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ABSTRACT 

The energy use of an office building is likely to correlate 

with the number of occupants, and thus knowing 

occupancy levels should improve energy use forecasts.  

To gather data related to total building occupancy, 

wireless sensors were installed in a three-storey building 

in eastern Ontario, Canada comprising laboratories and 81 

individual work spaces.  Contact closure sensors were 

placed on various doors, PIR motion sensors were placed 

in the main corridor on each floor, and a carbon-dioxide 

sensor was positioned in a circulation area.  In addition, 

we collected data on the number of people who had 

logged in to the network on each day, network activity, 

electrical energy use (total building, and chilling plant 

only), and outdoor temperature.  We developed an 

ARIMAX model to forecast the power demand of the 

building in which a measure of building occupancy was a 

significant independent variable and increased the model 

accuracy.  The results are promising, and suggest that 

further work on a larger and more typical office building 

would be beneficial.  If building operators have a tool that 

can accurately forecast the energy use of their building 

several hours ahead they can better respond to utility price 

signals, and play a fuller role in the coming Smart Grid. 
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J.2 [Physical Sciences and Engineering]: 

Engineering  

General Terms 
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1.  INTRODUCTION 

Energy costs are rising, and there is a growing trend 

towards charging higher prices for energy when overall 

system demand is highest, in order to better reflect the 

true cost of generation, and to discourage on-peak use that 

might threaten grid stability.  A building’s ability to 

reduce overall energy use and peak demand may be 

substantial, depending on the systems in place and data 

available to inform decisions, and tuning building power 

draw in response to utility signals and other inputs may be 

one element of the Smart Grid [1].  As part of this 

strategy a building operator may wish to explore and 

manipulate building energy use a few hours ahead; 

actions might involve load shedding, pre-cooling, 

charging of ice storage, activation of local generation, or a 

variety of other actions [2-6]. 

Building energy use data comprise a time series.  In 

recent decades a class of time series analysis models 

named ARIMAX (Auto Regressive Integrated Moving 

Average with eXternal (or eXogenous) input) has been 

developed for forecasting in other domains, particularly in 

economics [7].  The “integrated” part of the name 

indicates that it is often required that one runs the analysis 

on the change in the dependent variable of interest 

(known as “differencing”), to render the series 

stationary
1.  “Auto regressive” indicates that the 

forecasted value of the dependent variable may be 

predicted from prior, known, values of the dependent 

variable.  “Moving average” indicates that the forecasted 

value of the dependent variable may be predicted from 

prior values of the error term.  “External input” refers to 

the optional use of independent predictors.  The general 

notation for such a model is ARIMAX(p,d,q); if 

independent predictor variables are not employed then the 

notation is ARIMA only.  The “p” indicates how far back 

in time one goes in using prior values of the variable of 

interest.  For example, if the current value of a variable 

measured every hour is predicted using values of that 

 

 

 

                                                           
1 In a “stationary” series the values vary around an 

unchanging mean, and the variance over time is constant.  

Stationary series are a requirement for ARIMA models. 



 

 

 

variable from one and two hours ago (known as “lag 1” 

and “lag 2”), p=2.  Similarly, q refers to how many lags in 

the error term are used and “d” indicates how many times 

one takes the difference of the dependent variable.  It is 

often the case that the variable of interest exhibits obvious 

periodic behaviour, generally referred to as “seasonal” 

behaviour.  For example, building power use often 

displays a clear diurnal pattern; if one measures power 

hourly then there will be a seasonality of order 24.  For 

modelling, one creates a new seasonal variable to reflect 

this variation, which is the current value of the dependent 

variable minus the value from one seasonal period ago.  

One can then apply differencing and lags to this variable 

and include these terms in the model.  Thus the final 

general notation is ARIMAX(p,d,q)(P,D,Q)s, where P, D, 

and Q have the same meaning as above, but now refer to 

the seasonal variable, and s is the order of seasonality 

with respect to the measurement interval. 

