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Abstract. POSL is a Semantic Web language for e-Business knowledge

interchange, reconciling Horn logic’s positional and F-logic’s slotted for-

mulas for representing facts and rules on the Web, optionally referring

to RDFS or OWL classes for order-sorted typing. The POSL semantics

directly enhances Herbrand models for n-ary relations by accommodat-

ing slotted clause instantiation and ground equality, further restricted

through signatures and types. Webizing uses IRIs in the IETF form of

N3 for individuals, relations, slots, and types. Webized atoms further

permit the representation of F-logic objects and RDF descriptions as

anchored slotted facts enhanced by rules. All POSL notions are exem-

plified using an e-Business use case in logistics. The online translator

from POSL to OO RuleML and POSL engine OO jDREW have enabled

Semantic Web applications in business information integration, touristic

planning, and expert/symposium/wellness querying.

1 Introduction

This chapter explores the design, syntax, semantics, implementation, and e-

Business application of integrated positional and slotted knowledge using the

⋆ Thanks to Marcel Ball for the POSL translators, ANTLR grammar, and OO jDREW

implementation, and to David Hirtle for the RuleML XSD, Schematron, and XSLT

specification. This research was partially supported by NSERC.



POsitional-SLotted (POSL) language. POSL integrates the positional knowl-

edge representation supported by pure Prolog relations and XML elements with

the slotted knowledge representation supported by Frame-logic (F-logic) ob-

jects [KL89,YK03] and RDF descriptions [Hay04]. This facilitates integrated

knowledge representation, which is often needed, particularly on the Seman-

tic Web. Integration is done by a cross-fertilizing reconstruction of the no-

tions of ‘relation’ and ‘object’ from their shared components. For example,

POSL permits IRIs in the style of Notation 3 (N3) [BLCK+08] for nam-

ing all language elements. POSL is a very-high-level specification and inter-

change language for relational/object-centered (e-Business) facts and rules, as

exemplified here for a logistics use case. Facts correspond to relational tuples

and rules generalize SQL views, together constituting the deductive database

foundation of e-Business. F-logic extensions of such facts and rules proceed

from relational to object-centered databases, hence to UML and MOF (e-

Business) software specification. For F-logic objects and all other language con-

structs, IRIs permit “webizing” [http://www.w3.org/DesignIssues/Webize.html],

which is central to the Semantic Web and its e-Business use. Semantic Web

rules thus in the short term will leverage the success of Business Rules

[http://www.businessrulesgroup.org/brmanifesto.htm] and in the long term will

leverage the success of Web Services for e-Business. Such motivation was also de-

cisive for W3C’s Working Group developing the Rule Interchange Format (RIF)

[BK10], for which RuleML and POSL were major inputs.

Experience with the development of Semantic Web languages such as OWL

[MPSP09] and RIF has shown the many advantages of studying expressive classes

and formal semantics using a ‘human-oriented’ syntax layer above the XML

level. Also, as pioneered by N3, a concise non-XML ASCII syntax is very use-

ful in developing knowledge bases, which can then be parsed into some much

more tedious XML markup such as RDF/XML for (distribution and) processing

through the multitude of XML-aware tools. The same principles underlie RIF,

although its Presentation Syntax is somewhat provisional [BK10]. For new Se-



mantic Web languages this reinforces what has been similarly known in the Lisp

community for decades – that a structured syntax (Lisp expressions or XML

elements) and a concise syntax should be co-designed with a pair of translators

permitting smooth transitions between the two. This chapter is based on the

pair RuleML↔POSL, whose evolving components are supported by translators

[http://www.ruleml.org/posl/converter.jnlp] for combining ‘deep’ (XML) markup

with a ‘shallow’ (ASCII) shorthand, online. These being in place, we can look

at the design issues below.

Knowledge representation (KR) languages have been developed, with limited

time and cross-fertilization, to cover the following Semantic Web design space:

Object-centered resource instance descriptions via binary properties (RDF), tax-

onomies over resource classes and properties (RDFS), description logic with

class-forming operations and class/property axioms (OWL), as well as deriva-

tion, integrity, transformation, and reaction rules (RuleML). At the bottom of, or

combined with, these languages, different kinds of (binary, n-ary) ground facts

have been used besides database tuples for representing instances. On top of,

or again combined with, these languages, query languages have been defined.

Integrations of various of these languages have been developed, including the

combination of object-centered descriptions and rules (N3, OO RuleML) as well

as description logic and rules (Description Logic Programs, SWRL). These lan-

guage integrations can help with information integration on the Web such as

mapping object-centered representations to positional ones. The POSL research

has explored this design space and introduced orthogonal (‘decoupled’) dimen-

sions for systematic Semantic Web language development. The orthogonal design

has allowed us to incorporate most of the above notions in such a way that they

can be used and revised independently from each other.

Two language families that predated the (Semantic) Web, yet have been

very useful for it, are positional languages based on Horn logic such as pure

Prolog (or Datalog when based on function-free Horn logic), and slotted lan-

guages with object-centered instance and class descriptions plus rules as in F-



logic [KL89,YK03]. Both have concise ASCII syntaxes, elegant semantics, and

decent computational properties. Since these positional and slotted styles are

often needed conjointly in the XML&RDF Web, they have been integrated in

POSL. Prolog and F-logic can be given additional XML syntaxes, and adapted

to the Semantic Web by webizing key language elements via URIs as well as

permitting modular and distributed knowledge bases. In POSL, the integrated

XML syntax is OO RuleML, and integrated webizing is done in the style of N3

for all language elements. The POSL syntax is given in appendix A.

