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Uniaxial Shear-Flexure Model for Reinforced
Concrete Elements

H. Mostafaei1 and F. J. Vecchio2

Abstract: A simple approach was developed for performance-based analysis of reinforced concrete columns subjected to shear, flexure

and axial loads. This method is based on a simplification of a consistent but relatively more complex approach known as the axial-shear-

flexure interaction �ASFI� method, which is able to predict the full load-deformation relationships of reinforced concrete columns

subjected to axial, flexure and shear force. The uniaxial shear-flexure model �USFM�, presented herein, can also predict comparable full

load-deformation responses. In it, however, the computation-intensive iteration process for shear modeling used within the ASFI approach

is eliminated and the formulation is simplified. This paper describes the formulation, implementation and verification of the USFM

approach.

DOI: 10.1061/�ASCE�0733-9445�2008�134:9�1538�

CE Database subject headings: Beams; Columns; Nonlinear analysis; Flexural strength; Axial forces; Deformation; Performance

characteristics; Reinforced concrete.

Introduction

Among the most common analytical methods for displacement-

based analysis of reinforced concrete columns and beams are the

section analysis method and the uniaxial fiber model, both devel-

oped based on the same concept. In both approaches, a reinforced

concrete column or beam is discretized and analyzed by employ-

ing uniaxial elements and ignoring the shear response. However,

the performance of reinforced concrete elements dominated in

shear or shear-flexure cannot be estimated by either fiber model-

ing or section analysis, since the shear behavior is not taken into

account in either of these approaches. Recently, an attempt was

made to include the effects of shear deformations in sectional

analyses through the axial-shear-flexure interaction �ASFI�

method by �Mostafaei and Kabeyasawa 2005, 2007�.

The ASFI method was developed to improve not only the re-

sponse simulation of reinforced concrete elements with dominant

shear behavior, but also to modify the flexural response of the

fiber model approach. This was done by satisfying the compat-

ibility and equilibrium conditions for both the flexure and shear

mechanisms employed in the ASFI method. In the approach, the

flexure mechanism was modeled by applying traditional section

analysis techniques, and shear behavior was modeled based on

the modified compression field theory �MCFT�, developed by

Vecchio and Collins �1986�. The approach was implemented and

verified for a number of reinforced concrete columns tested with

different axial loads, transverse reinforcement ratios, longitudinal
reinforcement ratios, and scales ranging from one-third to full-
scale specimens. However, the application of the MCFT, as a
shear model within the ASFI method, requires a relatively inten-
sive computation and iteration process, which might not be ame-
nable to engineers for routine practice.

In this study, an attempt is made to simplify the shear behavior
modeling of the axial-shear-flexure interaction approach into a
uniaxial analytical concept. In the uniaxial-shear-flexure model
�USFM� approach, the axial strain and principal tensile strain of a
reinforced concrete column or beam, between two adjoining flex-
ural sections, are determined based on the average axial strains
and average resultant concrete compression strains of the two
sections. This simplifies the approach significantly by eliminating
the iteration process for the shear model of the ASFI method.

Verification of the model’s accuracy is also provided by exam-
ining data from several series of reinforced concrete columns test
specimens, demonstrating results comparable with the original
ASFI method. An Excel program file for the USFM can be ac-
quired via a contact with the first author.

Background to ASFI Method

The ASFI method is comprised of two models: a flexure model
based on traditional uniaxial section analysis, and a shear model
based on a biaxial shear element approach. The total lateral drift
of the column between two sections � is taken as the sum of shear
strain ��s� and the flexural drift ratio �� f� between the two sec-
tions. Furthermore, the total axial strain of the column between
the two sections �x is taken as the sum of axial strains due to axial
��xa�, shear ��xs�, and flexural ��xf� mechanisms

� = �s + � f �1a�

�x = �xs + �xf + �xa �1b�

The centroidal strain �xc is derived from a section analysis, or
an axial-flexure model, and is defined as the sum of the strains
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due to axial and flexural mechanisms �xc=�xaf +�xf.
On the other hand, from the shear model or from an axial-shear
element, the sum of the strains due to axial and shear mechanisms
is determined, �s=�xas+�xs. As a result, to obtain �x in Eq. �1b�,
�xf must be extracted from �xc �Fig. 1� and added to �s, assuming
�xa=�xaf =�xas.

