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Figure 5. Altering the value of an agent’s ConflictResolutionDepth

parameter can affect the timeliness and effectiveness of any predictions

it might make.
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Figure 4. Varying the value of an agent’s ModelSpeedBounds

parameter can affect the agent’s level of sensitivity to environmental

change.
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Figure 3. (a) Top-level view of the TouringWorld multi-agent testbed. (b)

A snapshot of a particular TouringWorld scenario showing various types

of (labelled) objects and agents.
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Figure 1. A TouringMachine’s mediating control framework.
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censor-rule-1:

if entity(obstacle-6) ∈  Perception-Buffer
then

remove-sensory-record(layer-R , entity(obstacle-6))

suppressor-rule-3:

if action-command(layer-R-rule-6*,

change-orientation(_))† ∈  Action-Buffer
and

current-intention(start-overtake)

then

remove-action-command(layer-R , change-orientation(_))

and

remove-action-command(layer-M, _)

* layer-R-rule-6 is the reactive (layer R) rule which is invoked in order to avoid

crossing a path lane marking.
† “_” simply denotes a don’t-care or anonymous variable.

Figure 2. Two example control rules: censor-rule-1 and suppressor-rule-3.
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Figure Captions:

Figure 1. A TouringMachine’s mediating control framework.

Figure 2. Two example control rules: censor-rule-1 and suppressor-rule-3.
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it might make.
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internal behavior APIs, libraries of code implementing a variety of different sensory and

effectory apparatus (e.g. for interpreting and executing commands on the UNIX file system

or for HTML page processing), persistent storage management, and (currently under

consideration) CORBA* compliance.

Another aspect of the current work is to identify and incorporate new capabilities in

order to extend the behavioral repertoire of agents; capabilities being considered at present

include, among others, reinforcement learning, user modelling, and episodic memory

management. Relatedly, a new domain to which TouringMachines —actually, CALVIN

agents —are currently being applied involves adaptive information retrieval and filtering

on the World Wide Web. In particular, this application comprises a system of information

processing agents which can retrieve HMTL documents (e.g. pages from the various

Usenet newsgroups) and filter their contents according to a number of weighted document

features such as subject, author, chosen keywords, (syntactic) structural organization, and

shared ratings from colleagues who have previously read the document(s). The agents,

which are specialized by the particular document feature(s) they search on, have limited

resources which they must continually compete for: agents which retrieve documents that

elicit positive relevance feedback from the user are rewarded; those returning documents

that elicit negative feedback are penalized. The agents, thus, comprise an agoric open

system (Miller and Drexler, 1988; Baclace, 1992) which adapts through agents learning

how to prioritize information that best reflects the user’s personal interests.

†. The Knowledge Query and Manipulation Language (KQML) is a protocol intended to support interop-

erability among intelligent agents in distributed applications (Finin et al., 1992).

*. The Object Management Group’s Common Object Request Broker Architecture (CORBA).
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cannot underestimate the importance of deploying — from the earliest stages of design —

concrete measures for carrying out extensive experimentation. In this respect, the

TouringWorld Testbed domain has proved a viable and useful system for evaluating

different agent control designs.

The integration of a number of traditionally expensive deliberative reasoning

mechanisms (for example, causal modelling and hierarchical planning) with reactive or

behavior-based mechanisms is a challenge which has been addressed in the

TouringMachine architecture. Additional challenges such as enabling effective agent

operation under real-time constraints and with bounded computational resources have also

been addressed. The result is a powerful architectural design which can successfully

produce a range of useful behaviors required of sophisticated autonomous agents

embedded in complex environments.

The research presented here is ongoing; current work on the TouringMachine agent

architecture includes an effort to generalize further the TouringWorld testbed, in particular,

by separating the definition of the agent’s domain of operation (description of the

environment, initial goals to accomplish, criteria for successful completion of goals) from

the specified configuration (capabilities and behaviors, internal parameters and constraints)

of the agent itself. Relatedly, the TouringMachine architecture is currently being recast as

CALVIN* — a platform independent, Perl-scripted, open implementation of the

TouringMachine architecture which provides application developers with a powerful set of

programming tools, including libraries of intra- and inter-agent protocols (e.g. KQML†),

*. The Communicating Agents Living Vicariously In Networks (CALVIN) architecture is an agent

framework developed at the National Research Council’s Knowledge Systems Laboratory (see World Wide

Web page http://ai.iit.nrc.ca/software.html for more details).
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and productive framework in which to carry out such design activities was thus established.

Examples of reviewable TouringMachine design decisions — established with empirical

feedback gained through use of the TouringWorld Testbed — include the particular set of

reactive rules initially made available to the agent, the contents of its various domain-

specific libraries (plan schemas, BDI model templates, conflict-resolution methods, and

space-time projection functions), the initial set of heuristics used to program the agent's

focus of attention mechanisms, and the precise set of censor and suppressor control rules

which are used to mediate the actions of the agent's three control layers.

In conclusion, the evaluation of TouringMachines appeared to support the claim that it

is both desirable and feasible to combine non-deliberative and suitably designed and

integrated deliberative control functions in a single, hybrid, autonomous agent architecture.

As was demonstrated, the resulting architecture, when suitably configured, was capable of

effective, robust, and flexible behaviors in a reasonably wide range of complex single- and

multi-agent task scenarios. As described above, the behavioral repertoire of

TouringMachines is wide and varied, including behaviors which are reactive, goal-

oriented, reflective, and also predictive. The evaluation, furthermore, suggested that

establishing an appropriate balance between reasoning and acting — that is, between

appropriate degrees of deliberative and non-deliberative control — would appear to depend

on characteristics of the task environment in which the particular TouringMachine is

operating. More generally, and in line with the experiences of both Maes (Maes, 1990) and

Pollack (Pollack and Ringuette, 1990), there is evidence to suggest that environmental

factors invariably play an important role in determining which agent configuration or

parametrization is the most appropriate for any given situational context. Finally, one
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deliberative functions be: (i) latency-bounded in order to provide guaranteed system

responsiveness (this in turn demands fairly strict control over internal computational

resource use); (ii) that they operate incrementally (in other words, that they be capable of

suspending operation and state after regular — and arbitrarily small — periods of

processing time); and (iii) that they serve merely as resources for action rather than as strict

recipes for overall agent control. This last requirement would also become the main

motivating force behind the decision to employ a context-sensitive mediatory control

policy for establishing control layer priorities. Other design decisions worth mentioning

here include the incorporation of functions for reasoning about — or modelling — other

agents' actions and mental states and for identifying and flexibly resolving conflicts within

and between agents (this is necessary because the TouringWorld domain is populated by

multiple intentional agents with limited computational and informational resources); and

mechanisms for constantly sensing and monitoring the external world (which are needed

since the TouringWorld domain is both dynamic and unpredictable).