Based on projects at NRC and UNB, we will exemplify all POSL notions

through an e-Business use case in logistics. Without the POSL layer available

above the XML level, it would not have been possible to complete, in a timely

fashion, the development cycles of Web applications such as the New Brunswick

Business Knowledge Base [MB05] [http://www.ruleml.org/usecases/nbbizkb],

eTourPlan [Dem08] [http://www.ruleml.org/usecases/etourplan], as well as Find-

XpRT [LBBM06] [http://www.ruleml.org/usecases/foaf/findxprt], Symposium-

Planner [CB08] [http://www.ruleml.org/SymposiumPlanner], and WellnessRules

[BOC09] [http://www.ruleml.org/WellnessRules].

2 The Positional/Slotted Space for Facts and Queries

Positional and slotted KR both have advantages for various tasks in the Seman-

tic Web, hence in POSL are reconstructed in a design space with orthogonal

dimensions, also allowing for various combined and extended forms. The argu-

ments of n-ary relations and objects can, independently, be ordered or unordered,

keyed or unkeyed:

unkeyed keyed

unordered basinal slotted

ordered positional notched

The ‘secondary diagonal’ (‘slash’) cells, positional = ordered + unkeyed and

slotted = unordered + keyed, are more common, hence will be focused here;



the ‘main diagonal’ (‘backslash’) cells, basinal = unordered + unkeyed and

notched = ordered + keyed, will also be useful.

Beginning with our logistics use case, a 4-ary relation shipment can

represent the shipping of some cargo, e.g. PCs, at a price, e.g. $47.5, from

a source, e.g. the Boston Museum of Science (BostonMoS), to a destination,

e.g. the London Science Museum (LondonSciM). The corresponding shipment

relationships (atoms) can be represented in all notations discussed in section 1,

hence are used to illustrate the POSL design space.

Positional notations have been used, intuitively, for ordered sequences of

possibly repeating objects: In mathematics (hence in physics, chemistry, etc.), for

n-tuples and for the arguments to n-ary functions etc.; in logics, KR, database,

and programming languages, for the arguments to n-ary functions and relations

(predicates); in XML, for child elements within a parent element; as well as in

RDF, for Sequence containers with ordered rdf:li children.

For example, our 4-ary shipment relation can use the cargo, price, source,

and destination directly as arguments, in that order. Corresponding shipment

atoms can be represented as 4-tuples, 4-ary Datalog facts, etc.

For this, POSL uses a Prolog-like syntax, e.g. obtaining the following two

ground facts (constants may be symbols, with a lower-case or upper-case first

letter, or numbers):

shipment(PC,47.5,BostonMoS,LondonSciM).

shipment(PDA,9.5,LondonSciM,BostonMoS).

Slotted notations have been used, intuitively, for unordered sets of

attribute-value pairs: In mathematics, for arc-labeled graphs and finite maps;

in frame and feature logics, for molecular formulas and feature terms; in KR,

database, and programming languages, for records and object-centered binary

relations; in XML, for attributes within start tags; as well as in RDF, for resource

descriptions via properties.



For example, the above positional 4-ary shipment relation can also be con-

ceived in a slotted manner, where slot names such as cargo identify the roles

of the arguments and their order becomes irrelevant. Corresponding shipment

atoms can then be represented as object-centered database nodes, frame logic

facts, etc. by pairing slot names such as cargo, price, source, and dest(ination)

with their slot fillers such as PC, 47.5, BostonMoS, and LondonSciM, respectively.

For this, POSL uses an F-logic-inspired syntax, now obtaining these facts

(“name->filler” slots are separated by a “;” infix, indicating unorderedness):

shipment(cargo->PC;price->47.5;source->BostonMoS;dest->LondonSciM).

shipment(cargo->PDA;price->9.5;source->LondonSciM;dest->BostonMoS).

Positional-slotted notations have also been used combined, e.g., in Lisp,

for obtaining the benefits of both KR methods.

For example, the above 4-ary shipment relations can be split and recombined

in a positional-slotted manner, where a positional part is followed by a slotted

part. The first two arguments, cargo and price, are rather self-explaining in the

positional notation, but the last two arguments, source and destination, could

be easily confused, hence are given here explicit slot names in the combined

positional-slotted notation.

For this, POSL uses a Prolog/F-logic-combining syntax, obtaining these facts

(the “,” infix has precedence over the “;” infix):

shipment(PC,47.5;source->BostonMoS;dest->LondonSciM).

shipment(PDA,9.5;source->LondonSciM;dest->BostonMoS).

Existing relations such as shipment may later require enhancement by

further information such as a starttime and endtime, which may be given

for just some of its atoms. Instead of extending positional or positional-slotted

atoms by further arguments in an ordered, positional manner, it is often

preferable to add arguments in an unordered, slotted manner. An extension

with slots allows to confine changes to the affected atoms only, rather than

positionally extending all atoms of a relation either with proper values (e.g.,



when starttime and endtime are given) or with null values for ‘padding’ (e.g.,

when starttime or endtime are missing).

Structures and plexes go beyond the Datalog language considered so far

by introducing constructor functions. Our above three notations are also possible

for a (Prolog-like) structure applying a constructor to arguments. For example, a

binary structure can describe a pair of stakeholders as follows (using “[. . . ]” for

constructor applications): the positional stakepair[PeterMiller,SpeedShip],

the slotted stakepair[owner->PeterMiller;shipper->SpeedShip],

and the mixed stakepair[PeterMiller;shipper->SpeedShip]. Sim-

ilarly, a plex can be written as the special case of a constructorless

structure, which is equivalent to the explicit application of the con-

structor plex. In the example, this changes our stakeholder pairs

thus: the Prolog-like list [PeterMiller,SpeedShip], the F-logic/Lisp-

inspired association list [owner->PeterMiller;shipper->SpeedShip],

and the mixed [PeterMiller;shipper->SpeedShip], which

are understood, respectively, as plex[PeterMiller,SpeedShip],

plex[owner->PeterMiller;shipper->SpeedShip], and

plex[PeterMiller;shipper->SpeedShip].

Non-ground formulas contain at least one variable argument, interpreted

as universally quantified in facts and as existentially quantified in queries.

