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ABSTRACT 

This paper explores the application of ordered weighted averaging (OWA) operators to develop 

water quality index, which incorporates an attitudinal dimension in the aggregation process. The 

major thrust behind selecting the OWA operator for aggregation of multi-criteria decision-making is 

its capability to encompass a range of operators bounded between minimum and maximum. A new 

approach for generating OWA weight distributions using probability density functions (PDFs) is 

proposed in this paper. The basic parameters (mean and standard deviation) of the probability 

density functions can be determined using the number of criteria (e.g. water quality indicators) in the 

aggregation process.  

The proposed approach is demonstrated using data provided in a study by Swamee and Tyagi (2000) 

for establishing water quality indices. The Normal distribution and its inverse form were found 

suitable for compromising or normative decisions, whereas the Exponential and its inverse form 

were found suitable for pro-risk and risk-averse decisions, respectively. The proposed OWA weight 

distributions are also compared with the commonly used regular increasing monotone (RIM) 

functions for generating OWA weights. Sensitivity analyses are carried out to highlight the utility of 

the proposed approach for multi-criteria decision-making and establishing water quality indices. 

Keywords: OWA operators, fuzzy, probability density function, water quality index, degree of 

orness, and dispersion. 

 



LIST OF NOTATION 

naaa ,...,, 21  Multi-criteria vector 

jb  j
th

 largest element in the vector ( ) naaa ,...,, 21

BOD5 Biochemical oxygen demand 

)(wDisp  Dispersion  

DO Dissolved oxygen 

E Exponential distribution 

FN-IOWA Fuzzy number IOWA 

GIOWA Generalized IOWA operator 

GOWA Generalized OWA operator 

i,j Counters 

I Index (water quality) 

IE Inverse Exponential distribution 

IN Inverse Normal distribution 

IOWA Induced OWA 

LOWA Linguistic OWA 

MCDM Multi criteria decision-making 

ME-OWA Maximizing entropy OWA 

n  Number of criteria or attributes 

N Normal distribution 

OWA Ordered weighted averaging 

PDF Probability density function 

P-OWA Probabilistic OWA 

)(rQ  Linguistic quantifier as a fuzzy subset 

)(* rQ  Linguistic quantifiers “for all” 

)(* rQ  Linguistic quantifiers “there exists” 

RDM Regular decreasing monotone 

RIM Regular increasing monotone 

RUM Regular unimodal 

si Sub-indices 

SOWA “orlike” S-OWA-OR operator / “andlike” S-OWA-AND operator 



UDS Uniform deceasing sub-indices 

UOWA Uncertain OWA operator 

US Unimodal sub-indices 
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jw  OWA weights 

N
iw  Normalized Normal OWA weight distribution 

N
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iw′  Un normalized Inverse Normal OWA weight distribution 

E
iw  Normalized Exponential OWA weight distribution 

E
iw′  Un normalized Exponential OWA weight distribution 

IE
iw  Normalized Inverse Exponential OWA weight distribution 

IE
iw′  Un normalized Inverse Exponential OWA weight distribution 

WQI Water quality index (indices) 

WOWA Weighted OWA 

x  Continuous random variable 

α  Degree of orness 

β Degree of a polynomial function for the RIM functions 

δ Change 

λ Fractiles or quantiles 

μ  Mean 

nμ   Mean of the collection n,...,2,1  

σ  Standard deviation 

nσ  Standard deviation of the collection n,...,2,1  
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1.  INTRODUCTION 

Environmental indices for water, air and sediments are common communication tools used by 

regulatory agencies to describe the overall quality of the environmental system. The environmental 

indices are evaluated from the individual estimates of environmental indicators or criteria. Water 

quality index (WQI) is evaluated using data collected through routine sampling, which are 

mandatory in a regulatory framework. The WQI is useful in establishing background levels of water 

quality for a given aquatic system for implementing regulatory policies and evaluating decision 

actions planned for the improvement and the rehabilitation of an aquatic system (Silvert 2000). In 

the interpretation of WQI, an attitudinal tolerance may vary with respect to the intended use of water 

like drinking, swimming, and fishing etc. Therefore, water that is “excellent” for swimming might 

be of “poor” quality for drinking. 

Water quality index is a risk communication tool used to describe the status of water by translating a 

large amount of non-commensurate data into a single value (Ott 1978). A significant amount of 

literature is available on the evaluation and management of water systems using WQI.  For this 

purpose, physical, chemical, and biological water quality indicators (sub-indices) are aggregated in a 

‘meaningful’ way using various statistical and mathematical techniques (Ott 1978). These 

aggregation approaches generally include logical operators (e.g., minimum, maximum), averaging 

operators (e.g., arithmetic average, weighted average, geometric mean, weighted product), and many 

others operators (e.g., simple addition, root sum power, root sum-square, and multiplicative forms) 

(Somlikova and Wachowiak 2001;Silvert 2000; Sinha et al. 1994; Ott 1978).  

Swamee and Tyagi (2000) have discussed advantages and shortcomings of different aggregation 

techniques available for the evaluation of WQI. In the aggregation process, recognition of two 

potential pitfalls, namely exaggeration and eclipsing, is important. Exaggeration occurs when all 

water quality indicators individually posses lower value (meaning in acceptable range), yet the WQI 

comes out unacceptably high. Eclipsing is the reverse phenomenon, where one or more of the water 

quality indicators are of relatively high value (meaning in an unacceptable range), yet the estimated 

WQI comes out as unacceptably low. These phenomena are typically affected by the method of 

aggregation, therefore the challenge is to determine the best aggregation method that will 

simultaneously reduce both exaggeration and eclipsing. 



From a regulatory compliance viewpoint, threshold level of contaminant (or a water quality 

indicator) concentration in the drinking water is established in the context of possible adverse human 

(ecological) health impacts. For this reason it is extremely useful to relate WQI to some sort of 

‘acceptability’ measure for drinking water, which can be interpreted as the membership of a fuzzy 

set. Silvert (2000) argued that “the concept of ‘acceptability’ is itself seen by some as fuzzy, in the 

colloquial rather than mathematical sense, but this reflects the reality that we can measure 

environmental effects far more accurately than we can evaluate their significance.” A lack of 

consensus may exist on the definition of ‘acceptability’ and its related objectivity; therefore it may 

be more realistic to convert water quality indicators into a fuzzy membership, which represents the 

degree of acceptability of those water quality indicators in the set of acceptable conditions. Recently, 

a large number of applications in developing environmental indices has been reported in the 

literature where advanced assessment methods such as fuzzy synthetic evaluation are being 

employed. Simple fuzzy classification, fuzzy similarity method and fuzzy comprehensive 

assessment, are all subsets of fuzzy synthetic evaluation, which have been recently used in various 

environmental applications (Sadiq et al. 2006; Sadiq and Rodriguez 2004; Lu and Lo 2002;Chang et 

al. 2001; Lu et al. 1999; Tao and Xinmiao 1998).  