The most general mathematical form of the ARIMAX 

model equation is as follows [8]: 

{Eq. 1} ሺͳ െ ሻௗሺͳܤ െ ௦ሻ஽ܤ ௧ܻൌ ߤ ൅ ሻܤ௜ሺߖ ௜ܺ,௧ ൅  ௦ሻ ܽ௧ܤሻ߶௦ሺܤ௦ሻ߶ሺܤ௦ሺߠሻܤሺߠ

wher

is the dependent time series 

e, Yt X ,t is a set of i external predictor time series i
at is a white noise time series representing random 

error, the values of this series are not known a 

priori, but are an outcome of the iterative 

parameter estimation methods used to generate 

the best-fitting model t µ is the mean of the series (=0 when series is 

differenced) 

indexes time 

B is the backshift operator; i.e. BYt ൌ Yt‐ͳ;  BͳʹY ൌ Yt‐ͳʹ; BBͳʹYt ൌ Bͳ͵Yt t ԄሺBሻ is the autoregressive operator, a polynomial of 

orde :r p in the backshift operator  ߶ሺܤሻ ൌ ͳ െ ߶ଵܤ െ ڮ െ ߶  ௣ ௣ԄsሺBሻ is, similarly, the seasonal autoregressiveܤ

o P : perator, a polynomial of order  ߶௦ሺܤ௦ሻ ൌ ͳ െ ߶௦,ଵܤ௦ െ ڮ െ ߶௦,௉ܤ௦௉ θሺBሻ is the moving average operator, a polynomial of 

order q in the backshift operator: ߠሺܤሻ ൌ ͳ െ ܤଵߠ െ ڮ െ  ௤ܤ௤ߠ

θsሺBሻ is, similarly, the seasonal moving average 

o  Q :perator, a polynomial of order  ߠ௦ሺܤ௦ሻ ൌ ͳ െ ௦ܤ௦,ଵߠ െ ڮ െ ௦ொ Ψiܤ௦,ொߠ X ,t o  Yt : ሺBሻ is a transfer function for the effect of i nߖ௜ሺܤሻ ൌ ߱௜ሺܤሻ߱௦,௜ሺܤ௦ሻߜ௜ሺܤሻߜ௦,௜ሺܤ௦ሻ ሺͳ െ ሻௗ೔ሺͳܤ െ ௞೔ ሻδiሺBܤ௦ሻ஽೔ܤ  is the denominator polynomial in the backshift 

ope  predrator, for the ith ictor: ߜ௜ሺܤሻ ൌ ͳ െ ܤ௜,ଵߜ െ ڮ െ  ௣೔ δs,iሺBሻ is similarly, the denominator seasonalܤ௜,௣೔ߜ

poly e  nomial, for th ith predictor:ߜ௦,௜ሺܤሻ ൌ ͳ െ ܤ௦,௜,ଵߜ െ ڮ െ ௦௉೔ܤ௦,௜,௉೔ߜ  ωiሺBሻ is the numerator polynomial in the backshift 

ope r, f thrato or e ith predictor: ߱௜ሺܤሻ ൌ ߱௜,଴ െ ߱௜,ଵܤ െ ڮ െ ߱௜,௤೔ܤ௤೔ ωs,iሺBሻ is similarly, the numerator seasonal polynomial, 

fo e red : r th  ith p ictor߱௦,௜ሺܤሻ ൌ ߱௦,௜,଴ െ ߱௦,௜,ଵܤ െ ڮ െ ߱௦,௜,ொ೔ܤ௦ொ೔ ki is the time delay for the effect of the ith predictor 

(if the predictor cannot affect the dependent 

variable for a certain number of time steps for 

basic physical reasons) 

ARIMAX models have been applied to building-related 

applications, including: modelling and forecasting of 

room temperature [9, 10], modelling of water and fuel use 

in a variety of buildings [11], optimizing the operation of 

cold storage in a large building [12], and forecasting and 

controlling the peak demand for electricity at a 

government complex [4]. 

Occupants are a key factor behind commercial building 

energy use, due to use of office equipment, lighting, plug 

loads, ventilation, thermal conditioning etc.  Because 

ARIMAX models use prior values of the dependent 

variable, and because power use in a building is correlated 

with occupancy, the auto regressive and moving average 

components will implicitly carry the effect of occupancy.  