Identification and isolation of the second type of design decisions, reviewable

decisions, are those which, as their name suggests, can be “reviewed after they are

implemented” (Cohen 1991, page 31). The purpose of differentiating fixed and reviewable

design decisions was to enable the basic (fixed) design to be implemented and run as early

as possible, and to provide an empirical environment in which to develop iteratively this

basic agent model, to test hypotheses about how the model should behave, and then to

review, subsequently, particular design decisions in the light of observed performance.

Also, by providing — in addition to the TouringMachine agent architecture — a highly

parametrized and controllable testbed environment like the TouringWorld, a very effective
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6 Discussion and Future Work

Apart from matters arising directly from the evaluation process described above, a number

of experiential and implementational issues which bear on the applicability and

appropriateness of the TouringMachine architecture also merit addressing at this point. As

mentioned above, the first stage in designing the TouringMachine architecture involved an

analysis of the intended TouringMachine task environment: that is, a characterization of

those aspects of the intended environment which would most significantly constrain the

TouringMachine agent design. As will now be argued, the main purpose of this analysis

was to differentiate between, and therefore establish, what Cohen (Cohen, 1991) terms the

system's fixed and reviewable design decisions.

Fixed design decisions are those which “will not be reviewed anytime soon” (Cohen,

1991, page 31). In the TouringMachine architecture, these design decisions were

established upon close examination of the intended TouringWorld domain. For instance,

the decision to divide control among multiple, independent concurrent layers was

influenced by the fact that TouringMachines would have to deal flexibly and robustly with

any number of simultaneous events, each occurring at a potentially different level of space-

time granularity. Such differences in event granularity, together with the need for carrying

out both long-term, deadline-constrained tasks, as well as short-term reactions to

unexpected events, ultimately played a part in the decision to combine both deliberative

and non-deliberative control functions into a single hybrid architecture. In turn, the need to

ensure that any such (non-real-time) deliberative functions be “suitable” for use in a real-

time domain such as the TouringWorld — in other words, that they be efficient and

effective on the one hand but flexible and robust on the other — suggested that such
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conflict — the one between itself and agent2 — until one clock cycle later; that is, at time

T = 18.0 instead of at T = 17.5. Due to the proximity of the two agents, the relatively high

speed of agent1, and the inevitable delay associated with any change in intention or

momentum, this 0.5 second delay proves to be sufficiently large to make agent1 realize too

late that agent2 is going to stop; an inevitable rear-end collision therefore occurs at T =

22.0 (Figure 5, lower left-hand frame).* Configured with ConflictResolutionDepth = 2

(Figure 5, lower right-hand frame), agent1 ends up having enough time — an extra 0.5

seconds — to adopt and realize the appropriate intention stop-behind-agent, thereby

avoiding the collision that would otherwise have occurred.

Having the flexibility to reason about the interactions between other world entities (for

example, between agent2 and the traffic light) and to take into account the likely future

intentions of these entities (for example, stop-at-light) can enable TouringMachines

like agent1 to make timely and effective predictions about the changes that are taking

place or that are likely to take place in the world. In general, however, knowing how deeply

agents should model one another is not so clear: since the number of layer M resources

required to model world entities is proportional to both the number of entities modelled and

the (counterfactual reasoning) depth to which they are modelled, agents will ultimately

have to strike a balance between breadth of coverage (more entities modelled, little detail)

and depth of coverage (less entities, more detail). This issue is investigated in more detail

elsewhere (Ferguson, 1992).

*. In fact, this collision need not be “inevitable”: in this scenario both agent1 and agent2 have been

configured with fairly insensitive (not very robust) layer R reactions, primarily to emphasize the different

behaviours that could result from different parametrizations of agents' modelling capabilities.
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conflicts.

In the scenario of Figure 5, two TouringMachine agents can be seen following

independent routes to one destination or another. The interesting agent to focus on here —

the one whose configuration is to be varied — is agent1 (the round one). The upper left-

hand frame of Figure 5 simply shows the state of the world at time T = 15.5 seconds.

Throughout the scenario, each agent continually updates and projects the models they hold

of each other, checking to see if any conflicts might be “lurking” in the future. At T = 17.5

(upper right-hand frame of Figure 5), agent1 detects one such conflict: an obey-

regulations* conflict which will occur at T = 22.0 between agent2 (chevron-shaped)

and the traffic light (currently red). Now, assuming agent1 is just far enough away from

the traffic light so that it does not, within its parametrized conflict detection horizon, see

any conflict between itself and the traffic light, then, if agent1 is configured with

ConflictResolutionDepth = 1, it will predict the impending conflict between agent2 and

the traffic light, as well as the likely event of agent2 altering its intention to stop-at-

light so that it will come to a halt at or around T = 22.0. If, on the other hand, agent1

is configured with ConflictResolutionDepth = 2, not only will it predict the same conflict

between agent2 and the traffic light and the resolution to be realized by this entity, but it

will also, upon hypothesizing about the world state after this conflict resolution is realized,

predict another impending conflict, this second one involving itself and the soon to be

stationary agent2.

The observable effects of this parameter difference are quite remarkable. When

agent1 is configured with ConflictResolutionDepth = 1, it will not detect this second

*. All agents possess the homeostatic goal obey-regulations which, in this particular example,

will trigger a goal conflict if the agent in question (agent2) is expected to run through the red traffic light.
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drive-along-path. Also, although not elaborated on in this paper, it is also important

to note that a TouringMachine may only monitor the state of its own layer M goals when

there are exactly zero discrepancies to attend to in its current set of modelled (external)

agents. A less environmentally sensitive agent, therefore, might well end up with more

opportunities to monitor its own progress and so, potentially, achieve its goals more

effectively.

5.3 Counterfactual Reasoning: why Modelling other Agents’ Intentions can be

Useful

In constructing and projecting models of other world entities, a TouringMachine must

constrain its modelling activities along a number of dimensions. Implemented as user-

definable parameters, these layer M constraints can be used to define such things as the

tolerable deviations between the agent’s actual and desired headings, the length of time into

the future over which the agent’s conflict detection predictions will apply, the rate at which

the agent updates its models, and the total number of per-clock-cycle resources available

for constructing models. One other layer M parameter which is of particular interest here

is ConflictResolutionDepth — the parameter which fixes the number of levels of

counterfactual reasoning the agent should undertake when projecting entities' models to

discover possible future goal conflicts. In general, when constructing model projections at

counterfactual reasoning level N, an agent will take into account any conflicts plus any

actions resulting from the anticipated resolutions to these conflicts which it had previously

detected at level N-1. Values of ConflictResolutionDepth which are greater than 1, then,

give agents the flexibility to take into account — up to some fixed number of nested levels

of modelling — any agent's responses to any other agent's responses to any predicted
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ModelSpeedBounds = +/- 0.5 ms-1), agent1 detects any speed discrepancies in agent2

which are greater than or equal to 0.5 ms-1. Among such discrepancies detected by

agent1 are those which result from agent2's deceleration just prior to its coming to a

halt at a junction at time T = 20.0 (Figure 4, lower left-hand frame). As a result, and

compared to the situation when agent1 is configured with ModelSpeedBounds = +/-2.0

ms-1, and therefore, in this particular scenario, unable to detect or respond fast enough to

agent2's actions at T = 20.0 (Figure 4, right-hand frame), the configuration with tighter

speed bounds is more robust, more able to detect “important” events (for example, the

agent in front coming to a halt) and also more able to carry out timely and effective

intention changes (for example, from drive-along-path to stop-behind-

agent).

