
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The International RuleML Symposium on Rule Interchange and Applications 
(RuleML 2008) [Proceedings], 2008

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=5f3ca279-541e-41eb-9d23-141ea3f34a6c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5f3ca279-541e-41eb-9d23-141ea3f34a6c

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Abductive Workflow Mining using Binary Resolution on Task 

Successor Rules
Buffett, Scott



National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  
 
 
 
 

 
 

Abductive Workflow Mining using Binary 

Resolution on Task Successor Rules* 

 
Buffett, S. 
October 2008 
 
 
 
 
 
 
 
 
 
* published at The International RuleML Symposium on Rule Interchange 
and Applications (RuleML 2008). Orlando, Florida, USA. October 30, 2008. 
NRC 50392.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2008 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables 
from this report, provided that the source of such material is fully acknowledged. 

 

 



Abductive Workflow Mining using Binary

Resolution on Task Successor Rules

Scott Buffett

National Research Council Canada, Fredericton, NB, E3B 9W4
Scott.Buffett@nrc.gc.ca

Abstract. The notion of abductive workflow mining is introduced, which
refers to the process of discovering important workflows from event logs
that are believed to cause or explain certain behaviour. The approach is
based on the notion of abductive reasoning, where hypotheses are found
that, if added to a rule base, would necessarily cause an observation to
be true. We focus on the instance of workflow mining where there are
critical tasks in the underlying process that, if observed, must be scruti-
nized more diligently to ensure that they are sufficiently motivated and
executed under acceptable circumstances. Abductive workflow mining is
then the process of determining activity that would necessarily imply
that the critical activity should take place. Whenever critical activity
is observed, one can then inspect the abductive workflow to ascertain
whether there was sufficient reason for the critical activity to occur. To
determine such workflows, we mine recorded log activity for task suc-
cessor rules, which indicate which tasks succeed other tasks in the un-
derlying process. Binary resolution is then applied to find the abductive
explanations for a given activity. Preliminary experiments show that rel-
atively small and concise abductive workflow models can be constructed,
in comparison with constructing a complete model for the entire log.

1 Introduction

The diverse sets of advantages and disadvantages that various existing workflow
mining algorithms have to offer demonstrate that there is seemingly a solution
to fit almost any need. Techniques such as van der Aalst’s α-algorithm [8], α++
algorithm [11] and heuristic miner [10] offer mining techniques that produce
concise, simplified workflows that are easy to visualize, but sacrifice accuracy.
Still others such as Petrify [7] and Region Miner [9] achieve high fitness and
precision, but as a result can produce workflows that are too large or complicated
to be reasonably understood by a human viewer. In this case, reducing the
size and complexity of a workflow model by eliminating components that are
not of interest to a particular observer with a specific purpose for viewing the
model, while retaining the desirable qualities of fitness and precision, can be
quite advantageous. Accomplishing this is the focus of this paper.

Situations where an observer needs to view and understand very specific
components of a workflow model for a particular purpose are prevalent in the



2

domain of compliance. In this case, the primary focus commonly seen in workflow
mining of understanding how processes work so that they can be improved upon,
made more efficient, or simplified, is not as crucial. Instead, the goal here lies in
ensuring that individuals’ behaviour is deemed appropriate within the context
of the overall observed activity. Thus the workflow only needs to be analyzed
to the extent that it can be determined whether a particular event is compliant
with the rules, given the observed activity within which the event is situated.
This greatly simplifies the compliance checking process. It is then not necessary
to collect all tasks in a particular case and check against the entire workflow
model to ensure consistency. Instead only the simplified model, which shows the
legal traces of activity with which a particular action may be associated, needs
to be analyzed. Using the simplified model will improve accuracy by reducing
false positive and false negative cases, since reducing the model should naturally
reduce the number of structures in the model that degrade fitness and precision,
such as loops. Just as important, this reduction will also greatly simplify the
cognitive burden imposed on the viewer of the workflow model. If inappropriate
activity is detected, the graphical representation of the simplified model can be
displayed to a compliance officer, who will more easily be able to understand
why a particular action was deemed inappropriate, and quickly make a decision
on the subsequent course of action.