The question we explored was whether including an 

occupancy metric as an explicit independent variable 

would improve model accuracy.  In [9] the authors 

suggested that variance in their ARIMA model of indoor 

temperature could be partially explained by variations in 

occupancy, and in [3] the authors lamented the lack of 

occupancy data for use in their artificial neural network 

model of building energy use. 

In this study, our goal was not to compare ARIMA 

models to other forecasting techniques, but to use an 



ARIMA model as a platform for exploring the added 

value of occupancy data.  In certain buildings swipe card 

access can easily give building occupancy information, 

but where this is not used, are there other ways of 

determining how many people are in a building? 

2.  METHODS & PROCEDURES 

The study was conducted in a three-storey building in 

eastern Ontario, Canada, comprising laboratories and 81 

individual work spaces, and total serviced floor area of 

5800 m2.   Various wireless sensors were installed to 

collect data on activities related to occupancy, and other 

relevant information.  Contact closure sensors were 

placed on the two exterior doors used as primary entrance 

and exit points, on two internal doors in common use, and 

on the refrigerator door in the main break room.  PIR 

motion sensors were placed in the main corridor on each 

floor, and a carbon-dioxide sensor was positioned in a 

circulation area on the third floor.  Wireless air 

temperature and horizontal illuminance sensors were 

positioned on the building’s roof to provide external 

climate data.  These sensors were all based on the 

EnOcean platform.  Repeater stations, with considerable 

trial-and-error experimentation in their placement, were 

required to deliver sensor data to the central receiver in a 

reliable manner.  In addition, we collected data on the 

number of people who had logged in to the network on 

each day (but not when they logged off), network activity 

(bit transfer rates), and electrical energy use (total 

building, and chiller separately).  Detailed information on 

the sensor system and data sources is available in [13]. 

2.1 Energy Use Forecasts Using ARIMAX 

All variables used were hourly values (derived from 

measurements at shorter time scales).  The dataset 

included weekdays only [12], because weekend 

occupancy was virtually nil and our long term interest 

was in peak demand load control.   

We subtracted chiller power from total building power.  

Thus the power variable included lighting, office 

equipment, lab equipment, and other plug loads that were 

likely directly related to occupancy, and thus perhaps of 

more relevance to the goals of this study2 (in [11] the 

authors suggested that non-weather related energy use 

would benefit from a separate analysis).  Figure 1 shows 

the average hourly values of this power variable.  The 

average peak load corresponds to ~46 W/m2, perhaps 

double the typical value for a building comprising offices 

only.  An initial analysis suggested that network logins 

and motion sensor counts were likely to be the most 

 

 

 

                                                           
2 An earlier, linear regression time series analysis 

suggested that using total building power including the 

chiller yielded similar final results and conclusions. 

useful measures of occupancy ([13] provides information 

on all measures of occupancy, and the correlations 

between them).  Analysis showed using once-differenced 

variables was appropriate for modelling purposes.  Figure 

2 shows average hourly values, and the expected rise (and 

fall) of building power draw coincident with the rise (and 

fall) of indicators of occupancy. 

 

Figure 1. Average hourly values of total building 

power minus chiller.  Length of box is interquartile 

range (IQR); line in box is median; ‘o’ are outlier 

values more than 1.5 IQR from the end of the box; ‘*’ 

are outlier values more than 3 IQR from the end of the 

box; whiskers show min. to max. range excluding 

outliers as defined above. 

 

All analyses were conducted using the Forecasting 

module in SPSS version 18.  Some SPSS routines require 

complete data sets, whereas we had some gaps in our data 

due to imperfect data collection systems and subsequent 

data cleaning.  We had 79 days of complete and 

continuous data for building power draw; of these 79 

days, 5 complete days of network login data and 17 

complete days of motion sensor data were missing and 

were imputed with the mean of the non-missing values for 

that hour and day of the week. 

Data were available from 1 am on June 12
th, 2009 (Week 

1 Day 1 Hour 1) to midnight on September 30th, 2009 

(Week 17 Day 3 Hour 24).  Initial model exploration was 

conducted on the majority of the dataset (Week 2 Day 1 

Hour 1 to Week 16 Day 1 Hour 7), and checked for 

robustness on a split sample.  Finally, the model was used 

to forecast power draw for the immediate future hours 

(Week 16 Day 1 Hour 8 onwards) and compared to the 

actual power draw data for this same period; i.e., data that 

were not used in the derivation of the model. 