This in itself, of course, does not suggest that agents should always be configured with

tight speed bounds. Sensitivity or robustness to environmental change can come at a price

in terms of increased resource consumption: each time an agent detects a model

discrepancy it is forced by design to try to explain the discrepancy through a (relatively

expensive) process of abductive intention ascription.* Often, however, small changes in the

physical configuration of a modelled entity need not be the result of the entity having

changed intentions. In the scenario of Figure 4, for example, agent2's speed changes are

due entirely to actions effected by the testbed user. Ignorant of this, however, agent1

configured with ModelSpeedBounds = +/-0.5 ms-1 will continually attempt to re-explain

agent2's changing behavior — despite the fact that this reasoning process will always,

except in the case when agent2 stops at the junction, return the same explanation of

*. The process is expensive in the sense that since the agent has only enough computational resources to

focus on a subset of entities in the world at any given time, misplaced sensitivity can result in the agent mak-

ing poor use of its limited resources and potentially missing what might otherwise have been critical events.
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5.2 Monitoring the Environment: Sensitivity versus Efficiency

TouringMachines continuously monitor their surroundings for activity or change. In

monitoring the state of another agent, and in particular, in determining whether the model

it maintains of an agent's current physical configuration (its location, speed, orientation,

etc.) is as it should be — that is, satisfies the expectations which were computed when it

last projected the agent's model in space-time — a TouringMachine makes use of various

tolerance bounds to decide whether any discrepancies in fact exist. As with any

discrepancies detected in the agent's self model, identification of a discrepancy in the model

of another entity typically requires further investigation to determine its cause. Often this

reasoning process results in having to re-explain the entity's current behavior by ascribing

it a new intention. For example, a discrepancy between the modelled entity's current and

expected speeds might be indicative of the entity's change of intention from, say, drive-

along-path to stop-at-junction.

In Figure 4 (upper two frames) we can see, at two different time points, T = 12.5

seconds and T = 15.5 seconds, several agents in pursuit of their respective goals: agent1

(round), agent2 (chevron-shaped), and agent3 (triangular, top-most). Furthermore, we

can see the effect on agent1's behavior — that is, on its ability to carry out its pre-defined

homeostatic goal avoid-collisions — of modifying the value of

ModelSpeedBounds, an internal agent parameter which, when modelling another entity,

is used to constrain the “allowable” deviations between this entity's currently observed

speed and the speed it was predicted to have had when the entity was last observed. In this

scenario, agent1 has to contend with the numerous and unexpected speed changes

effected by agent2, a testbed user-driven agent. With fairly tights bounds (for example
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with other architectures extremely difficult if not altogether impossible.

Due to the relatively large number of parameters which the TouringWorld testbed

provides for specifying different agent configurations, performance evaluation criteria (for

example, task completion time, resource utilization), and agent task and environmental

characteristics, the present evaluation will necessarily be partial, the main focus being

placed on studying selected qualitative aspects of TouringMachine behavioral ecology —

namely, some of the effects on agent behavior which, in a given task environment, can

occur through varying individual agent configuration parameters; and the effects on agent

behavior which, for a given agent configuration, can occur through varying certain aspects

of the agent's environment. Like with the Tileworld experiments described by Pollack and

Ringuette (Pollack and Ringuette, 1990, page 187), a number of TouringWorld “knobs”

(for example, world clock timeslice size, total per-timeslice resources available to each

agent, agent size, agent speed and acceleration/deceleration rate limits, agent sensing

algorithm, initial attention focussing heuristics, reactive rule thresholds, plan schema and

model template library entries) have been set to provide “baseline” environments which are

dynamic, somewhat unpredictable, and moderately paced. In such environments, a

competent (suitably configured) agent should be able to complete all of its goals, more or

less according to schedule; however, under certain environmental conditions and/or agent

parametrizations — a number of which will be analyzed below — this will not always be

the case. In order to simplify the analysis of agents' behaviors in multi-agent settings,

TouringMachine configurations — both mental and physical — should be presumed

identical unless otherwise stated.
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trivial challenges to TouringMachine agents.

It is not the aim of the present evaluation to show that the TouringMachine architecture

is in any sense “optimal”. As argued elsewhere (Ferguson, 1992), optimal rational behavior

will in general be impossible if the agent is resource-bounded, has several goals, and is to

operate in a real-time multi-agent environment in which events are able to take place at

several levels of space-time granularity. As such, one should more realistically expect a

TouringMachine to behave satisficingly, but at times — for example, when under extreme

real-time pressure — to fail to satisfy every one of its outstanding goals. What is really of

interest here is understanding how the different configurations of agents and the different

environmental characteristics to which such configurations are subjected affect, positively

or negatively, the ability of agents to satisfy their goals.

It is also not the aim of the present evaluation to show that TouringMachines are

“better” than other integrated agent architectures at performing their various tasks. Rarely

is it the case that the actual and/or intended task domains of different agent architectures

are described in sufficient detail so as to permit direct comparisons of agent performance.

The lack, at present, of any common benchmark tasks or of any universally agreed upon

criteria for assessing agent performance — previous evaluations have relied either on a

single performance criterion; for example, the total point score earned for filling holes in

specific single-agent Tileworld environments (Pollack and Ringuette, 1990; Kinny and

Georgeff, 1991), or on a small number of performance criteria which can only be

interpreted with respect to the particular architecture being measured; for example, the total

number of behaviors communicated between agents in selected MICE environments

(Durfee and Montgomery, 1990) — combine to make detailed quantitative comparisons
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design) decisions with the use of predictive models of a system's behaviors and of the

environmental factors that affect these system behaviors. Like IRMA agents in the

Tileworld domain (Pollack and Ringuette, 1990), TouringMachine agents can be viewed as

having been developed via an incremental version of MAD, in which the (causal) model of

TouringMachine behavior is developed incrementally, at the same time as the agent design.

In other words, the agent design (or some part of its design) is implemented as early as

possible, in order to provide empirical data (or feedback) which flesh out the model, which

then become the basis for subsequent redesign (Cohen, 1991). The implications of adopting

such a design method, as well as the roles played in this method by the environmental and

behavioral analyses referred to above, are discussed in detail elsewhere (Ferguson, 1992).

The present evaluation of TouringMachines is realized through a series of interesting

task scenarios involving one or more agents and/or zero or more obstacles or traffic lights.