They are allowed for all three notations. However, variables are not permit-

ted as slot names in (First-Order) POSL since there would no longer be a

unique most general unifier, so non-determinism would already arise during

the unification phase of resolution. Variables can be named or anonymous.

Named variables are prefixed by a “?”; the anonymous variable is written

as a stand-alone “?”. For example, for the earlier positional PC-shipment

ground fact, the non-ground query shipment(PC,?,BostonMoS,?goal) suc-

ceeds, unifying the anonymous “?” with 47.5 and binding ?goal to LondonSciM.



Rest arguments are permitted in atoms, one for positional arguments and

one for slotted arguments. Positional arguments are separated from a positional

rest by a “|”; slotted arguments are separated from a slotted rest by a “!”.

In both cases the rest itself is normally a variable, enabling a varying number

of arguments, thus making an atom polyadic – the fixed-arity/polyadic distinc-

tion being orthogonal to the positional/slotted distinction. In particular, the

anonymous variable can be used as a positional or slotted “don’t care” rest.

A slotted “don’t care” rest “!?” makes an option from F-logic’s fixed convention:

to tolerate arbitrary excess slots in either formula (e.g., a fact), having slot names

not used by any slot of the other (“!?”-)formula (e.g., a query), for unification.

For example, for the earlier slotted PC-shipment fact, the query

shipment(cargo->?what;price->?;source->BostonMoS;dest->?goal)

succeeds, binding ?what to PC and ?goal to LondonSciM. However, the query

shipment(owner->?who;cargo->?;price->?;source->BostonMoS;dest->?)

fails because of its excess slot named owner. Similarly, the query

shipment(cargo->?what;source->BostonMoS;dest->?goal)

fails because of the fact’s excess slot named price. On the other hand, the query

with the slotted “rest doesn’t care” combination “!?”

shipment(cargo->?what;source->BostonMoS;dest->?goal!?)

again succeeds with the initial bindings, since “!?” anonymously unifies the

price slot (independent of where it occurs in the fact).

Conversely, the earlier fact would tolerate excess query slots such as in the

above owner query after ‘opening it up’, non-ground, via an anonymous rest:

shipment(cargo->PC;price->47.5;

source->BostonMoS;dest->LondonSciM!?).

If the query also contains an anonymous rest, both it and the fact can contain

excess slots, as in



shipment(owner->?who;cargo->?what;source->BostonMoS;dest->?goal!?)

which succeeds with the initial bindings, since the anonymous query rest unifies

the fact’s price slot and the anonymous fact rest unifies the query’s owner slot,

leaving the variable ?who free, and the querier agnostic about the owner.

If anonymous rest slots are employed in all formulas, the effect of F-logic’s

implicit rest variables is obtained. The more precise, “!”-free slotted formulas

can enforce more restricted, ‘closed-off’ unifications where needed.

In general, “|” and “!” rests can follow after zero or more fixed positional and

slotted arguments, and can unify the zero or more remaining arguments. Before

being bound to a variable, such a polyadic rest e1, . . . , eZ or s1 → f1; . . . ; sZ →

fZ is made into a single plex [e1, . . . ,eZ] or [s1->f1; . . . ;sZ->fZ], respectively.

Using both kinds of rests, we give below the most general forms of or-

dered/unordered, keyed/unkeyed atoms (1) and structures (2). Here, the oi and

ui arguments are ordered and unordered, respectively, and can either be keyed

(having the form si->fi) or unkeyed (having any other form). The positional-

slotted forms are the common special case where exactly the ui arguments are

keyed and exactly the oi arguments are unkeyed. The equation right-hand sides

show normal forms with all unordered arguments to the right of all ordered

arguments (for positional-slotted, all slots to the right of all positionals):

r(u1; ...;uL; o1, ..., oM |Vo;uL+1; ...;uN !Vu) = r(o1, ..., oM |Vo;u1; ...;uN !Vu) (1)

c[u1; ...;uL; o1, ..., oM |Vo;uL+1; ...;uN !Vu] = c[o1, ..., oM |Vo;u1; ...;uN !Vu] (2)

The semantics of POSL clause sets will be based on slotted (positional-

slotted etc.) extensions to the positional (here, LP [Llo87]) notions of clause

instantiation and ground equality (for the model-theoretic semantics) as well as

unification (for the proof-theoretic semantics).

With slot names assumed to be non-variable symbols, slotted instantiation

can recursively walk through the fillers of slots, replacing any variables encoun-

tered with their dereferenced values from the substitution (environment).



Since POSL uses no implicit rest variables, slotted ground equality can re-

cursively compare two ground atoms or structures after lexicographic sorting –

w.r.t. the slot names – of the slotted elements encountered.

Since POSL uses at most (one positional and) one slotted rest variable on

each level of an atom or structure, slotted unification can perform sorting as

in the above slotted ground equality, use the above slotted instantiation of vari-

ables, and otherwise proceed left-to-right as for positional unification, but pairing

up identical slot names before recursively unifying their fillers, while collecting

excess slots on each level in the plex value of the corresponding slotted rest

variable.

3 Horn-like Rules Typed via RDFS or OWL Classes

On top of positional and slotted facts, and in the same integrated manner, POSL

offers Horn-like rules for inferential tasks in the Semantic Web. Facts are inter-

pretable as clauses that are degenerated (premiseless) rules, which in POSL can

be naturally extended to clauses that are full-blown (premiseful) rules.

Extending the logistics use case, a ternary relation reciship can represent

reciprocal shippings of unspecified cargos at a total cost between two sites. A

Datalog rule infers this conclusion from three premises, two shipment atoms

and an add atom. The shipment relation was defined in section 2 and the add

relation is based on a SWRL built-in satisfied here iff the first argument is equal

to the sum of the second and third arguments.