The aggregation of fuzzy sets requires operations by which several fuzzy numbers are combined in a 

desirable way to produce a single fuzzy number (Klir and Yuan 1995). The literature reflects 

numerous ways and operators to aggregate fuzzy sets, e.g., intersection, minimum, product (also 

known as fuzzy t-norms) and union, maximum, summation (also known as s-norms). Other common 

operators for aggregation are arithmetic, geometric and harmonic means. In addition, there is a class 

of generalized mean operator developed by Yager (1988) called ordered weighted averaging 

(OWA) operators. The OWA provides flexible aggregation operation ranging between the minimum 

and the maximum operators. Detailed discussions on the selection of appropriate aggregation 

operators can be found in Klir and Yuan (1995), and Smolikova and Wachowiak (2001). There is an 

increasing reported applications of OWA operators in the disciplines of civil and environmental 

engineering (Makropoulos and Butler 2006, 2005, 2004; Smith 2006, 2002; Makropoulos et al. 

2003). 

This paper explores the potential use of OWA operators to develop WQI. The motive behind 

selecting the OWA for aggregation of sub-indices is its capability to encompass a range of operators 

from minimum to maximum including various averaging aggregation operations like arithmetic mean 
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(see Figure 1). The OWA weight generation provides a flexibility to incorporate decision maker’s 

attitude or tolerance, which can be related to an intended use of water. The OWA operation 

procedure involves three steps – (1) reordering of the input arguments (sub-indices), (2) determining 

the weights associated with the OWA operators, and (3) aggregation process. The concept of OWA 

is explored in various disciplines of engineering and artificial intelligence and many nuances and 

extensions have been proposed. In this paper, the basic concept of Xu (2005) to generate OWA 

weights using the normal probability density function (PDF) is extended to more probability 

distributions. To explain our approach we used a data set of raw water quality (Table 1) provided by 

Swamee and Tyagi (2000). 

Swamee and Tyagi (2000) data set comprises nine water quality indicators (sub-indices) including 

BOD5, fecal coliform, dissolved oxygen (DO) proportion with respect to saturation, nitrates, pH, 

phosphates, temperature, total solids, and turbidity. Table 1 summarizes the results of this study. As 

the units of various water quality indicators (sub-indices) are non-commensurate, transformation 

functions are used to translate the actual values into an interval of [0, 1], where “0” corresponds to 

worst value and “1” corresponds to the best value. Transformation functions including uniform 

deceasing sub-indices (UDS), unimodal sub-indices (US), and non-uniformly decreasing sub-indices 

(NDS) are proposed by Swamee and Tyagi (2000) for various water quality indicators. For example 

for DO, ‘higher’ proportion means a ‘higher’ value of sub-index (i.e. a benefit criterion). But 

contrarily for fecal coliform, ‘higher’ concentration refers to a ‘lower’ value of sub-index and vice 

versa (i.e. a cost criterion). Therefore, an appropriate transformation function is required for each 

water quality indicator to translate or map actual values over an interval [0, 1] before the 

implementation of aggregation process.  

Water quality indices were determined for a data set comprised of nine water quality indicators 

using eight aggregation methods. The formulations of these methods are also provided in Table 1. 

The values of WQI ranged from 0.12 to 0.866 using different methods. Interestingly, the index 

proposed by Swamee and Tyagi (2000) is very sensitive, and may predict value lower than the 

minimum value of sub-index (0.125).  Interested readers can refer to Swamee and Tyagi (2000) for 

detailed discussion on their approach. 

This paper is organized in five sections. Section 2 explains the basic concept and its nuances of 

OWA operators proposed by Yager (1988). Section 3 discusses the formulation of probabilistic 

OWA and regular increasing monotone (RIM) functions. Section 4 provides a discussion on the use 
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of probability density functions for generating OWA weights and results of sensitivity analyses. The 

final section provides a summary and concludes the paper. 

2.  ORDERED WEIGHTED AVERAGE (OWA) OPERATOR 

2.1  Basic concepts 

Most multi-criteria decision analysis problems require neither strict “anding” (minimum) nor strict 

“oring” of the s-norm (maximum). For mutually exclusive and independent probabilities in the fault 

tree analysis, these two extremes correspond to multiplication (and-gate) and summation (or-gate). 

To generalize this idea, Yager (1988) introduced a new family of aggregation techniques called the 

ordered weighted average (OWA) operators, which form general mean type aggregators. The OWA 

operator provides flexibility to utilize the range of “anding” or “oring” to include the attitude of a 

decision maker in the aggregation process.  

An OWA operator of dimension n  is a mapping of  (where R = [0, 1]), which has an 

associated  number of criteria , where 

RR n →

n T

nwww ),,,(w = 21 L ]1,0[∈jw and . Hence, for a 

given criteria (sub-indices) vector ( ), the OWA aggregation is performed as follows 

∑ =
=

n

j
jw

1

1

n naaa ,...,, 21

∑
=

=
n

j

jjn bwaaaOWA
1

21 ),...,,(  (1)

where  is the jjb
th

 largest element in the vector ( ), and . Therefore, the 

weights  of OWA are not associated with any particular value , rather they are associated with 

the ordinal position of . The linear form of OWA equation aggregates multiple criteria vector 

( ) and provides a nonlinear solution (Yager and Filev 1999; Filev and Yager 1998). 

naaa ,...,, 21 nbbb ≥≥≥ ...21

jw ja

jb

naaa ,...,, 21

The OWA operator is bounded between minimum (a conjunctive operator or a t-norm) and maximum 

(a disjunctive operator or an s-norm) operators (Figure 1). The range between these two extremes 

can be expressed through the concept of (orness α ) function, which is defined by Yager (1988) as 

follows  

∑
=

−
−

=α
n

i

i inw
n 1

)(
1

1
,         and    ]1,0[∈α  (2)
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The  function characterizes the degree to which the aggregation is like an or operation. An 