The scenarios have been selected with the aim of evaluating some of the different

capabilities and behaviors which TouringMachines will require if they are to complete their

tasks in a competent and effective manner — for example, reacting to unexpected events,

effecting of goal-directed actions, reflective and predictive goal monitoring, spatio-

temporal reasoning, plan repair, coping with limited computational and informational

resources, as well as dealing with real-time environmental change. The scenarios can be

considered interesting because they succinctly exercise agents' abilities to carry out time-

constrained tasks in complex — partially-structured, dynamic, real-time, multi-agent —

environments. Although the chosen scenarios are simplified to deal only with mentally and

structurally homogeneous agents possessing noiseless sensors, perfect actuators, and

approximately similar non-shared relocation tasks these still present a number of non-
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environment (Cohen et al., 1989), the Tileworld (Pollack and Ringuette, 1990), and MICE

(Durfee and Montgomery, 1990).

The power of the TouringWorld testbed domain, and of artificial domains in general,

arises from the insights it can provide toward the improved understanding of agent — in

this case, TouringMachine — behavioral ecology: in other words, the understanding of the

functional relationships that exist between the designs of agents (their internal structures

and processes), their behaviors (the tasks they solve and the ways in which they solve these

tasks), and the environments in which they are ultimately intended to operate (Cohen et al.,

1989).

The characterization of TouringMachines as a study of agent behavioral ecology

exemplifies a research methodology which emphasizes complete, autonomous agents and

complex, dynamic task environments. Within this methodological context, the focus of the

present evaluation has been centered on two particular research tasks. Cohen et al. (Cohen

et al., 1989) refer to these as environmental analysis, in other words, understanding what

characteristics of the environment most significantly constrain agent design; and the design

task, in other words, understanding which agent design or configuration produces the

desired behaviors under the expected range of environmental conditions.

These two tasks, in fact, are the first two stages of a more complete research

methodology which Cohen (Cohen, 1991) refers to as the MAD methodology, for

modelling, analysis, and design.* This methodology aims to justify system design (and re-

*. The remaining design activities — predicting how the system (agent) will behave in particular situa-

tions, explaining why the agent behaves as it does, and generalising agent designs to different classes of sys-

tems, environments, and behaviours — are beyond the scope of this work. See Cohen (Cohen, 1991, pages

29—32) for details.
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(robustness) in agents can be affected by a number of factors including, among other things,

the level of detail involved in the predictions agents make about each other, the degree of

sensitivity they demonstrate toward unexpected events, and the proportion of total agent

resources that are made available for constructing plans or building mental models of other

agents. Other experiments point toward a trade off between the reliability and the efficiency

of the predictions an agent can make about the future; this turns out to be an instance of the

extended prediction problem (Shoham and McDermott, 1990). Yet other experiments have

been carried out which suggest that predicting future world states through causal modelling

of agents’ mental states, can, in certain situations, prove useful for promoting effective

coordination between agents with conflicting goals. To illustrate some of the diverse

opportunities for analysis which are afforded by the TouringMachine testbed, two

particular experiments that illustrate the role of causal modelling of agent behavior will be

described in some detail. Before this, however, a few comments on the adopted

experimental methodology are worth giving.

5.1  Some Methodological Issues

One useful approach toward understanding the reasons for the behaviors exhibited by

the TouringMachine agent design — and, more specifically, for identifying the conditions

under which one configuration of the architecture performs better than another — is to vary

the environment in which it operates. The simplest approach to this issue, Langley

(Langley, 1988) argues, involves designing a set of benchmark problems, of which some,

for the purposes of scientific comparison (that is, for the purposes of enabling independent

variation of different task environment attributes), should involve artificial domains. The

TouringWorld environment is one such domain; other examples include the Phoenix
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Ferguson, 1995).

5 Experimenting with TouringMachines

The research presented here adopts a fairly pragmatic approach toward understanding how

complex environments might constrain the design of agents, and, conversely, how different

task constraints and functional capabilities within agents might combine to produce

different behaviors. In order to evaluate TouringMachines, a highly instrumented,

parametrized, multi-agent simulation testbed has been implemented in conjunction with the

TouringMachine control architecture. The testbed provides the user with a 2-dimensional

world — the TouringWorld — which is occupied by, among other things, multiple

TouringMachines, obstacles, walls, paths, and assorted information signs. World dynamics

are realized by a discrete event simulator which incorporates a plausible world updater for

enforcing “realistic” notions of time and motion, and which creates the illusion of

concurrent world activity through appropriate action scheduling. Other processes (see

Figure 3.a) handled by the simulator include a facility for tracing agent and environmental

parameters, a statistics gathering package for agent performance analysis, a mechanism

enabling the testbed user to control the motion of a chosen agent, a declarative specification

language for defining the agents to be observed, and several text and graphics windows for

displaying output (see Figure 3.b). By enabling the user to specify, visualize, measure, and

analyze any number of user-customized agents in a variety of single- and multi-agent

settings, the testbed provides a powerful platform for the empirical study of autonomous

agent behavior.

A number of experiments have been carried out on TouringMachines which illustrate,

in particular, that the balance between goal-orientedness (effectiveness) and reactivity
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internal clock. Theorist's reasoning strategy then tries to accumulate consistent sets of facts

and instances of hypotheses, or defaults, as explanations for which the observations are

logical consequences. The facts and defaults reside in the Theorist KBase, a knowledge

base containing a domain model of the TouringWorld expressed in terms of the various

“faults” that can be used to explain entities' “errant” behaviors. In the present context, faults

can be viewed as the causes for — or the intentions behind — why certain events — or

certain observed actions of some entity — might have occurred in the world. Details on

agents’ domain models can be found elsewhere (Ferguson, 1992).

5.2  Generating Expectations and Closing the Loop

 Once all BDI model discrepancies have been identified and their causes inferred,

predictions are formed by temporally projecting those parameters that make up the

modelled entity’s configuration vector C in the context of the current world situation and

the entity’s ascribed intention. The space-time projections (in effect, knowledge-level

simulations) thus created are used by the agent to detect any potential interference or goal

conflicts among the modelled entities’ anticipated/desired actions. Should any conflicts —

intra- or inter-agent — be identified, the agent will then have to determine how such

conflicts might best be resolved, and also which entities will be responsible for carrying out

these resolutions. Determining such resolutions, particularly where multiple goal conflicts

are involved, will require consideration of a number of issues, including the priorities of the

different goals affected, the space-time urgency of each conflict, rights-of-way protocols in

operation, as well as any environmental and physical situational constraints (for example,

the presence of other entities) or motivational forces (for example, an agent’s own internal

goals) that may constrain the possible actions that the agent can take (Ferguson, 1992;
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which imply the observations. More formally, G is said to be explainable if there is some

subset D of ∆ such that

F ∪ D G and

F ∪ D is consistent.

D is said to be a theory that explains G. D should then be seen as a “scientific theory” (Poole

et al., 1986, page 4).