Positional rules are the usual Horn rules, in POSL written using a Prolog-

like syntax, but again employing “?”(-prefixed) variables as, e.g., in Jess, N3,

and Common Logic. In the reciship example, the following Datalog rule is

obtained (the “:-” infix, for “⇐”, has lowest precedence):

reciship(?cost,?A,?B) :-

shipment(?,?cost1,?A,?B),

shipment(?,?cost2,?B,?A),



add(?cost,?cost1,?cost2).

The query reciship(?total,BostonMoS,LondonSciM) uses the rule to itself

query the corresponding shipment facts and call the add built-in, binding ?total

to 57.0. This query could be chained to from the body of another positional rule,

e.g., reciBosLon(?total) :- reciship(?total,BostonMoS,LondonSciM).

With types Float and Address for the head as well as additional Product

and Float types for the extra anonymous and ?cost-named body variables,

defined as RDFS or OWL classes (e.g., as in section 5), the above reciship rule

becomes fully typed as follows (we use the classical “:” infix between a variable

and its type, which, applied once, holds for all of its occurrences in a clause):

reciship(?cost:Float,?A:Address,?B:Address) :-

shipment(?:Product,?cost1:Float,?A,?B),

shipment(?:Product,?cost2:Float,?B,?A),

add(?cost,?cost1,?cost2).

Slotted rules are much like in F-logic. The reciship relation is redefined

here in a slotted manner with slot names price, site1, and site2, where two

‘indexed’ site slots are used. Analogously, the positional add relation could be

made slotted via extra slot names sum, addend1, and addend2:

reciship(price->?cost;site1->?A;site2->?B) :-

shipment(cargo->?;price->?cost1;source->?A;dest->?B),

shipment(cargo->?;price->?cost2;source->?B;dest->?A),

add(sum->?cost;addend1->?cost1;addend2->?cost2).

Notice that the slot name price occurs here both in the relation shipment,

for elementary costs, and in the relation reciship, for an aggregated cost. Sim-

ilarly, while the dest slot in the shipment relation is of type Address, a slot

with the same name in a flight relation could have type AirportCode. Such

‘overloading’ is caused by slot names, except when ‘webized’ (cf. section 5), be-

ing local to their relations much like property restrictions are local to their class

descriptions in OWL.



Now, reciship(site1->BostonMoS;price->?total;site2->LondonSciM)

through reciship(price->?total;site1->BostonMoS;site2->LondonSciM),

the lexicographically sorted normal form, queries the slotted rule, which itself

queries corresponding clauses, again binding ?total to 57.0. The original query

could be chained to from the body of another slotted rule, e.g. having the head

reciBosLon(price->?total).

The above rule can again use variable typing:

reciship(price->?cost:Float;site1->?A:Address;site2->?B:Address)

:-

shipment

(cargo->?:Product;price->?cost1:Float;source->?A;dest->?B),

shipment

(cargo->?:Product;price->?cost2:Float;source->?B;dest->?A),

add(sum->?cost;addend1->?cost1;addend2->?cost2).

Positional-slotted rules use at least one positional and one slotted relation

as the conclusion or some of the premises, or use at least one positional-slotted

relation as the conclusion or some of the premises. For instance, to avoid the

‘indexed’ slot conventions/assumptions in the slotted rule above, a positional-

slotted rule can be positional for the conclusion and the add premise, and can

be slotted for the shipment premises:

reciship(?cost,?A,?B) :-

shipment(cargo->?;price->?cost1;source->?A;dest->?B),

shipment(cargo->?;price->?cost2;source->?B;dest->?A),

add(?cost,?cost1,?cost2).

The semantics of slotted and positional-slotted clause sets can be defined

on top of the semantic basis for atoms and structures in section 2. Since on the

level of clauses all three notations have the same interpretation, the treatment

in section 2 naturally extends to slotted (and positional-slotted) generalizations

of positional (LP [Llo87]) clauses. The further semantic treatment via Herbrand



models and resolution proof theory directly follows the one for the positional

notation [Llo87]. The semantics of typing (sorts) could be given directly

but can also be reduced to the unsorted case in a well-known manner: All

occurrences of a sorted variable are replaced by their unsorted counterparts

plus a body-side application of a sort-encoding unary predicate to that vari-

able (sorted facts thus become unsorted rules); moreover, the definition of the

unary predicate reflects the subsumption relations of the sort taxonomy via rules.

The implementation of POSL for slotted and positional-slotted clauses,

called OO jDREW, has followed the semantics via an extension of the Java-

based jDREW interpreter [BBH+05]; it is available via Java Web Start and

for full download [http://www.jdrew.org/oojdrew]. In OO jDREW, as in sorted

Prologs, the implementation of typing was performed directly (without the

above reduction) using RDFS as the Web taxonomy language to define the sort

lattice via subClassOf.

All the applications of POSL mentioned in section 1 have used its OO

jDREW implementation.

4 Signatures

POSL uses optional signature declarations, particularly to help with knowledge

base integration in Web-distributed development. Signatures can equip argu-

ments with slots and types, which, as will be shown in section 5, may refer to

classes defined in a Web taxonomy language such as RDFS or OWL DL.

A signature declaration has the form of a fact except that an “*” instead of

a “.” is used as the terminator. For any relation, zero or more signature decla-

rations are permitted, which conjointly constrain the relation’s applicability.

For our positional facts, a signature can be declared to specify their arity

(implicitly, 4) and argument types (“?:” is used as a type ‘prefix’) as follows:

shipment(?:Product,?:Float,?:Address,?:Address)*



For the slotted and positional-slotted facts, signatures can be declared thus

(all or some “,” infixes are replaced by “;”):

shipment(cargo->?:Product;

price->?:Float;

source->?:Address;

dest->?:Address)*

shipment(?:Product,

?:Float;

source->?:Address;

dest->?:Address

!?)*

The left-hand, slotted signature gives slots and filler types to all of its ar-

guments (no excess slots will be tolerated because of the absence of “!?”).