 = 0, corresponds to a scenario where OWA vector w becomes (0, 0,…, 1), i.e., the element with 

the minimum value in the multiple criteria vector ( ) gets the complete weight, which 

implies that the OWA becomes a minimum operator. Similarly, 

orness

α

naaa ,...,, 21

α  = 1, corresponds to a scenario 

where OWA vector w becomes (1, 0,…, 0), i.e., an element with a maximum value in the multiple 

criteria vector ( ) is assigned complete weight, which implies that the OWA becomes 

maximum operator. Further, if all elements in the multiple criteria vector ( ) are assigned 

equal weights (arithmetic average), i.e., w = (1/n, 1/n,…, 1/n), the  becomes  = 0.5. With 

the exception of the two extreme cases of 

naaa ,...,, 21

naaa ,...,, 21

orness α

α  = 0 or 1, an infinite number OWA weight distributions 

are possible for any  value. For example, α α  = 0.5 does not guarantee that weights are uniformly 

distributed (i.e., wi = 1/n), rather it hints that weights are distributed symmetrically on both sides of 

the median ordinal position. Therefore, for any symmetric probability density function (PDF) either 

uniform or normal,  will be 0.5.  α

To differentiate weight distribution at a given α , a ‘measure’ called dispersion was 

introduced by Yager (1988). The concept of dispersion is similar to Shanon’s entropy, and can be 

computed by: 

)(wDisp

∑
=

−=
n

i

ii wwwDisp
1

)ln()(   (3)

where . The measure provides a degree to which the information in the 

arguments is used. Therefore, when 

)ln()(0 nwDisp ≤≤ )(wDisp

α  = 0 or 1 (i.e., wi = 1), for minimum or maximum operators 

respectively, the dispersion is “zero” and when wi = 1/n (a uniform distribution), the dispersion is 

maximum, i.e., “ln(n)”.  

2.2 Determination of OWA weights 

One of the major challenges in OWA method is to generate weights. Since the introduction of OWA 

operators by Yager (1988), different methods of OWA weight generation and extension of OWA 

operators have been proposed in the literature. A comprehensive, though not exhaustive list of OWA 

extensions has been provided in Table 2. Xu (2005) and Filev and Yager (1998) have carried a 

treatise on the generation for OWA weights. A few of these methods are discussed in the following 
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paragraphs. Further, motivated by the work of Xu (2005), a new method of generating OWA weights 

using different, well know probability distributions is also discussed. 

Yager (1988) proposed generation of OWA weight using a linguistic quantifier as a fuzzy subset 

in the unit interval [0, 1]. The classic binary logic allows the representation of two linguistic 

quantifiers “there exists”  (or), and “for all”  (and) (Figure 1). But in natural language 

many additional quantifiers such as “many”, most”, “few”, “almost all”, “very few” are possible. 

Zadeh (1983) suggested two types of quantifiers – the first related to number of elements and the 

second related to the proportion of the elements. Yager (1996) further distinguished the relative 

quantifiers into three classes; regular increasing monotone (RIM), regular decreasing monotone 

(RDM) and regular unimodal (RUM) quantifier. A discussion on RUM and RIM functions is 

provided in Section 3.  

)(rQ

)(* rQ )(* rQ

O’Hagan (1988) developed a procedure to generate the OWA weights for given degree of orness α , 

maximizing the entropy (ME-OWA) (Equation 3). Yager (1993) expressed the measure of entropy as 

 and generated weights by minimizing ( )iwaxm1− ( )i
i

wmax  for predefined level of orness α . Yager 

and Filev (1994) further introduced different OWA weight generation methods based on given levels 

of orness α .  Filev and Yager (1998) developed procedures based on the “exponential smoothing” to 

generate the OWA weights. Yager and Filev (1999) suggested an algorithm to obtain the OWA 

weights from a collection of samples with the relevant aggregated data. Fullér and Majlender (2001) 

used the method of Lagrange multipliers to solve O’Hagan’s procedure analytically. Xu and Da 

(2002) established a linear objective-programming model to obtain the weights of the OWA operator 

under partial weight information. Recently, Xu (2005) proposed OWA weight generation method by 

equating weight distribution to normal probability density function, which is similar to RUM 

function. 

2.3 Nuances and extensions of OWA operators  

The OWA operators are weighted sums of the ordered elements, bounded between minimum (the 

biggest t-norm) and maximum (the smallest s-norm) operators. Yager and Filev (1994) extended the 

concept of OWA weights generation and aggregation technique (S-OWA-AND, S-OWA-OR, 

NOWA). Herrera et al. (1996) and Bordogna et al. (1997) introduced the concept of aggregation of 

linguistic values in OWA, called LOWA operator. Herrera et al. (1996) used the convex method to 
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aggregate the linguistic values, whereas, Bordogna et al. (1997) proposed the use of MAX-MIN 

composition operator in OWA aggregation.  

Traditionally in OWA, input criteria (sub-indices) are assumed to be equally important and OWA 

weights are assigned based on the ordinal position. To deal with the criteria of varying importance in 

the aggregation process, Tora (1997) introduced the concept of weighted OWA (WOWA) operators, 

which initially assigns significance weights to the input values and then OWA aggregation is 

performed in a regular way. Yager and Filev (1999) introduced induced OWA (IOWA) operator, 

which unlike the OWA operator, allows ordering by an inducing parameter that is associated with 

the input values. The utility of the inducing parameter is only for ordering, and not in the 

aggregation process. Xu and Da (2002) later proposed a generalized IOWA operator. Schaefer and 

Mitchell (1999) proposed a generalized OWA operator. Xu and Da (2002) introduced uncertain 

OWA operator (UOWA) for interval-valued numbers. Chen and Chen (2003, 2005) introduced the 

concept of fuzzy input values, called fuzzy number IOWA (FN-IOWA). Table 2 provides a 

summary of some of these important studies in chronological order. 

3.  PROPOSED APPROACH FOR GENERATING OWA WEIGHTS 

The weights distribution of OWA operator can synonymously be viewed as probability density 

function (PDF), because OWA weights satisfy the basic axioms of probability, i.e.,  

and . Due to this resemblance, probability distributions can be used to generate OWA 

weights. The PDFs are continuous functions, in which the area under the curve is “1”. The OWA 

weights are discrete and similar to probability mass function, in which the sum of the weights 

(probabilities) is equal to “1”. Therefore, PDFs can be discretized to accommodate OWA weights. 