Theorist has been described as both a theory and an implementation for default and

abductive reasoning (Poole, 1988). One of the several ways in which Theorist can been

used, then, is for performing abductive diagnosis; namely, finding a set of causes (for

example, diseases) which can imply the observed effects (for example, patients'

symptoms). Now, by taking the system or artifact that is being diagnosed as the entity that

our TouringMachine agent is modelling, and by re-interpreting “symptoms” as the entity's

observed actions, then the causes behind this entity's actions can be regarded as the entity's

intentions.* Note, then, that in the context of TouringMachines, the process of finding the

intentions which are the cause of some other entity's actions is effectively one of

performing plan inference or recognition (Carberry, 1990).

Theorist is invoked once for every one of the agent's entity models that displays a model-

entity (or expectation-observation) discrepancy. In particular, Theorist is called by

supplying it with the name of the agent that is doing the modelling, the name of entity that

is being modelled, the agent's observations of that entity (that is, all relevant details of the

entity's current configuration as modelled by the agent), and the current value of the agent's

*. It should be noted that, for the purpose of simplifying the implementation of TouringMachines, agents’

beliefs and desires are assumed to be common and so can be ignored during the theory formation process.

=|
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model.

Reasoning from a model of an entity essentially involves looking for the “interaction of

observation and prediction” (Davis and Hamscher, 1988); that is, for any discrepancies

between the agent’s actual behavior and that predicted by its model or, in the case of a self-

model, between the agent’s actual behavior and that desired by the agent. Model-based

reasoning in TouringMachines specifically comprises two phases: explanation and

prediction. During the explanation phase, the agent attempts to generate plausible or

inferred explanations about any entity (object/agent) behaviors which have recently been

observed. Explanations (models) are then used in detecting discrepancies between these

entities’ current behaviors and those which had been anticipated from previous encounters.

If any such behavioral discrepancies are detected, the agent will then strive to infer, via

intention ascription, plausible explanations for their occurrence.

5.1  Generating Explanations with Theorist

Theorist (Poole et al., 1986) is a logic programming system for constructing scientific

theories — that is, for constructing explanations of observations in terms of various facts

and hypotheses. Theorist is a system for both representation and reasoning. A Theorist

knowledge base consists of a collection of first order clausal form logic formulae which can

be classified as: (i) a closed set of consistent formulae or facts, F, which are known to be

true in the world; (ii) the possible hypotheses, ∆, which can be accepted as part of an

explanation; and (iii) the set of observations, G, which have to be explained. Given these,

the Theorist reasoning strategy attempts to accumulate consistent sets of facts and instances

of hypotheses as explanations for which the observations are logical consequences. An

explanation or theory is then a subset of the possible hypotheses which are consistent and
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would then enable it to make changes to its own plans in a more effective manner than if it

were to wait for these conflicts to materialize. Goal conflicts can occur within the agent

itself (for example, the agent’s projected time of arrival at its destination exceeds its

original deadline or the agent’s layer R effects an action which alters the agent’s trajectory)

or in relation to another agent (for example, the agent’s trajectory intersects that of another

agent). Associated with the different goal conflicts that are known to the agent are a set of

conflict resolution strategies which, once adopted, typically result in the agent taking some

action or adopting some new intention.

The structures used by an agent to model an entity’s behavior are time indexed 4-tuples

of the form 〈C, B, D, I〉 , where C is the entity’s Configuration, namely (x,y)-location, speed,

acceleration, orientation, and signalled communications; B is the set of Beliefs ascribed to

the entity; D is its ascribed list of prioritized goals or Desires; and I is its ascribed plan or

Intention structure. Plan ascription or recognition has been realized in TouringMachines as

a process of scientific theory formation which employs an abductive reasoning

methodology similar to that of the Theorist default/diagnostic reasoning system (Poole et

al., 1986) — more on this shortly.

These Belief-Desire-Intention (BDI) models used by an agent are, in fact, filled-in

templates which the agent obtains from an internal model library. While all templates have

the same basic 4-way structure, they can be made to differ in such aspects as the depth of

information that can be represented or reasoned about (for example, a particular template’s

B component might dictate that modelled beliefs are to be treated as defeasible), initial

default values provided, and computational resource cost. The last of these will

subsequently be taken into account each time the agent makes an inference from the chosen
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hybrid control approach that integrates a number of deliberative and non-deliberative

action control mechanisms.

4 Modelling Agent Behavior

Like most real-world domains, a TouringMachine’s world is populated by multiple

autonomous entities and so will often involve dynamic processes which are beyond the

control of any one particular agent. For a planner — and, more generally, for an agent —

to be useful in such domains, a number of special skills are likely to be required. Among

these are the ability to monitor the execution of one’s own actions, the ability to reason

about actions that are outside one’s own sphere of control, the ability to deal with actions

which might (negatively) “interfere” with one another or with one’s own goals, and the

ability to form contingency plans to overcome such interference. Georgeff (Georgeff,

1990) argues further that one will require an agent to be capable of coordinating plans of

action and of reasoning about the mental state — the beliefs, desires, and intentions — of

other entities in the world; where knowledge of other entities’ motivations is limited or

where communication among entities is in some way restricted, an agent will often have to

be able to infer such mental state from its observations of entity behavior. Kirsh, in

addition, argues that for survival in real-world, human style environments, agents will

require the ability to frame and test hypotheses about the future and about other agents’

behaviors (Kirsh, 1991).

The potential gain from incorporating knowledge level mental modelling capabilities

in an autonomous agent is that by making successful predictions about entities’ activities

the agent should be able to detect potential goal conflicts earlier on — thus enhancing the

agent’s ability to coordinate its actions with other agents (Chandrasekaran, 1994). This
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will not be able to be changed dynamically and there will be no way to reason about alter-

native plans for carrying them out. Maes (Maes, 1990) also argues that without explicit

goals it is not clear how agents will be able to learn or improve their performance.

Complex agents will need complex goal or desire systems   in particular, they will

need to handle a number of goals, some of which will vary in time, and many of which will

have different priorities that will vary according to the agent's situational needs. The impli-

cations of this, Kirsh (Kirsh, 1991) argues, is that as agents' desire systems increase in size,

there will be a need for some form of desire management, such as deliberation, weighing

competing benefits and costs, and so on.

There are undoubtedly a number of real-world domains which will be suitable for

strictly non-deliberative agent control architectures. It is less likely whether there exist any

realistic or non-trivial domains which are equally suited to purely deliberative agents. What

is most likely, however, is that the majority of real-world domains will require that intelli-

gent autonomous agents be capable of a wide range of behaviors, including some basic

non-deliberative ones such as perception-driven reaction, but also including more complex

deliberative ones such as flexible task planning, strategic decision-making, complex goal

handling, or predictive reasoning about the beliefs and intentions of other agents.