The right-hand, positional-slotted signature specifies its positional as well as its

slotted arguments (without “|?” not tolerating excess positional arguments but

with “!?” tolerating excess slots). In both signatures the same type ?:Address

now occurs in two differently named ‘roles’, for the source and dest slots.

Signature declarations are also allowed for a relation defined by a clause

set containing rules, for the heads of which they again specify slot names and

argument types, as for facts. Signatures that themselves have the form of rules,

where all signature rules of a relation must unify and succeed, are currently not

allowed.

The semantics of POSL signatures is that of filters over a candidate model’s

ground facts having the same relation name: Only ground facts unifying, order-

sorted, with all of their signatures will stay in the model.

5 Webizing Individuals, Relations, Slots, And Types

The POSL language elements of individuals (and constructors), relations, slots,

and types can be webized, and generally can be endowed with IRIs. Different

occurrences of the same language element can thus be disambiguated by giving

them different IRIs. Since it concerns language elements wherever they occur,

POSL webizing is orthogonal to the positional/slotted distinction.

First, we distinguish two kinds of character sequences that have the form of

IRIs in the POSL KR language: An active IRI, meant to identify a resource (the



usual case), is enclosed in a pair of angular brackets, <. . . >, following IETF’s

generic URI syntax [http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html] and

N3 [http://www.w3.org/2000/10/swap/Primer]; a passive IRI, meant to stand for

itself as a string (the unusual case), is enclosed in a pair of double quotes, ". . . ",

exactly as other strings in POSL or in other languages. XML namespace prefixes

and local names as well as general QNames can then be expressed via variables

bound to active IRIs (although XML applications like XSLT and RDF use ". . . "

or even ’. . . ’ for what is here called active IRIs). While whitespace (e.g., any

line-break) is ignored in (e.g., long) active IRIs, it of course counts in strings.

A symbolic POSL language element occurrence can be associated with an

active IRI via symbol-IRI juxtaposition, generalizing a wide-spread convention

for user-email association as in "Fred Bird"<mailto:sales@sphip.com>. A

POSL element such as the string individual "Fred Bird" can also be entirely

replaced by an IRI, as in the stand-alone <mailto:sales@sphip.com>.

Webized individuals employ active IRIs in place of, or in addition

to, individual-constant symbols. For example, SpeedShip can be associated

with an active IRI for the intended speed shipping company’s homepage

<http://sphip.com> to obtain the following webized individual:

SpeedShip<http://sphip.com>

Our 4-ary positional shipment fact from section 2 can now be extended by a

shipping company as the first argument of a 5-ary fact using one of three options.

(1) The individual symbol SpeedShip itself can be used, as we did with

BostonMoS etc. before webizing:

shipment(SpeedShip,PC,47.5,BostonMoS,LondonSciM).

(2) The active IRI can be employed in place of the individual symbol, as practiced

in RDF, N3, and other Web KR languages:

shipment(<http://sphip.com>,PC,47.5,BostonMoS,LondonSciM).



(3) The webized individual symbol can be employed, as defined in RuleML:

shipment(SpeedShip<http://sphip.com>,PC,47.5,BostonMoS,LondonSciM).

The same options exist for slotted facts, as exemplified with the most general

option (3), enriched by webized BostonMoS and LondonSciM individuals:

shipment(shipper->SpeedShip<http://sphip.com>;

cargo->PC;

price->47.5;

source->BostonMoS<http://www.mos.org/info/contact.html>;

dest->LondonSciM<http://www.sciencemuseum.org.uk/

visitors/location.asp>).

Notice that the new positional first argument caused all former arguments

to shift by one, while the new slotted argument was added without affecting the

interpretations of the existing slotted or any positional arguments (thus better

supporting argument inheritance and distributed knowledge development).

Webized relations employ active IRIs in place of, or in addition to, sym-

bolic relation names. For example, the 4-ary and 5-ary positional shipment re-

lations can be uniquely distinguished via IRIs pointing to different signatures:

shipment<http://transport.org/rels/pos/shipment#4>

shipment<http://transport.org/rels/pos/shipment#5>

These webized relations can now be used unambiguously as follows (the

shipment symbol in front of the IRIs could be omitted):

shipment<http://transport.org/rels/pos/shipment#4>

(PDA,9.5,LondonSciM,BostonMoS).

shipment<http://transport.org/rels/pos/shipment#5>

(SpeedShip,PC,47.5,BostonMoS,LondonSciM).



Similarly, 4-ary, 5-ary, and polyadic slotted shipment relations could be dis-

tinguished via IRIs pointing to different signatures or, for the latter case, to

RDFS-like subPropertyOf information (polyadicity is represented by an “X”):

<http://transport.org/rels/slot/shipment#4>

<http://transport.org/rels/slot/shipment#5>

<http://transport.org/rels/slot/shipment#X>

Sample uses will be demonstrated in section 6.2.

Webized slots employ active IRIs in place of, as pioneered by RDF, or in

addition to, symbolic slot names. For example, the shipment slots may be drawn

from IRIs containing fragmentid’s with the original slot names, except for the

charge fragmentid, for which the local slot name price is kept:

shipment(<http://transport.org/slots/shipment#shipper>->SpeedShip;

<http://transport.org/slots/shipment#cargo>->PC;

price<http://ebizguide.org/slots#charge>->47.5;

<http://trajectory.org/slots/movement#source>->BostonMoS;

<http://trajectory.org/slots/movement#dest>->LondonSciM).