In this regard, the task is not as simple as merely isolating a specified region or
subgraph of the workflow model. Given a particular activity for which compliance
checking is desirable, it needs to be determined exactly what part of the overall
workflow model is needed. To accomplish this task, we introduce the concept
of abductive workflow mining. This concept comes from the particular field of
logical reasoning known as abductive reasoning. Abductive reasoning refers to the
problem of of finding explanations for a particular set of facts. These explanations
are found to be sets of facts and axioms that, if true, will logically imply that
the original set of facts are true. We apply this concept to workflow mining
by discovering workflows that, if followed in a particular trace, would offer an
explanation for why a particular task was executed. Such a workflow is known
as an abductive workflow.

In this paper, we present a method that finds abductive workflows by min-
ing and constructing propositional task successor rules. These rules, which are
represented in Kowalski form, indicate which tasks follow which other tasks in
the underlying process that is being mined. Given a simple action or a complex
set of activity, binary resolution is applied to the rules to determine abductive
explanations for the activity in question. The set of explanations can then be
simplified to form a minimal set. We choose the stronger act of identifying ab-
ductive explanations, rather than simply identifying consistent activity, due to
the possibly critical nature of the activity in question. For example, if the critical
activity was the act of a bank employee accessing sensitive customer data, such
as a credit report, the idea is to identify activity that would necessarily imply
that the critical activity would have to take place (such as a loan application
being processed), rather than to identify activity that is merely consistent with



3

the activity in question (such as the credit report being printed). Compliance
software or a privacy officer could then do a simple check to ensure that at least
one such causal activity (or sequence of activities, i.e. workflow) was indeed
executed.

The remainder of the paper is presented as follows. In section 2 we discuss
required background theory on workflow mining and abductive reasoning that
we employ in our techniques. Section 3 then defines abductive workflow, and in-
troduces some necessary theory surrounding the concept. In section 4 we outline
our logic-based technique for discovering abductive workflows, and in section 5
we presents a few results demonstrating the performance of our method. Section
6 then discusses conclusions and offers a few directions for future work.

2 Background

2.1 Workflow Mining

Workflow mining [2] refers to the process of autonomously examining a trans-
action log of system events, and extracting a model of the underlying process
being executed by the events. Generally speaking, an log consists of a number
of events, each of which being associated with a task and a case. An event’s task
refers to the actual activity the event represents, while the event’s case refers
to the instance of the underlying business process to which the event belongs.
Each case in the log consists of a sequence of tasks (often referred to as a trace)
that represent a complete and ordered set of actions that are executed in an
instance of the business process. Workflow mining techniques are then used to
build a model of the business process by representing the different ways a case
in the process can be executed. A number of different representations have been
used in the literature, perhaps the most common of which being the Petri net [3,
1]. Figure 1 represents a small example log, as well as the resulting Petri net
representing the mined workflow. Any legal sequence of transitions that takes a
token from the start (leftmost) place to the end (rightmost) place represents a
different way of executing the business process. Thus by a quick inspection of
the graphical model, one can infer different characteristics of the process, such
as the fact that C and D can be executed interchangeably, due to the preced-
ing “OR-split” where one place points to the two transactions, or that both B

and either C or D can be executed in parallel after A, due to the preceding
“AND-split” where A points to two places.