A central goal of the research presented here was to demonstrate that it is both desirable

and feasible to combine non-deliberative and suitably designed deliberative control func-

tions to obtain effective, robust, and flexible behavior from autonomous, task-achieving

agents operating in complex environments. The arguments put forward so far have

attempted both to outline some of the broader functional and behavioral requirements for

intelligent agency in complex task domains like the TouringWorld, and also to justify a
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local minima, or generally undesirable outcomes. It follows, then, that if the agent's task

requires knowledge about the environment which is not immediately available through per-

ception and which can, therefore, only be obtained through some form of inference or

recall, then it cannot truly be considered situationally determined. Kirsh (Kirsh, 1991) con-

siders several such tasks, a number of which are pertinent to the TouringWorld domain:

activities involving other agents (as these often require making predictions of their behav-

ior and reasoning about their plans and goals (Davis 1990, page 395)); activities which

require responding to events and actions beyond the agent's current sensory limits (such as

taking precautions now for the future or when tracking sequences of behaviors that take

place over extended periods of time); as well as activities which require some amount of

reasoning or problem solving (such as calculating a shortest route for navigation). The

common defining feature of these tasks is that, besides requiring reliable and robust local

control to be carried out, they also possess a non-local or global structure which will need

to be addressed by the agent. For instance, to carry out a navigation task successfully in the

TouringWorld an agent will need to coordinate various locally constrained (re-)actions

such as slowing down to avoid an obstacle or slower moving agent with other more globally

constrained actions such as arriving at a target destination within some pre-specified

deadline.

While non-deliberative control techniques ensure fast responses to changing events in

the environment, they do not enable the agent's action choices to be influenced by deliber-

ative reasoning. In most non-deliberative architectures, the agent's goals are represented

implicitly   in effect, embedded in the agent's own structure or behavioral rule set. When

goals are not represented explicitly, Hanks and Firby (Hanks and Firby, 1990) argue, they
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Similarly, while the inclusion of at least some degree of non-deliberative control in

TouringMachines would seem essential   particularly since the agents will need to be

closely coupled to their environment, robust to unexpected events, and able to react quickly

to unforeseen events and operate with guaranteed levels of responsiveness   it is question-

able whether non-deliberative control techniques alone will be sufficient for providing

TouringMachines with the complete behavioral repertoire necessary for successful opera-

tion in the TouringWorld environment. This argument deserves closer consideration.

3.1  Limitations of Pure Non-deliberative Control

The strength of purely non-deliberative architectures lies in their ability to identify and

exploit local patterns of activity in their current surroundings in order to generate more or

less hardwired action responses (using no memory or predictive reasoning, and only mini-

mal state information) for a given set of environmental stimuli. Successful operation using

this method of control presupposes: (i) that the complete set of environmental stimuli

required for unambiguously determining subsequent action sequences is always present

and readily identifiable  in other words, that the agent's activity can be strictly situation-

ally determined; (ii) that the agent has no global task constraints   for example, explicit

temporal deadlines   which need to be reasoned about at run-time; and (iii) that the agent's

goal or desire system is capable of being represented implicitly in the agent's structure

according to a fixed, pre-compiled ranking scheme.

Situationally determined behavior will succeed when there is sufficient local constraint

in the agent's environment to determine actions that have no irreversibly detrimental long-

term effects. Only then, as Kirsh (Kirsh, 1991) argues, will the agent be able to avoid rep-

resenting alternative courses of actions to determine which ones lead to dead ends, loops,
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agents' activities. In this respect, each TouringMachine must have the capacity to objec-

tify particular aspects of the world   that is, to construct and deploy internal models of

itself and of other agents   to see where it fits in the coordinated process and what the

outcomes of its own actions might be (Bond and Gasser, 1988, page 25).

Although much of the above functionality could be described as deliberative (for exam-

ple, reasoning about the temporal extent of actions, conflict resolution, reflexive

modelling), it is unclear whether a strictly deliberative control approach based on tradi-

tional planning techniques would be adequate for successful operation in the TouringWorld

domain. Most classical planners make a number of important simplifying assumptions

about their domains which cannot be made about the TouringWorld: namely, that the envi-

ronments remain static while their (often arbitrarily long) plans are generated and executed,

that all changes in the world are caused by the planner's actions alone, and that their envi-

ronments are such that they can be represented correctly and in complete detail. Given that

the TouringWorld is dynamic and multi-agent and given that TouringMachines also have

inherently limited physical and computational means for acquiring information about their

surroundings, it seems clear that a strictly traditional planning approach to controlling

TouringMachines would be unsuitable. Also, while it is true that planning systems capable

of execution monitoring and interleaved planning and execution represent a significant

advance on the earlier traditional planners, their usefulness in a highly dynamic and real-

time domain like the TouringWorld is questionable, particularly given the reservations

expressed by Georgeff (Georgeff, 1990) and Bratman et al. (Bratman et al., 1988) concern-

ing their computational efficiency and inability to cope with situationally-varying time

constraints.
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• A TouringMachine should be robust to unexpected events. Successful operation in a

real-time dynamic environment will require that TouringMachines be able to identify

and handle   in a timely manner   a host of unexpected events at execution time. For

many events (such as the sudden appearance of a path-blocking obstacle) an agent will

have little or no time to consider either what the full extent of its predicament might be

or what benefits consideration of a number of different evasive maneuvers might bring.

In order to cope with such events, TouringMachines will need to operate with guaran-

teed responsiveness (for example, by using latency-bounded computational and

execution techniques) as well as being fairly closely coupled to their environments at

all times. Since the time and location of such events will be unpredictable, TouringMa-

chines will need to monitor their surroundings continually throughout the course of

their goals.

• A TouringMachine should be flexible in the way it carries out its tasks. Due to the

dynamic and unpredictable nature of the TouringWorld environment, and the fact that

its multiple inhabitants must operate in real time with limited world knowledge, Tour-

ingMachines will inevitably be faced with various belief and/or goal conflict situations

arising from unforeseen interactions with other agents. Agents operating cooperatively

in complex domains must have an understanding of the nature of cooperation. This,

Galliers (Galliers, 1990) argues, involves understanding the nature and role of multi-

agent conflict. To behave flexibly and to adjust appropriately to changing and unpre-

dicted circumstance, TouringMachines should be designed to recognize and resolve

unexpected conflicts rather than to avoid them. Also, for the purposes of control and

coordination, TouringMachines must be able to reason about their own and other
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would enable TouringMachines to carry out tasks and act on their environments autono-

mously and in accordance with a set of domain-specific evaluation criteria; namely,

effectiveness, robustness, and flexibility. These criteria suggested a broad range of behav-

ioral and functional capacities that each TouringMachine might need to possess:

• A TouringMachine should be capable of autonomous operation. Operational auton-

omy requires that the agent have its own goals and be able to select among these as and

when required. In addition, as Covrigaru and Lindsay (Covrigaru and Lindsay, 1991)

argue, the agent should, among other things, be capable of interacting with its environ-

ment, be able to move (preferably fluidly) around its environment, have selective

attention (this is also desirable since TouringMachines have limited computational

resources), have a varied behavioral repertoire, and have differential responsiveness to

a variety of environmental conditions.