Equilibrium of the shear and axial stresses from the axial-
flexure element � f and �xf and from the axial-shear model �s and
�xs, respectively, must be satisfied simultaneously through the
analysis. That is

�xf = �xs = �o � f = �s = � �2�

where �xf =axial stress in axial-flexure mechanism; �xs=axial
stress in axial-shear mechanism; �o=applied axial stress;
� f =shear stress in axial-flexure mechanism; �s=shear stress in
axial-shear mechanism; and �=applied shear stress. Stresses in
axes perpendicular to the axial axis of the column, the clamping
stresses �y and �z, are ignored due to equilibrium between con-
finement pressure and hoops stresses

�y = �z = 0 �3�

Fig. 2 illustrates the two models for axial shear and axial flex-
ure, and their interactions, by means of springs in series. Fig. 3
illustrates the ASFI method, for a reinforced concrete column
with two end sections, including the equilibrium and compatibil-
ity conditions. The total axial deformations considered in the
ASFI method are axial strains developed by axial, shear, and flex-

ure, and by pullout mechanisms. The total drift ratio is a combi-
nation of shear, flexure, and pullout deformations as shown in
Fig. 4. In the ASFI method, the pullout components of rotation
and slip are determined based on the model developed by Oka-
mura and Maekawa �1991�.

Conceptual Model

Consider a beam subjected to a bending moment, with the strain
and stress relationships at a flexural section as shown in Fig. 5.
The main treatment on the section analysis implemented in the
USFM is to employ a compression softening factor, �, obtained
based on the MCFT for an element between two adjacent sec-
tions, one of which would be the section represented in Fig. 5.
The compression softening factor is applied to the concrete com-
pression stress to represent degradation in the concrete strength
due to shear deformation. In addition to the compression soften-
ing factor, the shear stress at crack locations is determined and
checked. If the equilibrium at a shear crack gives shear stress less
than the shear stress obtained from section analysis, the lower
shear stress at crack is considered as the shear stress acting on the
element.

Fig. 1. Average centroidal strain due to flexure

Fig. 2. Springs model of ASFI method

Fig. 3. Axial-shear-flexure interactions in ASFI method

Fig. 4. Axial and shear deformations of a column considered by

ASFI method
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To obtain the compression softening factor, at least two flex-
ural sections must be defined along the element. For the beam
example in Fig. 5, given the symmetric conditions, Sections A and
B can be taken as the two flexure sections required. Since the
moment is zero at Section B, typically, Section A is the main
flexure section used for the analysis. The compression softening
factor is determined based on the average concrete tensile strain
�1 of the element between Sections A and B, calculated according
to Eq. �4�

� =
1

0.8 − 0.34
�1

�c�

� 1.0 �4�

where �c��concrete strain at the cylinder peak uniaxial compres-
sive stress. The average concrete tensile strain �1 is determined
according to two basic assumptions and the fundamental equation
of the MCFT, as described in the following sections.

Basic Assumptions

Consider a reinforced concrete column, fixed against rotation and
translation at the bottom and free at the top, subjected to in-plane
lateral load and axial load as shown in Fig. 6. Given its pattern
along the column �see Fig. 6�a��, the concrete principal compres-
sion strain for an element between two sections �2 might be de-
termined based on the average value of concrete uniaxial
compression strains corresponding to the resultant forces of the
concrete stress blocks. That is

�2 = 0.5��2i
+ �2i+1

� �5�

Eq. �5� represents the first main hypothesis of the USFM method.
This assumption simplifies the shear model significantly from a
biaxial to a uniaxial mechanism. For the column in Fig. 6, the
compression strain obtained from the above equation is set equal
to the average principal compression strain of the element be-
tween the two sections of i and i+1.