2.2 Abductive Reasoning

Abduction is an instance of assumption-based reasoning where the focus is to
determine a hypothesis (or a set of hypotheses) that, if true, would necessarily
explain an observation or evidence in question [4]. This type of reasoning is par-
ticularly useful when one observes an interesting or curious event or happening,
and may want to know what could possibly cause the event to be true. That is,



4

�������������

����������

�������	��


���������

����������

���������

����
�����

����������

����������

�������	��

����
�����

��������	��

�����������

�
���
��	��

�����������

���������

����������

�����
�����

�����������

�������	��

�����������

�����������

��������	��

�
��������

�����������

�

�

��� ���

���

���

���

Fig. 1. Example log and corresponding workflow diagram.

given evidence E and rule base R, abductive reasoning attempts to find facts
that, when added to R, would necessarily imply E. Such facts are then likely
to have a causal effect on E in the real-world application being modeled by the
rule base.

Abductive reasoning is of particular importance in fault diagnosis in complex
systems. Here the rule base represents the operational characteristics of the
system, and an observation is typically some fault or error in system function.
Abductive reasoning is then used to determine what sort of activities would
necessarily cause the fault to occur. These activities are then considered to be
the primary causes of the error, and are thus investigated first. So abduction is
applied to diagnosis with the idea that actions that would necessarily cause a
fault to occur are more likely to be the true cause than actions that are merely
consistent with the fault occurring.

We consider the application of abductive reasoning to workflow analysis in
a similar way. Here the complex system to be modeled is the business process
being analyzed, and the activities in question are the more serious or potentially
harmful tasks that are executed within the process. Such critical tasks should
not be executed freely; rather there should be an impelling reason for such tasks
to be performed. Abductive reasoning can then be applied to determine what
sort of activities would be sufficient for validating the critical behaviour in ques-
tion, allowing one to easily verify whether the behaviour was warranted in any
particular situation.

3 Abductive Workflow

Let W be a workflow model constructed based on a set T of tasks and a set C

of cases of executions of T , as defined in section 2.1 above. Additionally, let W ′

be a sub-workflow of W , for which an explanation is desired. Note that W ′ may
often simply consist of a single transition, representing the event to be explained,
but in general could be any workflow structure. We consider a workflow Wa to
be an abductive workflow of W for W ′ if and only if any activity observed in
Wa necessarily implies that there is associated activity in W ′. This means that
observing activity in Wa necessarily implies that activity in W ′ will occur, and
thus Wa is an explanation for W ′.



5

Note that one might think that an easy way to find an abductive workflow
that satisfies this condition is to simply set Wa = W ′. So, for example, one
could say that an explanation for a task A be executed is to observe that A

is executed. Clearly, something stronger is needed. We need to find what sort
of extra activity, not including A, would cause A to be executed. So, generally
speaking, an explanation for W ′ is not allowed to include W ′. W ′ may reside
within the abductive model, but the activity surrounding W ′ must be sufficient
for W ′ to occur. In this section we lay out formal definitions for the properties
such as this for a workflow model to be considered an abductive workflow. In
the following section we then offer general ideas for how an abductive workflow
model can be constructed.

Definition 1 (consistent) Let C be a set of cases and let W be a workflow
model (not necessarily built based on C). A case c ∈ C is said to be consistent
with W if there is a valid trace through W that is a (non-empty) substring of c.
Moreover, any sequence t of events is consistent with W if there is a valid trace
through W that is a (non-empty) substring of t.

So a case c is consistent with W ′ if observing c would necessarily cause a trace
through W ′ to be observed, perhaps with extra activity from c occurring before
and/or after W ′. Let C+ ⊆ C then be the set of cases in C that are consistent
with W ′, and accordingly let C \ C+ be denoted by C−. Any case in C+ being
observed will then necessarily cause activity in W ′ to occur. We use this partition
over the set as the basis for the abductive model. First we define an abductive
trace, which is the key concept in modeling abductive workflow.

Definition 2 (abductive trace) Let W ′ be a workflow model and let C be a
set of cases partitioned into C+ and C− as above. A sequence ta of events is an
abductive trace in C for W ′ if and only if each of the following hold:

– ta is a substring of some c+ ∈ C+

– For any c− ∈ C−, (1) ta is not a substring of c−, and (2) if any possible
trace tW ′ through W ′ is a substring of ta, then there is no string S such that
the result of replacing tW ′ with S makes ta a substring of c−.