• A TouringMachine should carry out its goals in an effective manner. Effective goal

achievement requires that the agent be capable of carrying out its multiple tasks in an

efficient and timely manner. Since among its various tasks, a TouringMachine must

navigate along some route within a pre-specified time limit, the agent should be able to

reason predictively about the temporal extent of its own actions. Also, because Tour-

ingMachines will operate in a partially-structured multi-agent world, they should, in

order to complete their tasks, be able to coordinate their activities with other agents that

they might encounter: that is, they should be capable of cooperation.*

*. Following Bond and Gasser (Bond and Gasser, 1988, page 19), cooperation in the TouringWorld is

viewed simply as a special case of coordination among non-antagonistic agents. While TouringMachines are

not actually benevolent (they are selfish with respect to their own goals and have the ability to drop or adopt

different intentions according to their own preferences and situational needs) they are also not antagonistic

since they do not intentionally try to deceive or thwart the efforts of other TouringMachines.
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ancing two “reasonable'' approaches to acting in the world: the first, deliberation, involves

making as many decisions as possible as far ahead of time as possible; the second approach,

reaction, is to delay making decisions as long as possible, acting only at the last possible

moment. At a glance, the first approach seems perfectly reasonable since, clearly, an agent

which can think ahead will be able to consider more options and thus, with forethought, be

more informed when deciding which action to take. On the other hand, since information

about the future can be notoriously unreliable and, in many real-world situations, difficult

or even impossible to obtain given the agents' changing time constraints, it would also seem

reasonable that acting at the last moment should be preferred. In fact, except perhaps for a

small number of special-case task domains, it would seem much more reasonable to assume

that neither approach   deliberation or reaction   should be carried out to the full exclu-

sion of the other.

TouringMachines are autonomous, mobile agents which are capable of rationally car-

rying out a number of routine tasks in a complex multi-agent traffic navigation domain 

the TouringWorld. These tasks are prioritized in advance by the agent's designer and, as

mentioned above, include goals like avoiding collisions with other mobile agents and fixed

obstacles, obeying a commonly accepted set of traffic regulations, and relocating from

some initial location to some target destination within certain time bounds and/or spatial

constraints. Besides being limited in terms of its internal computational resources, each

TouringMachine will start out with limited knowledge of its world and with limited means

for monitoring and acquiring information from its surroundings; in addition, each agent

will be will be restricted in its capacity to communicate with other agents.

The initial goal of this research was to produce an integrated control architecture which
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Mediation remains active at all times and is largely “transparent” to the layers: each

layer acts as if it alone were controlling the agent, remaining largely unaware of any

“interference” — either by other layers or by the rules of the control framework — with its

own inputs and outputs. The overall control framework thus embodies a real-time

opportunistic scheduling regime which, while striving to service the agent’s high-level

tasks (e.g. planning, causal modelling, counterfactual reasoning) is sensitive also to its low-

level, high-priority behaviors such as avoiding collisions with other agents or obstacles. In

this respect, the TouringMachine architecture offers many of the desirable characteristics

of so-called hybrid architectures (Hanks and Firby, 1990; Müller and Pischel, 1994).

Before further describing TouringMachines’ behavioral modelling capabilities, a few

comments justifying the choice of a hybrid control architecture seem appropriate.

3 Hybrid Architectures: a Rationale

An autonomous agent operating in a complex environment is constantly faced with the

problem of deciding what action to take next. As Hanks and Firby (Hanks and Firby, 1990)

point out, formulating this problem precisely can be very difficult since it necessitates con-

sideration of a number of informational categories which are often difficult to ascertain 

for example, the benefits and costs to the agent of executing particular actions sequences;

or which have been demonstrated from previous research to be problematic to represent 

for example, models of agents' beliefs and desires about a world which is complex and

unpredictable.

The control problem in an agent is the problem of deciding how to manage these vari-

ous sources of information in such a way that the agent will act in a competent and effective

manner. This problem, Hanks and Firby (Hanks and Firby, 1990) suggest, amounts to bal-
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conditional parts are conjunctions of statements that test for the presence of particular

sensory objects recently stored in the agent’s Perception Subsystem (see Figure 1). Censor

rules’ action parts consist of operations to prevent particular sensory objects from being fed

as input to selected control layers. In Figure 2, for example, the censor rule censor-

rule-1 is used to prevent layer R from perceiving (and therefore, from reacting to) a

particular obstacle which, for instance, layer M might have been better designed to deal

with. In the case of suppressor control rules, conditional parts are conjunctions of

statements which, besides testing for the presence of particular outgoing action commands

in the agent’s Action Subsystem, can also test the truth values of various items of the

agent’s current internal state — in particular, its current beliefs, desires, and intentions

(more on these in the next section). Suppressor rules’ action parts consist of operations to

prevent particular action commands from being fed through to the agent’s effectors. In

Figure 2, for example, the suppressor control rule suppressor-rule-3 is used to

prevent layer R from reacting to (steering away from) a lane marking object whenever the

agent’s current intention is to overtake some other agent that is in front of it. Any number

of censor control rules can fire (and remove selected control layer input) when these are

applied at the beginning of a synchronization timeslice. Suppressor control rules, on the

other hand, are assumed to have been crafted by the agent’s programmer in such a way that

(i) at most one will fire in any given situational context (an agent’s situational context is

taken to be the combination of its perceptual input set and its current internal state); and (ii)

at most one action command will remain in the Action Subsystem after the suppressor

control rule’s action part has been executed. By crafting suppressor control rules in this

way, a TouringMachine’s effectors can be guaranteed to receive no more than one action

command to execute during any given timeslice.
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abstraction and each is endowed with different task-oriented capabilities. Also, because

each layer directly connects perception to action and can independently decide if it should

or should not act in a given world state, frequently one layer’s proposed actions will

conflict with those of another; in other words, each layer is an approximate machine and

thus its abstracted world model is necessarily incomplete. As a result, layers are mediated

by an enveloping control framework so that the agent, as a single whole, may behave

appropriately in each different world situation.

Implemented as a combination of inter-layer message-passing and context-activated,

domain-specific control rules (see Figure 1), the control framework’s mediation enables

each layer to examine data from other layers, inject new data into them, or even remove

data from the layers. (The term data here covers sensed input to and action output from

layers, the contents of inter-layer messages, as well as certain rules or plans residing within

layers.) This has the effect of altering, when required, the normal flow of data in the

affected layer(s). So, in the road driving domain for example, the reactive rule in layer R to

prevent an agent from straying over lane markings can, with the appropriate control rule

present, be overridden should the agent embark on a plan to overtake the agent in front of

it (more on this shortly).