The advantages of using PDFs for generating OWA weights include: (1) simplicity, (2) familiarity 

with the properties of statistical distributions, and (3) availability of diverse shapes of PDFs to 

obtain desired degree of orness and dispersion. 

]1,0[∈jw

∑ ==
n
j jw1 1

3.1 OWA weight generation using Normal distribution 

Xu (2005) proposed the Normal probability density function to generate OWA weights. The normal 

distribution is one of the best known and most widely used two-parameter distributions. It is also 

called Gaussian or Laplacian distribution. According to the Central Limit Theorem, a sum of 

independent random variables always converges towards normality, regardless of the distribution of 
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the individual random variables. The Normal distribution is a unimodal symmetric function about its 

mean  with a standard deviation σ . The PDF of normal distribution for a continuous random 

variable

μ

x  is defined as:  

( ) ]222)([

2

1 σμ

πσ
−−= xexf ,                 +∞<<∞− x  (4)

For n number of sub-indices (water quality indicators or criteria) to be aggregated, the OWA weights 

can be computed as: 

]222)([

2

1
nni

n

N

i ew
σμ

πσ
−−=′ ,                     ni ,...,2,1=  (5)

where nμ  and nσ  (> 0) are the mean and standard deviation of the collection , respectively. 

The mean 

n,...,2,1

nμ  and standard deviation nσ  can be computed by: 

( )n
nn

n
n +=

+
= 1

2

)1(1 λμ  (6)

∑
=

μ−=σ
n

i

nn i
n

1

2)(
1

 (7)

where parameter λ can be referred to as fractile or quantile representing the location of the maximum 

weight, which is assigned to the median ordinal position (50
th

 percentile) for a symmetric unimodal 

function (a traditional normal PDF). For example, if there are nine sub-indices to be aggregated (i.e., 

n = 9) using OWA, the modal location will be at the 5
th

 criterion (in descending order value) 

according to Equation 6. This concept can be generalized for other fractiles or quantiles (λ). 

Therefore, if λ < 0.5, a positively skewed distribution (leaning towards left) can be generated using 

Equations (6) and (7).  Similarly, if λ > 0.5, a negatively skewed distribution (leaning towards right) 

can be generated using Equations (6) and (7). Parameter λ therefore defines the ordinal position to 

which a decision-maker intends to assign the maximum value of OWA weight.  

As mentioned earlier, PDFs need to be discretized to generate OWA weight distribution. Therefore, 

normalization of Equation (5) is required to obtain OWA weight vector : T
nwwww ),...,,( 21=

∑
=

′

′
=

n

j

N
i

N
iN

i

w

w
w

1

,                               ni ,...,2,1=  
(8)
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The OWA weight distribution  can be generated using Equations 6-8 and are plotted in Figure 2 

for parameter λ = {0.1, 0.3, 0.5, 0.7, 0.9}. As mentioned earlier, λ = 0.5 is a special case of Xu 

(2005) where OWA weights are symmetrical about the median ordinal position. These weight 

distributions represent OWA weights generated for n = 9. The area under the curve has no specific 

meaning; rather the heights corresponding to ordinal positions (i) represent OWA weights (w

N
iw

i). 

Therefore, the sum of these heights is equal to 1 i.e., , not the area under the curve. ∑ ==
n
i iw1 1

The Normal PDF with λ = 0.5 provides compromising OWA weight distribution, i.e., sub-indices 

close to minimum and maximum ordinal positions get the lower values of OWA weights. In case of 

positively skewed distribution (i.e., λ ∈ [0, 0.5]), OWA weight distribution approaches towards 

RDM function, whereas in case of negatively skewed distribution (i.e., λ ∈ [0.5, 1]), OWA weight 

distribution becomes similar to RIM function. Table 3 provides a summary of orness and dispersion 

values for five fractiles λ = {0.1, 0.3, 0.5, 0.7, 0.9} using Normal distribution function. The 

corresponding orness and dispersion are {0.627, 0.618, 0.5, 0.382, 0.373}, {2.112, 2.099, 2.119, 

2.099, 2.112}, respectively. The degree of orness, which refers to optimistic to pessimistic attitude of 

a decision-maker, decreases with the increase in fractile values. The values of dispersion measures 

are consistently close to maximum value of ln(9) ≈ 2.2 for all cases. These high dispersion values 

hint that OWA weights generated through Normal PDF use information from “most” of the sub-

indices.  

After generating OWA weights, the water quality index can be obtained using Equation (1). The 

sub-indices values used in the analysis are the same as provided in Column 4 of Table 1. For 

example, for λ = 0.1, the following analysis is performed to obtain water quality index I: 

Step 1: Reordering of the input arguments (sub-indices, si):  

a = (0.125, 0.423, 0.622, 0.233, 0.866, 0.251, 0.396, 0.168, 0.269) 

After reordering (in descending order) 

b = (0.866, 0.622, 0.423, 0.396, 0.269, 0.251, 0.233, 0. 168, 0.125) 

Step 2: Determining the weights associated with the OWA operators:  

Using normal distribution for λ = 0.1 and n = 9 

w = (0.166, 0.162, 0.152, 0.136, 0.117, 0.096, 0.075, 0.056, 0.04) 
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Step 3: Aggregating using Equation (1): 

I
N

0.1 = 0.166 × 0.866 + 0.423 × 0.622 +…+ 0.04 × 0.125 = 0.45 

where “N” refers to OWA weight distribution using normal PDF and “0.1” refers to fractiles λ. 

Similarly, water quality indices for other fractiles can be obtained and summary of results are 

provided in Table 3. 