Webized types use an IRI reference to an RDFS or OWL class. For example,

the Product type can be associated with an IRI for the corresponding OWL class:

Product<http://www.daml.org/services/owl-s/1.0/

ProfileHierarchy.owl#Product>

Using this for typing the anonymous variable of our positional rule in section

3, a primitive from XML Schema Datatypes for its cost-like variables, and a

webized Address type, we obtain the following Web-typed rule:

reciship(?cost:Float<http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/#float>,

?A:<http://ebizguide.org/types#Address>,

?B:<http://ebizguide.org/types#Address>) :-



shipment(?:Product<http://www.daml.org/services/owl-s/1.0/

ProfileHierarchy.owl#Product>,

?cost1:Float<http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/#float>,

?A,?B),

... .

A semantics of webizing, for IRI grounding (or anchoring), has been based

on a notion of IRI equality via string rewriting for normalization [Bol03].

6 Anchored Atoms for OO Knowledge Representation

Webizing is also possible for entire atoms, as a way of associating them with

Object IDentifiers (OIDs). Generally, fact atoms can be anchored by an OID

(a symbolic name or an active IRI, possibly prefixed by a symbolic name) as a

special ‘zeroth’ argument separated from further arguments by an up-arrow/hat

infix “^”: relation(oidˆarg1...argN ). Anchoring uniformly extends relations to

objects.

For example, the earlier 4-ary positional and slotted facts (see “%” comments)

can now be anchored using variously webized versions of names like s1 and s2:

shipment(s1^PC,47.5,BostonMoS,LondonSciM). % positional

shipment(<http://sphip.com/event#s2>^PDA,9.5,LondonSciM,BostonMoS).

shipment(s1^cargo->PC;price->47.5; % slotted

source->BostonMoS;dest->LondonSciM). % (*)

shipment(s2<http://sphip.com/event#s2>^...).

In the same way, rule head and body atoms can be webized, e.g. for deriving

and querying specifically identified facts.

For example, the positional and slotted rules from section 3 can now be an-

chored using versions of the name r1 for the aggregated shipping cost derivation

from the queried reciprocal s1 and s2 facts:



reciship(<http://sphip.com/rule#r1>^?cost,?A,?B) :- % positional

shipment(s1^?,?cost1,?A,?B),

shipment(s2^?,?cost2,?B,?A),

add(?cost,?cost1,?cost2).

reciship(r1^price->?cost;site1->?A;site2->?B) :- % slotted

shipment(s1<http://sphip.com/event#s1>^ % (**)

cargo->?;price->?cost1;source->?A;dest->?B),

shipment(s2^cargo->?;price->?cost2;source->?B;dest->?A),

add(sum->?cost;addend1->?cost1;addend2->?cost2).

6.1 F-logic Objects, Nestings, And Restricted ∧-Composition

Anchored, slotted facts correspond to object descriptions in F-logic, where POSL

relations correspond to F-logic classes. For example, the above slotted s1 fact

(*) corresponds to this F-logic object:

s1[cargo->PC,price->47.5,

source->BostonMoS,dest->LondonSciM]:shipment.

Notice that POSL puts the relation name, shipment, in front of parentheses,

as in conventional relational notation, extended with the Object IDentifier, s1,

in a special argument position, while F-logic object descriptions put the OID in

front of brackets, “:”-separated from the class name (F-logic signatures again

put the class in front of the brackets).

F-logic’s nesting shorthand for object descriptions is reflected by n-ary

anchored POSL facts through the following left-to-right-normalizing equations:

r(oidr^...; s->q(oidq^ . . . ); ...). = r(oidr^...; s->oidq; ...). q(oidq^ . . . ). (3)

For example, the PC of our s1 fact (*) can be defined as an embedded object

with an OID s3 carrying its own value and weight slots:



shipment(s1^cargo->PC(s3^value->2500.0;weight->17.5);price->47.5;

source->BostonMoS;dest->LondonSciM).

According to transformation (3), this shorthand normalizes to two anchored,

slotted facts:

shipment(s1^cargo->s3;price->47.5;

source->BostonMoS;dest->LondonSciM).

PC(s3^value->2500.0;weight->17.5).

While the nested version defines the s3 object within the s1 object, the

unnested version clarifies that the OID s3 is on the same definition level as s1.

Since this allows (possibly undesired) external access to such an OID, section

6.2 will show how it can be localized as an anonymous/blank node.

F-logic’s ∧-composition shorthand in POSL is restricted to (non-empty)

independent groups of object slots only, i.e. an anchored rule is decomposable if

it can be partitioned (without loss of generality, after possible reordering of its

slots and body premises) into subrules that do not share variables in the head,

the body, or cross-wise:

r(oid^s1->f1; ...; si->fi; si+1->fi+1; ...; sN->fN ) :- b1, ..., bj , bj+1, ..., bP . = (4)

r(oid^s1->f1; ...; si->fi) :- b1, ..., bj.

r(oid^si+1->fi+1; ...; sN->fN ) :- bj+1, ..., bP .

if 1 ≤ i ≤ N − 1 ∧ 0 ≤ j ≤ P

∧ vars({f1, ..., fi}) ∩ vars({fi+1, ..., fN}) = {}

∧ vars({b1, ..., bj}) ∩ vars({bj+1, ..., bP }) = {}

∧ vars({f1, ..., fi}) ∩ vars({bj+1, ..., bP }) = {}

∧ vars({fi+1, ..., fN}) ∩ vars({b1, ..., bj}) = {}

This restriction is similar to the one used for independent ∧-parallelism

[HR95], which for the Web’s distributed object definitions captures those parts



of objects that can be defined independently from other parts. POSL’s inde-

pendent ∧-decomposition permits maximum distribution of rule-defined objects

and seems to resolve an issue with F-logic’s frame notation mentioned in SWSL

discussions [Kif05].

For example, the slotted s1 fact (*) is ground, hence is fully decomposable

into four facts using three applications of (4), exactly reflecting F-logic’s short-

hand (the decomposed facts can be ∧-connected within a rulebase or, if s1 is

globally unique, across distributed rulebases):

shipment(s1^cargo->PC).

shipment(s1^price->47.5).

shipment(s1^source->BostonMoS).

shipment(s1^dest->LondonSciM).