This assumption is applicable as long as the concrete compres-
sion stress within the stress block, due to moment and axial load,
is larger than the shear stress applied to the section. Accordingly,
the principal stress for a small element within the domain can be
calculated as

f2 = 0.5�fx + fy� + �0.25�fx − fy�
2 + �2 �6�

For any point next to the concrete stress block, considering fy

sufficiently small to be negligible and setting fx= fc, where
fc�concrete compression stress from the stress block, Eq. �6� can
be simplified to

f2 = 0.5fc + �0.25fc
2 + �2 �7�

where �=V /bh. For the element in Fig. 6 but with P=0, by ig-
noring compression bar stresses, M =VLin= fcabd

v
, hence

fc =
VLin

abd
v

�8�

where a�equivalent width of the stress block and d
v
�lever arm.

As an example, for a short beam with shear span-to-depth ratio of
1, Lin=h, with an approximate value of 0.7h for d

v
and 0.3h for a,

hypothetically

fc = 4.8
V

bh
= 4.8� ⇒ � = 0.21fc

As the result: f2=0.5fc+�0.25fc
2+ �0.21fc�

2=1.04fc.
Hence, for a short beam with conventional loading conditions,

the effect of shear stress on the principal compression stress is
minor. In general, L is typically much greater than h and the
difference between shear stress ��� and stress block compressive
stress �fc� decreases to a negligible value. This difference is
smaller in the case of columns under compression, since the axial
load increases the axial normal stress. On the other hand, if an
element is subjected to pure shear stress, such as with shear pan-
els, or to relatively small normal stress, such as shear walls, L

may be less than h and this assumption needs to be reconsidered.
A second main assumption of the USFM is the definition of

the average axial strain at the centroid, obtained by averaging the
values of the axial strains at the two sections

�x = 0.5��xii
+ �xi+1

� �9�

Fig. 5. Stress-strain relationships at a flexural section

Fig. 6. Reinforced concrete column subjected to shear and axial

loads; �a� concrete principal compression stress pattern; �b� cross sec-

tion; and �c� stress blocks and strains at two subsequent sections
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The normal strain due to shear stress in the axial direction
could be determined using the MCFT and added to the above
equation. However, it will be shown later that this would not have
a significant effect, in many cases, on responses obtained by the
USFM.

These two assumptions, namely, Eqs. �5� and �9�, enable a
simplification of the MCFT. Now, the concrete principal tensile
strain can be determined as described in the following section.

Concrete Principal Tensile Strain

To determine the compression softening factor � using Eq. �4�,
the main challenge is to obtain the concrete principal tensile strain
�1. This requires application of the modified compression field
theory for the element between the two adjacent flexural sections
in Fig. 6�c�. From the MCFT, equilibrium conditions require that

fcx = fc1 − � cot � �10�

fcy = fc1 − � tan � �11�

where fcx and fcy =stresses in concrete in the x �axial� and y

�transverse� directions, respectively; fc1=concrete principal ten-
sile stress; �=concrete shear stress; and �=crack angle. Using the
equilibrium equations �Eqs. �10� and �11�� the following relation-
ship can be derived:

tan2 � =
fc1 − fcy

fc1 − fcx

�12�

On the other hand, the compatibility condition of the MCFT re-
quires that

tan2 � =
�x − �2

�y − �2

�13�

where �x=axial strain; �y =strain of transverse reinforcement; and
�2=concrete principal compression strain. Extracting � from Eqs.
�12� and �13� gives the following equation independent from the
crack angle �:

fc1 − fcy

fc1 − fcx

=
�x − �2

�y − �2

�14�

This is the main equation employed by the USFM to deter-
mine �y, which is then used to calculate �1 as follows:

�1 = �x + �y − �2 �15�

Eq. �14� is solved for �y considering two cases: first, for the
case where the strain in the transverse reinforcement is less than
the yield strain and, second, for the case where the transverse bars
have yielded.