3.2 OWA weight generation using inverse form of normal distribution 

The RUM functions (e.g., normal distribution) are convex, which assign maximum OWA weight to 

a predefined ordinal position as discussed above. Contrarily, decision-maker may want to assign 

minimum value to predefined ordinal position. This can be achieved, using the inverse form of 

normal distribution function. For example, the normal distribution at λ = 0.5 assigns maximum 

weight to the median position, while the inverse form of normal distribution assigns minimum value 

to the median ordinal position.  This reflects a situation, where the decision maker ignores the values 

at predefined ordinal position and gives more weight to sub-indices at the extremes. The OWA 

weights for the inverse form of normal distribution function can be generated from Equation (8) as 

follows: 

( )MINMAX −−=′ N

i

IN ww
i

          ni ,...,2,1=  (9a) 

and 

( )∑
=

′

′
=

n

j

IN

j

IN

IN

w

w
w i

i

1

 (9b) 

where MAX and MIN are the maximum and minimum values of OWA weights  generated using 

Equation (8), i.e., MAX( , …, ),  MIN( , …, ), respectively. For example, the following 

steps are used to generate OWA weights using the inverse form of normal PDF for λ = 0.1 

N
iw

1w 2w nw 1w 2w nw

Step 1: Generate OWA using normal PDF ( ) for given n (= 9) and predefined λ (= 0.1):  N

iw

w = (0.166, 0.162, 0.152, 0.136, 0.117, 0.096, 0.075, 0.056, 0.04) 

Step 2: Determine MAX and MIN values:  

MAX = MAX(0.166, 0.162, 0.152, 0.136, 0.117, 0.096, 0.075, 0.056, 0.04) = 0.166 
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MIN = MIN(0.166, 0.162, 0.152, 0.136, 0.117, 0.096, 0.075, 0.056, 0.04) = 0.04 

Step 3) Generate OWA weights for inverse form of normal PDF using Equation (9): 

INw
1

 = [0.166 – (0.166 – 0.04)]/0.854 = 0.047 

INw
2

= [0.166 – (0.162 – 0.04)]/0.854 = 0.051 

M  

INw
9

= [0.166 – (0.04 – 0.04)]/0.854 = 0.194 

where denominator 0.854 is the factor ( )∑ ′
=

n

j

IN

jw
1

 in Equation (9). 

The OWA weight distribution can be generated using Equations 6-9. These OWA weight 

distributions are plotted in Figure 3 for fractiles λ = {0.1, 0.3, 0.5, 0.7, 0.9}. Table 3 provides a 

summary of orness and dispersion for these five fractiles using Inverse form of normal PDF. The 

corresponding orness and dispersion are {0.352, 0.336, 0.5, 0.664, 0.648}, {2.088, 2.039, 2.117, 

2.039, 2.088}, respectively. The degree of orness increases with the increase in fractile values, i.e., 

moving from pessimistic to optimistic attitude of a decision-maker. There is no noticeable variation 

in the dispersion measures. Water quality indices are calculated using the same procedure as 

explained earlier for normal PDF generated OWA weights. The variation in WQI ranges from 0.282 

to 0.471 for pessimistic to optimistic attitude, respectively. It is worth noting that neither normal nor 

Inverse normal PDF captures the extreme cases of “OR” and “And” scenarios, i.e. for degree of 

orness α approaches to either 1 or 0, respectively. The dispersion Disp approximately equals to the 

maximum possible value of ln(9) = 2.2 in all cases. These high values refer to a case of maximum 

use of available information of the sub-indices.   

3.3 OWA weight generation using exponential distribution 

The exponential distribution is a memory-less continuous distribution. The exponential distribution 

is often used to model the time between random arrivals of events that occur at a constant average 

rate. The Exponential distribution is defined by a simple parameter μ , which is the mean time 

between failures. The PDF of exponential distribution for a variable x is defined as: 

( ) μ

μ
xexf −=

1
,            (x > 0)  (10)
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To generate OWA weights  using the PDF of exponential distribution, Equation (10) can be re-

written as following:  

E
iw′

ni

n

E
i ew

μ−

μ
=′ 1

,    ni ,...,2,1= (11)

As mentioned earlier, PDFs need to be discretized to generate OWA weight distribution. Therefore, 

normalization of Equation (11) is required to obtain OWA weight vector : T
nwwww ),...,,( 21=

∑
=

′

′
=

n

j

E
j

E
iE

i

w

w
w

1

,                 ni ,...,2,1=
(12)

The exponential PDFs are extreme positive skewed distribution, i.e., similar to RDM function. 

Figure 4 shows the OWA weights distribution for fractiles λ = {0.1, 0.3, 0.5, 0.7, 0.9}. The increase 

in the value of a fractile reduces the steepness of weight distribution and a flat curve is achieved. 

This phenomenon can also be observed by comparing the degree of orness α at varying λ. For λ = 

0.1 the α = 0.927 (a strictly Or-type operator), whereas for λ = 0.9, the α equals to 0.591 (a 

compromising operator). This phenomenon can be further elaborated through Disp measure. For λ = 

0.1, the Disp = 1.04 (a little information is used), whereas for λ = 0.9, the α value equals to 2.16 

(high entropy entails maximum information). The degree of orness α for exponential PDF for OWA 

weight generation is bounded by an interval [0.5, 1]. It implies that OWA weights generated through 

an exponential distribution provide Or-type solutions only. After generating OWA weights using 

exponential distribution PDF, the water quality index can be obtained using Equation (1). The 

results are also summarized in Table 3. 

3.4 OWA weight generation using inverse type of exponential distribution 

To generate OWA weights using inverse type of exponential distribution, the following equation is 

used:  

ni

n

IE

i ew
μ

μ
1

=′ ,    ni ,...,2,1= (13)

Therefore, to obtain OWA weight vector , normalization of Equation (13) can be 

performed as follows  

T
nwwww ),...,,( 21=

16



∑ ′

′
=

=

n

j

IE

j

IE

iIE

i

w

w
w

1
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(14)

The inverse type of exponential distribution is highly negatively skewed distribution, i.e., similar to 

RIM function. Figure 5 shows the OWA weights distribution for fractiles λ = {0.1, 0.3, 0.5, 0.7, 

0.9}. Increase in the value of a fractile reduces the steepness of weight distribution and a flat curve is 

achieved for λ = 1. The degree of orness α for inverse type of exponential PDF for OWA weight 

distribution is bounded by an interval [0, 0.5]. It implies that OWA weights generated through 

inverse exponential PDF provide And-type solutions. After generating OWA weights using inverse 

exponential distribution PDF, the water quality index can be obtained using Equation (1). The 

results are also summarized in Table 3. 