On the other hand, this s4 fact is non-ground and two slots share a variable:

sightseeingflight(s4^passenger->?x;price->100;source->?z;dest->?z).

Hence, s4 is decomposable only in a restricted manner. Maximally two ap-

plications of (4) produce three facts:

sightseeingflight(s4^passenger->?x).

sightseeingflight(s4^price->100).

sightseeingflight(s4^source->?z;dest->?z).

The following refinement into an s5 rule makes the other two slots dependent,

with co-occurring variables in a relation call:

sightseeingflight(s5^passenger->?x;price->?y;source->?z;dest->?z)

:-

ticket(?pronumber^passenger->?x;price->?y).

Therefore, s5 is maximally decomposable into just two clauses with a single

application of (4), where the only body premise is kept for the first clause, while

the (implicitly true) empty body is given to the second clause:



sightseeingflight(s5^passenger->?x;price->?y) :-

ticket(?pronumber^passenger->?x;price->?y).

sightseeingflight(s5^source->?z;dest->?z).

Finally, the above slotted reciship rule (**) is not decomposable by (4) at

all, since there is no variable-disjoint partition of its body calls and every head

variable also occurs in the body.

6.2 RDF Descriptions, Blank Nodes, And Rules

RDF descriptions can now be conceived as anchored slotted facts, in the

absence of rdf:type using the null relation.

If we assume that our 5-ary slotted fact in section 5, by virtue of the shipper

slot and other ones, can only be a shipping relationship, we might omit an

rdf:type for shipments, obtaining the following RDF:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:s="http://transport.org/slots/shipment#"

xmlns:p="http://ebizguide.org/slots#"

xmlns:m="http://trajectory.org/slots/movement#">

<rdf:Description about="http://sphip.com/event#s1">

<s:shipper rdf:resource="http://sphip.com"/>

<s:cargo>PC</s:cargo>

<p:charge>47.5</p:charge>

<m:source rdf:resource="http://www.mos.org/info/contact.html"/>

<m:dest rdf:resource="http://www.sciencemuseum...location.asp"/>

</rdf:Description>

</rdf:RDF>

This can be represented as a corresponding POSL fact without a rela-

tion name, using webizing also for slot names and individuals (but not us-

ing its analog to namespace prefixes, explained in the online POSL document

[http://www.ruleml.org/submission/ruleml-shortation.html]):



(<http://sphip.com/event#s1>^

<http://transport.org/slots/shipment#shipper>->

<http://sphip.com>;

<http://transport.org/slots/shipment#cargo>->PC;

<http://ebizguide.org/slots#charge>->47.5;

<http://trajectory.org/slots/movement#source>->

<http://www.mos.org/info/contact.html>;

<http://trajectory.org/slots/movement#dest>->

<http://www.sciencemuseum...location.asp>).

Symbolic and webized individuals are represented in the same manner here, so

that a symbolic name like PC can later be replaced by a blank node or an IRI for

its product catalog entry, without changing anything about the enclosing slot.

To increase type-safeness, the webized polyadic relation name from section

5, <http://transport.org/rels/slot/shipment#X>, can now be introduced

into the above RDF description as an rdf:type:

<rdf:RDF

...

<rdf:Description about="http://sphip.com/event#s1">

<rdf:type

rdf:resource="http://transport.org/rels/slot/shipment#X"/>

...

</rdf:Description>

</rdf:RDF>

Such a resource type is considered here as a relationship type directly appli-

cable, as a relation name, to the arguments of the corresponding POSL fact:

<http://transport.org/rels/slot/shipment#X>

(<http://sphip.com/event#s1>^

...).



The arity of this POSL fact could be fixed using the webized 5-ary relation name

<http://transport.org/rels/slot/shipment#5> from section 5 instead, thus

‘closing’ this slotted KR.

RDF blank nodes are used for OIDs local to the current document. For

example, the earlier shipping description can be refined by referring to a local

cargo description using the blank node identifier PeterMillerPC as follows:

<rdf:RDF

...

<rdf:Description about="http://sphip.com/event#s1">

...

<s:cargo rdf:nodeID="PeterMillerPC"/>

...

</rdf:Description>

<rdf:Description rdf:nodeID="PeterMillerPC">

<p:value>2500.0</p:value>

<p:weight>17.5</p:weight>

</rdf:Description>

</rdf:RDF>

Based on the RDF semantics of [Hay04] and its development in [YK03], this

can be represented as the below module of two facts connected by an existential

variable, in POSL replaced by a Skolem constant PeterMillerPC. Modules, like

N3’s contexts, TRIPLE’s models, and F-logic’s scoped formulas, are enclosed

using “{. . . }”, and Skolem constants, whose scope is global to clauses but local

to modules, are prefixed by an “ ” and usable, e.g., as slot fillers and OIDs:

{

(<http://sphip.com/event#s1>^

...

<http://transport.org/slots/shipment#cargo>->_PeterMillerPC;



...).

(_PeterMillerPC^

<http://ebizguide.org/slots#value>->2500.0;

<http://ebizguide.org/slots#weight>->17.5).

}

A module can have a constructor, which may be parameterized, TRIPLE-

like [SD02]. Across different modules, our Skolem constants, even when equally

named, denote different objects. Within any module, our Skolem constants obey

a unique name assumption: differently named constants denote different objects.

Such module-scoped, unique Skolem constants can also be generated by the

New Skolem constant primitive (written as a stand-alone “ ”), where all oc-

currences “ ”, “ ”, . . . are semantically replaced by fresh constants 1, 2, . . . ,

skipping any (finite) subsequences of positive integers that are already used as

OIDs in the local module. With the above assumption, all occurrences denote

different objects. The model theory for such (New) Skolem constants in rules has

been developed on top of an anonymous-domain-augmented Herbrand universe

by [YK03].