Case I

When strain in the transverse reinforcement �y is less than the
yield strain, �y ��yy. From the equilibrium condition of the
MCFT

fy = fcy + 	sy f sy �16�

where fy =total normal or clamping stress in y direction, taken to
be zero; fcy =concrete stress in the y direction; 	sy =transverse
reinforcement ratio; and fsy =stress in transverse reinforcement.
Therefore, by considering a linear stress-strain relationship for
transverse reinforcements f sy =Es�y, Eq. �16� is simplified as

fcy = − 	syEs�y �17�

where �y =strain in the transverse reinforcement; and
Es=modulus of elasticity of the transverse reinforcement.

Substituting Eq. �17� into Eq. �14� and solving for �y gives

�y = �b2 + c − b �18�

where

b =
fc1

2	syEs

−
�2

2

c =
��x − �2��fc1 − fcx� + fc1�2

	syEs

and

fcx = fx − 	sxf sx

where fx=applied axial load; fsx=stress in the x direction rein-
forcement �i.e., the longitudinal bar stress� obtained from the
section analysis based on the average centroidal strain; �x and
�2=normal and concrete principal compression strains determined
from the two main assumptions of the USFM �i.e., Eqs. �5� and
�9��; and f1=concrete principal tensile stress.

In the USFM, the shear mechanism has no effect on the
sectional analysis up to when ��1 or, from Eq. �4� with

�c�=−0.002, �1
0.0012. Hence, the concrete tensile stress might
be limited as

fc1 =
f t�

1 + �500�1

� 0.56f t� for � � 1 �19�

Applying a minimum concrete compression strength of 0.2fc�,

the lower bounds for � and fc1 are 0.2 and 0.31f t�, respectively;
hence

0.56f t� 
 fc1 
 0.31f t� �20�

If an iteration process is implemented for the section analysis,

typically, an initial value of 0.56f t� might be employed for fc1. For
each iteration, then fc1, can be recalculated based on the �1 ob-
tained in the previous iteration. However, using an average value

of fc1=0.44f t� would give a reasonably accurate average compres-
sion softening factor � for the specimens, avoiding any iteration
for solving Eq. �18�.

Another consideration would be the normal strain in the x

direction due to shear stress, which is included in the calculation
of �x in Eq. �9�. Comparing Eqs. �9� and �1� reveals that Eq. �9�

contains only the normal strains due to the flexure and axial
mechanisms and not that of the shear mechanism �xs. The shear
component of the axial strain �xs can be determined based on the
MCFT and added to the �x in Eq. �9�

�xs =
� cot � − fc1

Es	sx


 0 �21�

where Es	sx� fsxy, and where f sxy�yield stress of the longitudinal
bars.

Hence

�x = 0.5��xii
+ �xi+1i

� + �xs �22�

The shear component of the normal strain in the x direction,
for conventional beams and columns where the flexural deforma-
tions are larger than the shear deformations, can generally be
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ignored. For a few special cases, such as short columns with low
transverse ratios, the shear strain component should be considered
in the analysis.

Case II

When strain in the transverse reinforcement is greater than yield
strain, �y 
�yy. In this case, fsy = fsyy, where f syy�yield stress of
the transverse reinforcement.

Hence

�1 =
��x − �2��fc1 − fcx�

�fc1 + 	sy f syy�
+ �x �23�

where fc1 is determined based on the same approach as described
in Case I.

Shear Stress Limitation at Cracks

The MCFT limits the maximum shear stress transferred by aggre-
gate interlock across a crack surface using the following formu-
lation based on the Walraven equation:

�i �
0.18�fc�

0.31 +
24w

ag + 16

�MPa,mm� �24�

where w=s��1 and

s� =
1

sin �

sx

+
cos �

sy

and where sx and sy�average crack spacings in the x and y direc-
tions, respectively.