3.5 OWA weight generation using RIM functions 

A class of function to generate OWA weights, called regularly increasing monotone (RIM) 

quantifier was first proposed by Yager (1988). The RIM functions are bounded by two linguistic 

quantifiers “there exists”  (OR) and “for all”,  (AND) as described earlier. Thus, for any 

RIM quantifier , the limit holds true (Yager and Filev 1994). The OWA 

weights can be generated for a given RIM quantifier  as follows  

)(rQ∗ )(rQ∗

)(rQ )()()( rQrQrQ ∗
∗ ≤≤

)(rQ

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛=

n

i
Q

n

i
Qwi

1
            ni ,...,2,1=  (15)

Yager (1988, 1996) defined a parameterized class of fuzzy subsets, which provide families of RIM 

quantifiers that change continuously between  and : )(rQ∗ )(rQ∗

βrrQ =)(                                    0≥r (16)

(1) For β =1; Q(r) = r (a linear function) called the unitor quantifier 

(2) For ∞→β ; , the universal quantifier  )(rQ∗

(3) For 0→β ; , the existential quantifier )(rQ∗

Therefore Equation (15) can be generalized as 
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where is β is a degree of a polynomial function. Figure 6 demonstrates the variation in the OWA 

weight distributions with respect to various degrees of polynomial (β). For β = 1, the RIM function 

becomes a uniform distribution, i.e., weight distribution becomes similar to an arithmetic mean, i.e., 

wi = 1/n. For β > 1, the RIM function leans towards right, i.e., “And-type” operators manifesting 

negatively skewed OWA weight distributions. Similarly, for β < 1, the RIM function leans towards 

left (it becomes RDM), i.e., “Or-type” operators manifesting positively skewed OWA weight 

distributions.   

4.  DISCUSSION 

The normalization process used for the inverse form of the normal distribution assures that the 

maximum value of OWA weights generated through the normal distribution will be assigned the 

minimum value not “zero”. Due to this normalization process, these two weight distributions are not 

exactly the mirror image of each other with respect to a straight line drawn at minimum weight 

parallel to x-axis. The method proposed to derive OWA weight distribution using inverse form of 

exponential PDF is rather different. The OWA weight distribution using inverse form of Exponential 

PDF is completely independent from exponential OWA weight distribution. These two weight 

distributions are mirror image of each other if a vertical line is drawn at the median ordinal position. 

The authors acknowledge that similar methodology can be opted for inverse normal distribution 

OWA weights. The motive here is to show various alternatives to generate OWA weights through 

PDFs. The OWA weights generated through various methods discussed in this paper comply with 

basic properties of 

1) idempotency, i.e., wi + wi = wi,  

2) commutativity, i.e., wi + wj = wj + wi and  

3) associativity, i.e., wi + (wj + wk) = (wi + wj) + wk.  

The details of these properties can be found in Yager (1988). 

Normal distribution and its inverse form provide OWA weight distributions with a limited variation 

in the degree of orness, which ranges in the interval [0.3, 0.7]. Exponential distribution and its 

inverse form provide OWA weight distributions in the intervals [0.5, 1] and [0, 0.5], respectively. 
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Figure 7(A) compares the degree of orness of these four PDFs. Figure 7(B) provides a comparison 

of Dispersion measures for these OWA weight distributions. A limited variation in Dispersion 

measures can be observed in the case of normal and its inverse form due to thick tails. This implies 

that more information is being used, i.e., all sub-indices contribute to the final index value. Figure 

7(C) compares the WQI variations at various fractiles for four PDFs using raw water quality data 

provided by Swamee and Tyagi (2000). Very limited variations in WQI are observed for various 

fractiles in case of normal and its inverse form. On the other hand, in case of exponential distribution 

and its inverse form, both provide more variations in WQI values due to larger interval of degree of 

orness. The variations in the values of WQIs (Figure 7C) and corresponding orness (Figure 7A) 

follow a similar trend due to their linear relationship.  

In case of RIM functions, increasing the power of polynomial (β) from 0.1 to 9, varies the WQI 

values from maximum (Or-type) to minimum (And-type) type operators. Figure 8 shows this 

variation, in which arithmetic mean value of WQI corresponds to β = 1. Figure 9 compares domain 

of degree of orness for 4 PDFs as discussed above and various RIM functions. Figure 9 can also be 

interpreted by comparing with Figure 1 as described earlier. The normal and its Inverse can be used 

for generating OWA weights for compromising decisions, in which the whole spectrum of 

information is important. Contrarily, exponential and its inverse can be used to generate OWA 

weight distribution representing risk-averse and pro-risk attitudes of the decision-maker, 

respectively. In the water quality context, normal and its inverse distributions can be used where 

decision-makers think that for overall water quality “some” of the attributes (sub-indices or 

indicators) have to be complied with. Similarly, exponential and its inverse distributions can be used 

where decision-makers think that to describe overall water quality either “few” or “most” of the 

attributes (sub-indices) have to be complied with, respectively.   

Table 4 provides results of sensitivity analyses for three scenarios for WQI evaluation. In the first 

scenario, a sub-index (s1) has the best possible value (i.e., 1) and all remaining sub-indices 

(s2, s3,…, s9) have the worst possible value (i.e., 0). To evaluate the change (δ) in WQI (I) for any 

given method the following relationship is used 

( )
100(%)

AM

AM

I

II −
=δ   (18)
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where I
AM

 is a value of WQI using arithmetic mean operator. A positive value of δ suggests that the 

degree of orness is more than 0.5, while a negative value of δ suggests that the degree of orness is 

less than 0.5. Therefore higher positive δ value account for those cases when results are 

“exaggerated” and higher negative values of WQI results refer to “eclipsed” cases. Similar 

interpretation can be made for second scenario, when a sub-index (s1) has the worst possible value 

(i.e., 0) and all remaining sub-indices (s2, s3, …, s9) have the best possible value (i.e., 1). A third 

scenario highlights an interesting point in which a constant value of water quality index is achieved 

regardless of the change in the type of functions used at any given fractile levels (in case of PDFs) or 

power of polynomial (in case of RIM functions). This confirms that OWA weights generated 

through different methods are idempotent in nature.  

 5.  SUMMARY AND CONCLUSION 

In our daily life and in many engineering problems, we are often confronted with the issue of 

aggregating various non-commensurate attributes to make a certain decision. Multi criteria decision-

making (MCDM) is not simply a problem of mathematics rather it is a problem of judgment 

(Halpern and Fagin 1992). Therefore, it deals not only with objective uncertainty (related to random 

phenomenon), but also with the subjective (related to decision-maker) uncertainty. Various 

mathematical and statistical techniques are available in the literature, which deals with complex 

problem of decision-making under various types of uncertainties. 