For anchored unification (where all Skolem constant occurrences skocon may

result from dereferencing “?”-variables), any:

skocon succeeds with itself; skocon succeeds with a free variable ?logvar (or a

stand-alone “?”), binding ?logvar to skocon; “ ” succeeds with a free variable

?logvar (or a stand-alone “?”), binding ?logvar to the skocon generated by “ ”

(rather than to “ ” itself).

While the above constructs were introduced for slotted representations with

RDF blank nodes, they can be similarly used for positional representations.

RDF-like rules can then be directly defined in POSL to process such facts.

For example, the earlier slotted rule can be modified to query untyped facts,

inferring, as new “ ”-anchored atoms, the OIDs and aggregated cost of any re-

ciprocal shippings (webized slot names are abridged here using symbolic names):



reciship(_^forthtrip->?oid1;backtrip->?oid2;

price->?cost;site1->?A;site2->?B) :-

(?oid1^shipper->?;cargo->?;price->?cost1;source->?A;dest->?B),

(?oid2^shipper->?;cargo->?;price->?cost2;source->?B;dest->?A),

add(sum->?cost;addend1->?cost1;addend2->?cost2).

Notice that the ?oid1/?oid2 variables occur in two roles: to the left of “^”, as

proper OIDs, and to the right of “^”, as ordinary data values.

In bottom-up derivations, the “ ” generates the next fresh Skolem con-

stant, obtaining facts such as reciship( 4711^...). In top-down queries like

reciship(?obj^...), the OID-request variable ?obj is successfully bound to

such a fresh Skolem constant. The bottom-up direction is preferable for a (non-

Horn) extension with conjunctive heads (RDF graphs) sharing Skolem constants.

Such rules can be employed within a semantic search engine operating

on RDF/POSL-described metadata for obtaining high-precision results: in the

above example, priced pairs of Web objects about A-to-B and B-to-A shippings.

7 Conclusions

This chapter introduces a core of positional and slotted notions plus notations

for KR on the Semantic Web and e-Business knowledge interchange.

A notion not treated in this chapter is negation in POSL, for which negation-

as-failure (Naf or “∼”), strong-negation (Neg or “¬”) and a combination (Naf of

Neg or “∼ ¬”) are allowed as in RuleML. These distinctions can again be added

to the other POSL distinctions as an orthogonal dimension, and their (stable

model) semantics adapted from ERDF [AADW05].

Only relations and their defining Horn clauses have been presented here.

However, functions defined by (conditional) equations can be added as in Relfun

and Functional RuleML [http://www.ruleml.org/fun].

Current work concerns a general POSL treatment of slot cardinalities. While

the F-logic system FLORA-2 distinguishes single-valued from set-valued at-

tributes, the description logic system OWL DL provides exact, min, and max



cardinality restrictions. The POSL design as presented in this chapter employs

single-valued slots. However, our plex data with only basinal elements constitute

bags (finite multisets), which can represent fillers of multiple-valued slots.

A topic of future research is the issue of extending OIDs towards a

general notion of object identity. Actually, there can be several (M) ob-

jects to the left of the POSL “^” infix, targeted by an (N -ary) oper-

ation: operation(oid1...oidMˆarg1...argN ). This can provide a bridge from

the declarative OO KR rules studied here to OOP-like reaction rules

and Web Services. For example, with M=2 and N=1, the message

transfer(checking1,savings2^3500) addresses equally focussed account ob-

jects checking1 and savings2 in a positional manner, using the single argu-

ment 3500 for the amount to be transferred in the ‘from-to’ direction. Be-

sides such “,”-ordered receiver objects, also “;”-unordered ones can be used

for parallel message broadcasting. For example, with M=2 and N=2, the

message equalize(checking1;checking2^min->1000;max->2000) addresses

equally focussed objects checking1 and checking2 in an unordered manner, us-

ing slotted arguments for the minimal amount, 1000, and the maximal amount,

2000, to be left in both accounts after a balancing transfer in either direction,

if their amounts were unequal. In practice, such symbolic account names would

be replaced by password-protected IRIs.

POSL has been successfully explored with the e-Business ap-

plications mentioned in section 1. Meanwhile, the RIF Working

Group has collected use cases and a large number of test cases

[http://www.w3.org/2005/rules/wiki/Category:Test Case]. Since the RIF Pre-

sentation Syntax explored there does not seem to be optimal, a version of POSL

is currently being considered as an alternate human-oriented RIF syntax.
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A EBNF Grammar for POSL

rulebase ::= (clause | signature)* .

clause ::= atom (IMP atoms)? PERIOD .



signature ::= atom ASTERISK .

atoms ::= atom (COMMA atom)* .

atom ::= rel LPAREN oid? cont RPAREN .

oid ::= term HAT .

cont ::= SEMI? term? | SEMI COMMA | ps .

ps ::= (pos prest? | prest) (SEMI set)? srest?

| set srest pstrail?

| (set pstrail?)? srest? .

pstrail ::= (SEMI pos prest? | prest) (SEMI set)? .

prest ::= PIPE (var | posplex) .

srest ::= BANG (var | setplex) .

posplex ::= LBRACK pos? prest? RBRACK .

setplex ::= LBRACK (SEMI term? | term SEMI set)? srest? RBRACK .

pos ::= COMMA term? | term (COMMA term)+ .

set ::= term (SEMI term)* .

term ::= slot | unkeyed .

slot ::= role ARROW unkeyed .

unkeyed ::= ind

| var

| skolem

| structure

| plex .

structure ::= ctor LBRACK cont RBRACK (COLON type)? .

plex ::= LBRACK cont RBRACK .



ind ::= (symbol iri? | iri) (COLON type)? .

var ::= QMARK symbol? (COLON type)? .

skolem ::= USCORE symbol? (COLON type)? .

ctor ::= rel ::= role ::= type ::= symbol .