Equilibrium in the y direction, at the crack, requires that

fsycr = �fy + � tan � − �i tan ��/	sy �25�

where f sycr=transverse reinforcement stress at the crack; and
fy =clamping stress; which is zero. Hence for fsycr= fsyy

�max � �i + fsyy	sy cot � �26�

In the USFM, the shear stress on the section must not exceed the
value obtained from Eq. �26�. For the column in Fig. 6, it is

Table 1. Material Property of the Specimens

Specimen Type

b

mm

�in.�

h

mm

�in.�

2Lin

mm

�in.�

Sh

mm

�in.�

	g

%

	w

%

fyx

MPa

�ksi�

fyy

MPa

�ksi�

f�c

MPa

�ksi�

P

kN

�kips�

No. 12 DC 300

�11.8�

300

�11.8�

900

�35.4�

150

�5.9�

2.26 0.14 415

�60�

410

�59�

28

�4.1�

540

�121.3�

No. 14 DC 300

�11.8�

300

�11.8�

900

�35.4�

50

�2.0�

2.26 0.43 415

�60�

410

�59�

26

�3.8�

540

�121.3�

No. 15 DC 300

�11.8�

300

�11.8�

900

�35.4�

50

�2.0�

2.26 0.85 415

�60�

410

�59�

26

�3.8�

540

�121.3�

No. 16 DC 300

�11.8�

300

�11.8�

600

�23.6�

50

�2.0�

1.8 0.43 415

�60�

410

�59�

27

�3.9�

540

�121.3�

RCF-L DC 250

�9.8�

250

�9.8�

1,400

�55.1�

100

�3.9�

1.82 0.1 390

�57�

325

�47�

20

�2.9�

Varying

125←300

�28�← �67�

RCF-R DC 250

�9.8�

250

�9.8�

1,400

�55.1�

100

�3.9�

1.82 0.1 390

�57�

325

�47�

20

�2.9�

Varying

300→475

�67�← �107�

A1 DC 150

�5.9�

420

�16.5�

1,260

�49.6�

200

�7.9�

0.9 0.13 350

�51�

290

�42�

18.3

�2.7�

328

�74�

B1 DC 300

�11.8�

300

�11.8�

900

�35.4�

160

�6.3�

1.69 0.08 336

�49�

290

�42�

18.3

�2.7�

477

�107�

U6 SC 350

�13.8�

350

�13.8�

2,000

�78.7�

65

�2.6�

3.2 0.85 437

�63�

425

�62�

37.3

�5.4�

600

�135�

2CLH18 DC 457

�18�

457

�18�

2,946

�116�

457

�18�

2 0.1 330

�48�

400

�58�

33

�4.8�

500

�112�

3CLH18 DC 457

�18�

457

�18�

2,946

�116�

457

�18�

3 0.1 330

�48�

400

�58�

25.6

�3.7�

500

�112�

No. 2 DC 457

�18�

457

�18�

2,946

�116�

305

�12�

2.5 0.17 434

�63�

476

�69�

21.1

�3.1�

2,650

�596�

N18M DC 300

�11.8�

300

�11.8�

900

�35.4�

100

�3.9�

2.7 0.19 380

�55�

375

�54�

26.5

�3.8�

429

�96�

TP-30 SC 400

�15.7�

400

�15.7�

2,700

�106�

50

�2�

1.49 0.28 374

�54�

363

�53�

31.1

�4.5�

160

�36�

No. 1 DC 200

�7.9�

400

�15.7�

1,000

�39�

128

�5�

2.53 1 360

�52�

345

�50�

45

�6.5�

0

Note: DC=double curvature, or with two fixed ends; SC=single curvature, or cantilever; b=width of the section; h=depth of the section; Lin=length of

the column from the inflection point to the end section; Sh=hoop spacing; 	g=longitudinal reinforcement ratio; 	w=transverse reinforcement ratio;

fyx=longitudinal reinforcement yield stress; fyy=transverse reinforcement yield stress; fc�=concrete compression strength; and P=axial load.
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M

bhLin

� �i + fsyy	sy cot � �27�

where M�bottom fixed end moment of the column obtained from
the section analysis.