Most MCDM problems neither require strict conjunctive or disjunctive logic for the aggregation of 

multiple criteria. Yager (1988) introduced a new family of aggregation techniques called the ordered 

weighted average (OWA) operators. The OWA operator provides a flexibility to utilize the degree of 

orness as a surrogate representing the attitude of a decision maker in the aggregation process. This 

paper proposes a new approach for generating OWA weight distributions using various types of 

commonly used probability density functions. An example of water quality index is used to explain 

the proposed approach. The specific conclusions of this paper are: 

• Probability density functions (normal, exponential and their inverse forms) can be used to 

generate OWA weight distributions. 

• Selection of OWA weight distributions using PDFs of normal and its inverse form represents 

normative or compromising attitude of a decision maker. The degree of orness α for both 

cases varies approximately in an interval [0.3, 0.7]. 
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• Higher values of dispersion measure in case of normal and its inverse form imply that most 

of the information is being incorporated in the aggregation. 

• Selection of OWA weight distributions using PDFs of exponential and its inverse form 

represents optimistic (Or-type) and pessimistic (And-type) attitudes of the decision maker, 

respectively. The degree of orness α for these cases varies in an intervals [0.5, 1] and [0, 

0.5], respectively. 

• Higher variations in dispersion measure for exponential and its inverse form imply that the 

level of information used depends on the fractiles level chosen by the decision-maker.  

• For β = 1, the RIM function becomes a uniform distribution, i.e., an arithmetic average 

operator. For β > 1, the RIM function become “And-type” operators. Similarly, for β < 1, the 

RIM function becomes RDM, i.e., “Or-type” operators. 

• The method of OWA weight generation can be expanded to other PDFs due to its simplicity 

and familiarity with the statistical properties. 

In the water quality context, normal and its inverse forms can be used for OWA weight generation 

where the intended use of water requires that “some” of the attributes (sub-indices or water quality 

indicators) have to comply with regulatory limits. Similarly, exponential and its inverse distributions 

can be used where intended use of water requires that either “few” or “most” of the attributes (sub-

indices or water quality indicators) have to comply with regulatory limits, respectively.   
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Table 1  Comparison of various water quality indices to evaluate raw water quality 

(reproduced from Swamee and Tyagi 2000) 

Water Quality 

indicators 

(1) 

Observed 

values (q) 

(2) 

*Transformation 

function 

(3) 

Sub-

index (si) 

 (4) 

§
Weight 

(wi) 

  (5) 

 Aggregation methods for 

developing WQI 

(6) 

WQI 

(I) 

(7) 

BOD5 (mg/L) 20 UDS (3, 20) 0.125 0.10  1. Swamee and Tyagi (2000) 0.120 

Fecal coliforms 

(MPN/100 mL) 

66 UDS (0.3, 4) 0.423 0.15  2. Weighted arithmetic mean 0.409 

Dissolved oxygen 

(proportion) 

0.6 US (1, 3, 1, 0) 0.622 0.17  3. Arithmetic mean 0.373 

Nitrates (mg/L) 25 UDS (3, 40) 0.233 0.10  4. Weighted product 0.427 

pH 7.8 US (7, 4, 6, 0) 0.866 0.12  5. Geometric mean 0.396 

Phosphates (mg/L) 2 UDS (1, 0.67) 0.251 0.10  6. Minimum 0.125 

Temperature (oC) 32 US (20, 0.5, 7, 0) 0.396 0.10  7. Maximum 0.866 

Total solids (mg/L) 1,000 US (75, 1, 1, 0.8) 0.168 0.08  8. Squared root of harmonic mean 0.235 

Turbidity (JTU) 70 UDS (1.5, 50) 0.269 0.08    

* Sub-indices (si) in column (4) are obtained by corresponding transformation 

function. Two types of transformation functions are used  
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Table 2 A summary of some important studies in the development of OWA operators 

Reference Aggregation algorithm Type of OWA Weight generation algorithm 
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Linguistic OWA 

operator 
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quantifiers. 
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Bordogna et al. 

(1997) 
{ }jj

j
n bwaaaLOWA ,minmax),...,,( 21 −=  Linguistic OWA 

operator 

The weights  are generated using linguistic 

quantifiers. 

jw

Yager and 

Filev (1999) 
( ) ∑ =

=
n

j
jjnn bwauauIOWA

1
11 ,,...,,  

Induced OWA 

operator 
The weights  can be generated by any of the 

methods discussed in section 2.2.  is an order 

inducing parameter determined by the user. 

jw

1u

Schaefer and 

Mitchell 

(1999) 
PAWaaaGOWA T

n =),...,,( 21  

Generalized OWA 

operator 
The weights  can be generated by any of the 

methods discussed in section 2.2. 

jw

P  is a 

permutation matrix and . ),...,,( 21 naaaA =

Xu and Da 

(2002) ∑ =
=

n

j
jjn bwaaaUOWA

1
21

~
)~,...,~,~(  Uncertain OWA 

operator 

The weights  are generated by linear 

objective-programming model. 

jw

Xu and Da 

(2003) 
( ) ∑ =

=
n

j
jjnnn bwauvauvGIOWA

1
111 ,,,...,,,  Generalized 

IOWA operator 

The weights  can be generated by any of the 

methods discussed in section 2.2. 