 



 

 

 

Figure 2. Average hourly values of the change in total 

building power minus chiller, unique network logins, 

and motion sensor activation (sum of three sensors). 

 

 

 

 

 

3.  RESULTS 

Initially we derived a model for building power on the 

majority of the dataset without occupancy-related or other 

predictors.  We did try cooling degree hours (base 18 °C, 

CDH18) for each hour (differenced) as a predictor to 

check for residual climate dependence.  CDH18 was 

significant in the model but worsened the model fit.  We 

therefore decided on the pure ARIMA model as the base 

model for comparison to later models.  The automatically-

generated, best fit model from SPSS Forecasting included 

a lag 7 term.  However, this did not have any obvious 

physical explanation, and to keep the model compact we 

dropped this term from the model; this had only a tiny 

effect on the overall model fit.  Therefore, the model was 

ARIMA(0,1,1)(0,1,1)24, and Eq. 1 simplifies to: 

{Eq. 2} ሺͳ െ ሻሺͳܤ െ ଶସሻܤ ௧ܻ ൌ ሺͳ െ ሻሺͳܤଵߠ െ  ଶସሻ ܽ௧ܤ௦,ଵߠ

The model parameters and fit statistics are shown in Table 

1.  For time-series data, stationary R-squared is a better 

measure of variance explained than simple R-squared, and 

higher values indicate a better fit.  RMSE (Root Mean 

Square Error), MAPE (Mean Absolute Percentage Error), 

MAE (Mean Absolute Error), MaxAPE (Maximum 

Absolute Percentage Error), MaxAE (Maximum Absolute 

Error) are all measures where lower values indicate better 

performance.  Normalized BIC (Bayesian Information) 

accounts for the number of parameters used in the model, 

and may penalize non-compact models; lower values 

indicate better model performance. 

Table 1. Model with no external predictors, Week 2 

Day 1 Hour 1 to Week 16 Day 1 Hour 7. 

ARIMA Model 

Parameters 

MA (Power), θͳ MA (Power), 

Seasonal, θs,ͳ
 Lag 1 Lag 1 

 Estimate -.150 .753 

 SE .025 .017 

 t -5.908 43.377 

 Sig. .000 .000 

 

Stationary 

R-squared 
0.679 

Normalized 

BIC 
3.076 

R-squared 0.984 RMSE 4.268 

MAPE 1.244 MaxAPE 8.807 

MAE 2.958 MaxAE 20.54 

 

In the next step we added login data as a predictor in the 

model, using the Transfer Function option in SPSS 

Forecasting.  Logins were significant in the model.  The 

final model was ARIMAX(0,1,1)(0,1,1)24, and Eq. 1 thus 

simplifies to: 



{Eq. 3} ሺͳ െ ሻሺͳܤ െ ଶସሻܤ ௧ܻൌ ߱଴ሺͳ െ ሻሺͳܤ െ ଶସሻܺ௧൅ܤ ሺͳ െ ሻሺͳܤଵߠ െ  ଶସሻ ܽ௧ܤ௦,ଵߠ

 

 

 

The model parameters and fit statistics shown are shown 

in Table 2; fit statistics were generally improved 

compared to Table 1, albeit by relatively small amounts. 

Table 2. Model with logins as predictor, Week 2 Day 1 

Hour 1 to Week 16 Day 1 Hour 7. 

ARIMA Model 

Parameters 

MA (Power), θͳ 

MA (Power), 

Seasonal, θs,ͳ 

Numerator 

(Logins), ωͲ
 Lag 1 Lag 1 Lag 0 

 Estimate -.150 .757 .100 

 SE .026 .017 .034 

 t -5.856 43.566 2.968 

 Sig. .000 .000 .003 

 
Stationary 

R-squared 
0.702 

Normalized 

BIC 
3.040 

R-squared 0.985 RMSE 4.127 

MAPE 1.217 MaxAPE 9.307 

MAE 2.889 MaxAE 17.82 

 

We tried adding motion sensor data as a predictor instead 

of logins, but this predictor was not statistically 

significant and did not improve the model. 