Analysis Procedure

Although analytical process of the USFM is basically similar to
that of the ASFI method, it is much simpler due to the reduced
analytical treatment given to the shear element made by eliminat-

ing the complex matrix analysis algorithm required for the full

shear model.

Hence, the steps in an analysis performed according to the

USFM method, for a given curvature ��� and axial strain ��xi�,
are as follows:

1. Apply the section analysis procedure for two adjacent sec-

tions �at least one section at the section with maximum mo-

ment and one section at the inflection point, where moment is

zero, i.e., Sections A and B in Fig 5, and determine the av-

erage centroidal strain and concrete principal compression

strain between the two sections using Eqs. �5� and �9�,

respectively.

Fig. 7. Comparison of experimental and analytical results
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2. Determine the average concrete principal tensile strain �1

using Eqs. �18� and �15�, assuming an initial value of 0.56f t�

for fc1.
3. If the transverse reinforcement has yielded, apply Eq. �23� to

determine the average concrete principal tensile strain �1;
otherwise, go to step 4.

4. Calculate the compression softening factor using Eq. �4� and
determine the concrete compression stress of the stress block,
multiplied by the compression softening factor.

5. Obtain the moment and shear force, as well as the centroidal
strain at the sections, by section analysis.

6. Check for maximum shear stress on crack using Eq. �27�.

7. Obtain the total lateral drift ratio and the axial strain using
Eq. �1a� where �s= �2��x−�2�� / �tan �� and � f =� /Lin

=1 /Lin�0
Linx�dx where �=curvature at distance x, corre-

sponding to the inflection point, of the column. In the next
increment of the section analysis, for more accuracy, the
axial strain may be determined using Eq. �22�. In addition,
given the value of �1 determined, fc1 can be found from Eq.
�19�.

Lateral deformation due to pullout,�pul in Fig. 4, or slip of
steel bars under tension stress at the end section, adjacent to the
section with larger thickness, can be determined based on the
method described in the ASFI approach, and added in Eq. �1a�. In

Fig. 7. �Continued�.
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the analysis of specimens in Table 1, pullout deformation is in-
cluded in the load-deformation response of the specimens.

Model Verification

To verify the applicability and accuracy of the USFM approach
for reinforced concrete columns and beams, specimens with vari-
ous performance characteristics were selected and evaluated using
the developed method. The geometry and material properties for
all the specimens considered are listed in Table 1. Fig. 7 illus-
trates comparison between experimental and theoretical results
for all 14 specimens. For the sake of comparison, only the enve-
lope curves of the specimens under cyclic loads are shown.

Specimen Nos. 12, 14, 15, 16, RCF-L, and RCF-R were

loaded, laterally, under static cyclic unidirectional reverse load.

For the first four specimens, the axial loads were identical and

constant. Specimens RCF-L and RCF-R were two columns of a

one-bay frame with rigid top and bottom stubs, under varying

axial loads related to the applied lateral load. The column speci-

mens were scaled to 1 /3 of actual columns, representing columns

located in the midframe of the first floor of a building with mod-

erate height.

Comparing experimental results from the first four columns to

the test outcomes of the columns with different hysteretic loading

patterns indicated no significant effects on column response due

to the different lateral loading patterns �Ousalem et al. 2003�.

Therefore, for the analysis by the USFM method, which is based

Fig. 7. �Continued�.
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on a monotonic loading pattern, the effects of hysteretic loading

pattern were neglected for these specimens.

Column Nos. 12, 14, and 15 had almost identical characteris-

tics except for lateral reinforcement ratios. Column No. 12 had

the lowest lateral steel ratio and is expected to fail in shear. How-

ever, specimen No. 15 was designed to have a flexural response

given its high transverse reinforcement ratio. Column No. 14 is

expected to perform between that of the two previous columns

with a flexural-shear failure. Column specimen No. 16, being

shorter compared to the other three columns, is expected to fail in

shear-compression mode. Both ends of the columns were consid-

ered as moment resistant connections with zero rotation.