Inputs to and outputs from layers are generated in a synchronous fashion, with the

context-activated control rules being applied to these inputs and outputs at each

synchronization point. The rules, thus, act as filters between the agent’s sensors and its

internal layers (suppressors), and between its layers and its action effectors (censors) — in

a manner very similar to Minsky’s suppressor- and censor-agents (Minsky, 1986). Both

types of rules are of the if-then condition-action type. In the case of censor rules, the



 BDI Modelling for Coordinated Behavior

6

2 TouringMachines

Upon carrying out an analysis of the intended TouringMachine task domain — that is, upon

characterizing those aspects of the intended real-time road navigation domain that would

most significantly constrain the TouringMachine agent design — and after due

consideration of the requirements for producing autonomous, effective, robust, and flexible

behaviors in such a domain (Ferguson, 1992, pages 26—32), the TouringMachine

architecture has been designed through integrating a number of reactive and suitably

designed deliberative control functions.

Implemented as a number of concurrently-operating, latency-bounded, task-achieving

control layers, the resulting TouringMachine architecture is able to produce a number of

reactive, goal-directed, reflective, and predictive behaviors — as and when dictated by the

agent’s internal state and environmental context. In particular, TouringMachines (see

Figure 1) comprise three such independently motivated layers: a reactive layer R for

providing the agent with fast, reactive capabilities for coping with events its higher layers

have not previously planned for or modelled (a typical event, for example, would be the

sudden appearance of some hitherto unseen agent or obstacle); a planning layer P for

generating, executing, and dynamically repairing hierarchical partial plans (which are used

by the agent, for example, when constructing navigational routes to some target

destination); and a reflective-predictive or modelling layer M for constructing behavioral

models of world entities, including the agent itself, which can be used as a platform for

explaining observed behaviors and making predictions about possible future behaviors

(more on this below).

Each control layer is designed to model the agent’s world at a different level of
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considered interesting because it presents agents with a series of challenging tasks

including having to cope with multi-agent interactions, unpredictability, uncertainty,

resource-constrained tasks, and real-time environmental change. While it is true that a

number of simplifications have been in order to analyze more easily the behavior of

TouringMachines (these are detailed elsewhere (Ferguson, 1992, pages132—134)), it is

fair to say that the TouringWorld is a reasonably faithful approximation to certain classes

of real-world, multi-agent domains; for example, automated factory/office floors or road

traffic environments.

This article is concerned with the design and implementation of an integrated agent

control architecture, the TouringMachine architecture (Ferguson, 1994; Ferguson, 1995),

suitable for controlling and coordinating the actions of autonomous rational agents

embedded in a partially-structured, dynamic, multi-agent world. In addition to providing

an overview of the proposed agent control architecture (see section 2), this article presents,

in section 3, a detailed rationale justifying the use of a hybrid architecture — that is, one

which integrates both deliberative and non-deliberative task behaviors — for controlling

agents in complex real-world domains such as the TouringWorld. In section 4, a description

is given of TouringMachines’ Belief-Desire-Intention modelling capabilities. Section 5

provides some results obtained upon experimenting with several such intentional agents, in

a number of different environmental settings; this section also discusses several important

methodological issues concerning the experimental approach followed in this project. The

article concludes with a discussion of a number of critical issues surrounding the practical

design and implementation of autonomous agents such as TouringMachines.
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one’s possible future equipment, design, management, and operational changes.

Now, while intelligent agents must undoubtedly remain reactive in order to survive,

some amount of strategic or predictive decision-making will also be required if agents are

to handle complex goals while keeping their long-term options open. On the other hand,

agents cannot be expected to model their surroundings in every detail as there will simply

be too many events to consider, a large number of which will be of little or no relevance

anyway. Not surprisingly, it is becoming widely accepted that neither purely reactive (Agre

and Chapman, 1987; Schoppers, 1987; Brooks, 1991; Maes, 1994) nor purely deliberative

(Bratman et al., 1988; Durfee and Montgomery, 1990; Shoham, 1993; Vere and Bickmore,

1990) control techniques are capable of producing the range of robust, flexible behaviors

desired of future intelligent agents. What is required, in effect, is an architecture that can

cope with uncertainty, react to unforeseen incidents, and recover dynamically from poor

decisions. All of this, of course, on top of accomplishing whatever tasks it was originally

assigned to do.

In the example application domain used to evaluate TouringMachines, one or more

autonomous route-planning agents (vehicles) are considered, each with the task of

relocating from some starting location to some goal location within certain time bounds

and/or spatial constraints. Each agent starts out with some topological knowledge of the

world (e.g. locations of paths, path junctions, and certain landmarks associated with these

junctions), but has no prior knowledge of the whereabouts of other agents or of any

obstacles. An agent can communicate its intentions to turn or overtake by signalling —

much like a driver does in a car — and can only consume up to some fixed number of

computational resources per unit of world time. This domain, the TouringWorld, can be
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1 Introduction

The computer-controlled operating environments at such facilities as automated factories,

nuclear power plants, telecommunications installations, and information processing centers

are continually becoming more complex. As this complexity grows, it will be increasingly

difficult to control such environments with centralized management and scheduling

policies that are both robust in the face of unexpected events and flexible at dealing with

operational and environmental changes that might occur over time. One solution to this

problem which has growing appeal is to distribute, along such dimensions as space and

function, the control of such operations to a number of intelligent, task-achieving robotic

or computational agents.

Most of today’s computational agents are limited to performing a relatively small range

of well-defined, pre-programmed, or human-assisted tasks. Operating in real world

domains means having to deal with unexpected events at several levels of granularity —

both in time and space, most likely in the presence of other independent agents. In such

domains agents will typically perform a number of complex simultaneous tasks requiring

some degree of attention to be paid to environmental change, temporal constraints,

computational resource bounds, and the impact agents’ shorter term actions might have on

their own or other agents’ longer term goals. Also, because agents are likely to have

incomplete knowledge about the world and will compete for limited and shared resources,

it is inevitable that, over time, some of their goals will conflict. Any attempt to construct a

complex, large-scale system in which all envisaged conflicts are foreseen and catered for

in advance is likely to be too expensive, too complex, or perhaps even impossible to

undertake given the effort and uncertainty that would be involved in accounting for all of
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Abstract

This paper describes an architecture for controlling and coordinating autonomous

agents, building on previous work addressing reactive and deliberative control methods.

The proposed multi-layered hybrid architecture allows a rationally bounded, goal-directed

agent to reason predictively about potential conflicts by constructing knowledge level

models which explain other agents’ observed behaviors and hypothesize their beliefs,

desires, and intentions; at the same time it enables the agent to operate autonomously, to

react promptly to changes in its real-time environment, and to coordinate its actions

effectively with other agents. A principal aim of this research is to understand the role

different functional capabilities play in constraining an agent’s behavior under varying

environmental conditions. To this end, an experimental testbed has been constructed

comprising a simulated multi-agent world in which a variety of agent configurations and

behaviors have been investigated. A number of experimental findings are reported.
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