We explored model robustness by specifying the model 

form in Table 2 to a split sample (Week 2 Day 1 Hour 1 

to Week 10 Day 5 Hour 24; and, Week 11 Day 1 Hour 1 

to Week 16 Day 5 Hour 24).  All three model parameters 

from Table 2 were significant in both split samples, and 

the parameter estimates were similar.  

We then used the model from Table 2 to forecast building 

power into the future, using the methods in the SPSS 

Forecasting module.  Note, that using the final model 

equation (Eq. 3), to forecast the value of Yt൅ͳ requires Xt൅ͳ.  In this case, Xt൅ͳ is unknown a priori, and therefore 

it too must be forecast in some manner.  This may be 

done with a separate ARIMA model for X alone [7]. 

The model in Table 2 was used in a forecast for the 

remainder of Week 16 Day 1 (a Monday).  Figure 3 

shows the forecast made at Hour 7 for the remainder of 

the day, and the actual building power.  For comparison 

we chose two simple forecasts that might commonly be 

invoked: the average for all weekdays in the sample up to 

Week 15 Day 5; and the values from Week 15 Day 1 (the 

previous Monday).  Beyond Hour 7 the ARIMAX model 

tends to under-predict the building power draw, 

forecasting a peak load 20 kW lower than the actual peak.  

The RMSE for Hours 8 to 24 are shown in Table 3.  

Overall, the ARIMAX model performs better than 

assuming values from the previous Monday, but slightly 

worse that assuming average values from all weekdays. 

Figure 3. Building power forecast using the 

ARIMAX model (at Hour 7, and hour-ahead 

forecasts to Hour 13), compared to: actual power; 

average for all weekdays; the previous Monday. 

 

It is common practice to update ARIMAX models as new 

data become available [12, 14].  We recalculated the 

model at every hour after Hour 7, and restricted ourselves 

to one-hour ahead forecasts; Figure 3 also shows the 

aggregate one-hour ahead forecasts up to Hour 13, and the 

forecast out to Hour 24 using the model updated at Hour 

13.  In this mode the RMSE is 73% lower than that from 

the average of all previous weekdays. 

Table 3.  Accuracy of forecasts for Hours 8 – 24 on 

Week 16 Day 1, for various methods 

 RMSE  

(Hours 8 – 24) 

ARIMAX model (at 16.1.7) 17.4 

ARIMAX model (aggr. to 16.1.13) 4.4 

Average of all weekdays 16.3 

Previous Monday 23.5 

 

4.  DISCUSSION 

The improvement in the ARIMAX model with logins as a 

predictor was small but encouraging.  There were several 

reasons why small effects might prevail in this building, 

and why we could expect a larger effect in a more typical 

office building.  First, the study building had a high 

fraction of process loads for laboratory equipment, and a 
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relatively lower fraction of loads related to the arrival and 

departure of occupants.  This building was not unusual for 

its type, building power and occupancy profiles for a 

university computer science building [15] were very 

similar to those in our study building.  In a building 

power profile for a more typical office building [3], the 

peak power draw was similar to our study building, but 

the overnight power draw was only 20% of this peak.  

Second, we expect that if logouts were also known in 

addition to logins, the model would be improved. 

Motion sensor data did not improve our model.  Perhaps 

this was because there was more variability in this 

parameter, or that it had less of a direct connection to 

occupancy than logins (i.e. logging in requires switching 

on a load, a computer, whereas activating a motion sensor 

does not).  It might also simply be an artefact of the 

modelling process.  Also, recall that a relatively large 

number of days of data were missing for this variable and 

had to be imputed, thus reducing the explanatory power.  

None of the other occupancy measures were effective in 

the model.  Again, it would be interesting to explore 

whether such data streams were more effective in a more 

conventional office building.  Further, the sensors and 

data streams we selected were a convenience sample from 

a wider possible range, other sensors might prove 

valuable (e.g. cameras, pressure sensors, noise data). 

Future development should explore robustness over 

longer time periods, through changing patterns of energy 

use throughout a year, and in a variety of building types. 

5.  ACKNOWLEDGEMENTS 

We thank Loren Parfitt and Shawn Pedersen (Echoflex 

Solutions Inc.) for assistance with the wireless network.  

