 12).

6. Conclusion

A general shape sensitivity equation formulation was

developed for time-dependent incompressible laminar

flows. The method is applied to the flow around a circular

cylinder in proximity to the ground. Sensitivities are used

to study the influence of the distance to the wall on the

amplitude of vortex shedding behind the cylinder. The

sensitivity of the flow is computed and correlated with the

flow response when the wall distance changes. For

s ¼ 0.75D, the amplitudes of the sensitivity oscillations

increase much faster with time than those of the flow.

Hence sensitivities provide useful information to antici-

pate the flow response. The damping of vortex shedding

Figure 10. Amplitude of oscillations in v and its sensitivity at (x ¼ 4D,
y ¼ D) for s ¼ 0.75D.

Figure 11. Flow at (x ¼ 4D,y ¼ D): fast evaluation of flow at s ¼ 0.74D from s ¼ 0.75D.

Figure 12. Flow at (x ¼ 4D,y ¼ D): fast evaluation of flow at s ¼ 0.76D from s ¼ 0.75D.
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with decreasing s/D is well predicted. Amplification of

shedding with increased s/D is also well predicted. This

property of sensitivities will likely prove useful in

developing flow control algorithms to maintain certain

characteristics of the flow (for example minimize the

vortex street or added mass effects).
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