jw

Chen and Chen 

(2003, 2005) 
FN- ( ) ∑ =

=
n

j
jjnn bwauauIOWA

1
11

~~~,,...,~,  
Fuzzy number 

Induced OWA 

operator 

Fuzzy weights are associated with linguistic 

levels, which vary from absolutely unimportant 

(AU) to absolutely important (AI). The weight 

jw~  and sub index jb
~

are fuzzy numbers. 
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Table 3 Comparison of OWA weight distributions using PDFs to evaluate raw water quality 

OWA weights PDF Fractile 

λ  
1w  2w  3w  4w  5w  6w  7w  8w  9w  

Orness 

α 

Dispersion 

Disp 

WQI 

I 

0.1 0.166 0.162 0.152 0.136 0.117 0.096 0.075 0.056 0.040 0.627 2.112 0.450 

0.3 0.134 0.154 0.162 0.154 0.134 0.106 0.076 0.050 0.030 0.618 2.099 0.434 

0.5 0.051 0.085 0.124 0.156 0.168 0.156 0.124 0.085 0.051 0.500 2.119 0.345 

0.7 0.030 0.050 0.076 0.106 0.134 0.154 0.162 0.154 0.134 0.382 2.099 0.286 

Normal 

0.9 0.040 0.056 0.075 0.096 0.117 0.136 0.152 0.162 0.166 0.373 2.112 0.288 

0.1 0.047 0.051 0.064 0.082 0.105 0.129 0.153 0.175 0.194 0.352 2.088 0.282 

0.3 0.080 0.052 0.041 0.052 0.080 0.118 0.159 0.196 0.223 0.336 2.039 0.288 

0.5 0.174 0.138 0.097 0.065 0.052 0.065 0.097 0.138 0.174 0.500 2.117 0.401 

0.7 0.223 0.196 0.159 0.118 0.080 0.052 0.041 0.052 0.080 0.664 2.039 0.492 

Inverse 

Normal 

0.9 0.194 0.175 0.153 0.129 0.105 0.082 0.064 0.051 0.047 0.648 2.088 0.471 

0.1 0.632 0.233 0.086 0.031 0.012 0.004 0.002 0.001 0.000 0.927 1.039 0.745 

0.3 0.298 0.214 0.153 0.110 0.079 0.056 0.040 0.029 0.021 0.743 1.895 0.552 

0.5 0.217 0.178 0.146 0.119 0.098 0.080 0.065 0.054 0.044 0.658 2.074 0.483 

0.7 0.184 0.159 0.138 0.120 0.104 0.090 0.078 0.068 0.059 0.616 2.132 0.452 

Exponentia

l 

0.9 0.166 0.149 0.133 0.119 0.107 0.095 0.085 0.076 0.068 0.591 2.157 0.434 

0.1 0.000 0.001 0.002 0.004 0.012 0.031 0.086 0.233 0.632 0.073 1.039 0.152 

0.3 0.021 0.029 0.040 0.056 0.079 0.110 0.153 0.214 0.298 0.257 1.895 0.233 

0.5 0.044 0.054 0.065 0.080 0.098 0.119 0.146 0.178 0.217 0.342 2.074 0.278 

0.7 0.059 0.068 0.078 0.090 0.104 0.120 0.138 0.159 0.184 0.384 2.132 0.302 

Inverse 

Exponentia

l 

0.9 0.068 0.076 0.085 0.095 0.107 0.119 0.133 0.149 0.166 0.409 2.157 0.316 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.125 

Maximum 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.866 

Arithmetic mean 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.500 2.197 0.357 

             

 



Table 4 Sensitivity analyses of OWA operators (n = 9) 

Scenario 1                              s1 = 1                     s2, s3,…,s9 = 0         I
AM

 = 0.111;  I
min

 = 0; I
max

 = 1 

 Normal Inverse 

normal 

Exponential Inverse 

exponential 

 RIM 

λ  IN δ (%) IIN δ (%) IE δ (%) IIE δ (%) β IR δ (%) 

0.1 0.166 49 0.047 -58 0.632 469 0.000 -100 0.1 0.783 605 

0.3 0.134 21 0.080 -28 0.298 168 0.021 -81 0.3 0.481 333 

0.5 0.051 -55 0.174 56 0.217 95 0.044 -61 1 0.111 0 

0.7 0.030 -73 0.223 101 0.184 66 0.059 -47 3 0.001 -99 

0.9 0.040 -64 0.194 74 0.166 50 0.068 -38 9 0.000 -100 

            

Scenario 2                                s1 = 0                     s2, s3,…,s9 = 1         I
AM

 = 0.889;  I
min

 = 0; I
max

 = 1 

 Normal 
Inverse 

normal 
Exponential 

Inverse 

exponential 
 RIM 

λ  IN δ (%) IIN δ (%) IE δ (%) IIE δ (%) β IR δ (%) 

0.1 0.960 64 0.806 -74 1.000 100 0.368 -469 0.1 0.987 88 

0.3 0.970 73 0.777 -101 0.979 81 0.702 -168 0.3 0.961 65 

0.5 0.949 55 0.826 -56 0.956 61 0.783 -95 1 0.889 0 

0.7 0.866 -21 0.920 28 0.941 47 0.816 -66 3 0.702 -168 

0.9 0.834 -49 0.953 58 0.932 38 0.834 -50 9 0.346 -488 

            

Scenario 3                                s1, s2,…,s9 = 0.5         I
AM

 = I
min

 = I
max

 = 0.5  

 
Normal 

Inverse 

normal 
Exponential 

Inverse 

exponential 
 RIM 

λ  IN δ (%) IIN δ (%) IE δ (%) IIE δ (%) β IR δ (%) 

For all 0.500 0 0.500 0 0.500 0 0.500 0 For all 0.500 0 
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Less restrictive operator direction 

Operator type 

OWA operators

At least 

a few

Most of

Averaging operators t-conorms t-norms 

0 1 

Quantifier Universal (Pure “and”)

“for all”
Existential (pure “or”) 

“there exists” 

Min MaxProd Sum Arithmetic 

mean

Some important 

operators 

Conjunctive Disjunctive 

prod(a, b) ≤ min(a, b) ≤ arithmetic mean(a, b) ≤ max(a, b) ≤ sum(a, b); 0 ≤ a, b ≤ 1 

 

Fig. 1. Common aggregation operators (after Larsen, 2002) 
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Fig. 2. OWA weights generated using normal distribution (n = 9) for fractiles  

λ = {0.1, 0.3, 0.5, 0.7, 0.9} 
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Fig. 3. OWA weights generated using inverse form of normal distribution (n = 9) for fractiles 

 λ = {0.1, 0.3, 0.5, 0.7, 0.9} 
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Fig. 4. OWA weights generated using exponential distribution (n = 9) for fractiles 

λ = {0.1, 0.3, 0.5, 0.7, 0.9} 
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Fig. 5. OWA weights generated using inverse form of exponential distribution (n = 9) for fractiles 

λ = {0.1, 0.3, 0.5, 0.7, 0.9} 
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Fig. 6. OWA weights generated using the RIM function for power of polynomial 

 β = {0.1, 0.3, 1, 3, 9} 
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Variation in orness, dispersion and WQI (for n = 9) with respect to fractiles of various OWA weight 

distributions 
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Fig. 7. Variation in WQI by varying degree of ploynomial (β) of RIM function  
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Fig. 8. Domains of degree of orness for various OWA weight distributions 
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