Considering the symmetric conditions of the specimens, the

two sections required for USFM analysis were chosen as one at

the inflection point and one at an end section. Displacement-based

analysis was implemented according to the new analytical ap-

proach described. As a result, the drift ratio-lateral load responses

for the columns were estimated and compared to the test data. As

shown in Fig. 7, consistent correlations were obtained. Further-

more, to assess the efficiency of the USFM compare to the tradi-

tional section analysis and the original ASFI method, analytical

results were obtained for specimen No. 12 also by the ASFI

method and a section analysis, as illustrated in Fig. 7�a�. The

results clearly indicate the benefit of using the USFM over the

traditional section analysis—only flexure—without sacrificing the

accuracy of the ASFI approach.

In the analysis using USFM, in order to consider buckling or
slip of the compression bars, the compression strengths of the
longitudinal bars were assumed to start to degrade when the stress
within the unconfined-cover concrete reached about 30% of the
maximum concrete strength. They were then linearly decreased
according to the slope of the postpeak confined-core concrete
compression stiffness.

Column specimens RCF-L and RCF-R were loaded in a one-
bay frame system �Mostafaei 2006�. Considering lateral loading
in the positive direction, as shown in Fig. 7�g�, column RCF-L
was subjected to a decreasing axial load and column RCF-R was
subjected to an increasing axial load. Therefore, different re-
sponses are expected for the two columns. Analytical and experi-
mental results for the individual columns and the frame are
compared and depicted in Fig. 7�g�, leading to reasonable agree-
ment. To apply the USFM method for further response evaluation
of shear critical columns, two column specimens A1 and B1 �Koi-
zumi 2000� were selected. Both specimens had very low trans-
verse reinforcement ratios with a considerably high axial load
ratio. Employing the analysis described, acceptable correlations
between analysis and test response were achieved for both col-
umns as shown in Figs. 7�e and f�.

Specimen U6 �Saatcioglu and Ozcebe 1989�, among all the
specimens, had the largest ultimate drift ratio of about 10%. To
assess the applicability of the simplified USFM method consider-
ing the size effect, three full-scale columns, No. 2CLH18, No.
3CLH18 �Lynn et al. 1996�, and No. 2 �Sezen 2000� were se-
lected, given their totally different performances. Specimen No.
2CLH18 had a flexure-dominant behavior while No. 3CLH18
performed as a shear-critical column. Specimen No. 2 had the
greatest applied axial load ratio of about 60%, compared to the
other specimens. Specimen N18M �Nakamura and Yoshimura
2002� is another shear-critical column with a very low transverse
reinforcement ratio, but with the same geometry as that of the first
three columns. Again, the correlation between calculated and ob-
served responses is strong, as seen in Figs. 7�h–l�.

A reinforced concrete column of a bridge, TP-30 �Nagaya and

Kawashima 2002�, was also analyzed; this column had a flexure-
dominant response. Finally, in order to verify the proposed model
for beams, a specimen with zero axial load, specimen No. 1
�Umemura et al. 1977� was modeled by the simplified USFM
method. The results for these two specimens are compared with
the test data in Figs. 7�m and n�. A high degree of accuracy in the
calculated load-deformation responses was achieved for these
specimens as well.

Conclusions

A new simple displacement-based evaluation method for rein-
forced concrete columns and beams is presented based on a modi-
fication of traditional sectional analysis procedures. The effects of
shear are taken into account by imposing a concrete strength deg-
radation within the stress block calculations. Both the axial strain
and principal compression strain arising from the shear mecha-
nism are derived and included with the strains of the section
analysis. A simple formulation was derived and is employed to
determine the concrete principal tensile strain as well as compres-
sion softening factor; the simplifications introduced allow the
analyses to be reduced to a uniaxial problem. The proposed
displacement-based evaluation approach was verified by perform-
ing analyses for a number of diverse test specimens, and compar-
ing calculated to observed responses. Consistently strong
correlations were attained between the analytical results and ex-
perimental outcomes.
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