Richard Laurin, Mario Laniel and David Fothergill (NRC) 

provided IT support, and Kevin Li (NRC) helped access 

power meter data.  Greg Nilsson (NRC) assisted with 

sensor calibration.  We are also grateful to Ruth Rayman 

of NRC’s ICT Sector for financial and moral support. 

6.  REFERENCES 

[1] Gershenfeld, N., Samouhos, S., and Nordman, B.  

2010.  Intelligent infrastructure for energy efficiency.  

Science, 327 (Feb. 26th), 1086-1088. 

[2] Zhou, Q., Wand, S., Xu, X., and Xiao, F.  2008.  A 

grey-box model of next-day building thermal load 

prediction for energy-efficient control.  International 

Journal of Energy Research, 32, 1418-1431. 

[3] Neto, A.H. and Fiorelli, F.A.S.  2008.  Comparison 

between detailed model simulation and artificial 

neural network for forecasting building energy 

consumption.  Energy and Buildings, 40, 2169-2176. 

[4] Hoffman, A.J.  1998.  Peak demand control in 

commercial buildings with target peak adjustment 

based on load forecasting.  Proceedings of the 1998 

IEEE International Conference on Control 

Applications (Trieste, Italy), 1292-1296. 

[5] Piette, M.A., Watson, D.S., Motegi, N., and 

Bourassa, N.  2005.  Findings from the 2004 fully 

automated demand response tests in large facilities. 

Report for the PIER Demand Response Research 

Center. LBNL Report Number 58178. URL: 

http://drrc.lbl.gov/pubs/58178.pdf. 

[6] Newsham, G.R. and Birt, B.  2010a.  Demand- 

responsive lighting: a field study.  Leukos, 6 (3), 203-

225. 

[7] Montgomery, D.C., Jennings, C.L., and Kulahci, M.  

2008.  Introduction to Time Series Analysis and 

Forecasting.  Wiley Series in Probability and 

Statistics.  John Wiley & Sons, Inc. (Hoboken, USA). 

[8] UC.  2010.  Notation for ARIMA models.  URL: 

http://www.uc.edu/sashtml/ets/chap30/sect13.htm. 

[9] Loveday, D.L. and Craggs, C.  1993.  Stochastic 

modelling of temperatures for a full-scale occupied 

building zone subject to natural random influences.  

Applied Energy, 45, 295-312. 

[10] Rios-Moreno, G.J., Trejo-Perea, M., Castaneda-

Miranda, R., Hernandez-Guzman, V.M., and Herrera-

Ruiz, G.  2007.  Modelling temperature in intelligent 

buildings by means of autoregressive models.  

Automation in Construction, 16, 713-722. 

[11] Lowry, G., Bianeyin, F.U., and Shah, N.  2007.  

Seasonal autoregressive modeling of water and fuel 

consumptions in buildings.  Applied Energy, 84, 542-

552. 

[12] Kimabra, A., Kurosu, S., Endo, R., Kamimura, K., 

Matsuba, T., and Yamada, A.  1995.  On-line 

prediction for load profile of an air-conditioning 

system.  ASHRAE Transactions, 101 (2), 198-207. 

[13] Newsham, G.R. and Birt, B.  2010b.   Detecting Total 

Building Occupancy for More Efficient Operation, 

National Research Council – Institute for Research in 

Construction, Research Report, RR-304.  URL: 

http://www.nrc-

cnrc.gc.ca/obj/irc/doc/pubs/rr/rr304.pdf 

[14] Kawashima, M., Dorgan, C.E., and Mitchell, J.W.  

1995.  Hourly thermal load prediction for the next 24 

hours by ARIMA, EWMA, LR, and an Artificial 

Neural Network.  ASHRAE Transactions, 101 (1), 

186-200. 

[15] Hay, S. and Rice, A.  2009.  The case for 

apportionment.  Proceedings of the First ACM 

Workshop on Embedded Sensing Systems for Energy-

Efficiency in Buildings (BuildSys 2009, Berkeley, 

USA, part of SenSys 2009). 

http://drrc.lbl.gov/pubs/58178.pdf
http://www.uc.edu/sashtml/ets/chap30/sect13.htm