So, not only does an abductive trace ta cause activity in W ′, the part of ta
without the activity from W ′ necessarily causes activity in W ′. This means that
the activity in ta that resides in W ′ cannot be replaced, and thus the activity in
W ′ must occur. To illustrate the necessity for this restriction, consider a simple
example with two cases ABDE and ACDF , with W ′ simply being B. Then
ABDE is a positive case and ACDF is a negative case. The trace ABD would
not be considered an abductive trace, since executing B was not necessary in
this situation. Another choice was possible, namely D. Put another way, for any
event x, if A is performed immediately before x and D is performed immediately
after, it is not necessarily the case that x would be B. However, BDE on the
other hand would be an abductive trace (as would ABDE, DE, or even simply
E), since it is necessarily the case that an event x followed immediately by DE



6

would have to be B. Using the notion of abductive traces, we define abductive
workflow:

Definition 3 (abductive workflow) Let C be a set of cases yielding workflow
W . A workflow Wa is an abductive workflow of W for workflow W ′ if and only
if every valid trace through Wa is an abductive trace in C for W ′.

Thus any activity that is consistent with Wa, minus any activity that forms
a valid trace through W ′, will necessarily cause a valid trace through W ′ to be
executed.

While any abductive workflow will specify activity that will explain the ac-
tivity in question, there may be additional explanations that are not captured by
the model. That is, it is possible that activity in W ′ may occur without any ex-
planation from Wa. Ideally, we would prefer an abductive workflow that would
capture explanations for every case. That is not to say that we would expect
Wa to capture every possible explanation; rather, it would be equally useful to
generate abductive workflows that, given any activity in W ′, will contain some
explanation for that activity. To give an indication of how well an abductive
workflow performs at offering such an explanation, we define the completeness
measure for an abductive workflow.

Definition 4 (completeness measure) Let C = C+ ∪ C− be a set of cases
yielding workflow W and let Wa be an abductive workflow of W for W ′ as defined
above. The completeness measure for Wa is the probability that a case in C+ is
consistent with Wa.

The completeness measure is thus a measure of how likely it is that an occur-
rence of activity in W ′ will be explained by Wa, which is equal to the probability
that a case containing a trace of activity through W ′ will also contain a trace of
activity through Wa.

Definition 5 (complete) An abductive workflow with completeness measure
equal to 1 is said to be complete.

Another desirable characteristic of abductive workflow is that the model be
small and concise, making it easy to check, as well as less likely to introduce
errors. There are two ways to measure the size of a workflow model: (1) by
considering the length of the traces through the model, and (2) by considering
the number of traces through the model. We consider each of these separately.

Definition 6 (task-minimal abductive trace) An abductive trace ta is task-
minimal if there is no substring of ta that is an abductive trace.

Definition 7 (task-minimal abductive workflow) An abductive workflow is
task-minimal if all abductive traces making up the workflow are task-minimal.

So a task-minimal abductive workflow allows for only small traces, but may
allow for more traces than necessary. We tackle this dimension next.



7

Definition 8 (trace-minimal abductive workflow) An abductive workflow
is trace-minimal if there is no subgraph of the workflow with the same complete-
ness measure.

Thus an abductive workflow is minimal if it cannot be reduced in any way,
thus reducing the number of allowable traces, without giving up some of the
explanations it offers.

Putting it all together, a best possible abductive workflow is one that is:

– complete
– task-minimal
– trace-minimal

and perhaps ideally, has the fewest nodes out of all workflows that meet the
above conditions.

4 Discovering Abductive Workflow using Task Successor

Rules

In an effort to find abductive workflows that meet the criteria described in the
previous section, we mine the log data for rules, referred to as task successor
rules, that indicate which activity immediately follows certain tasks in the log.
These rules are represented in Kowalski form [6]. A non-horn clause is represented
as a rule in Kowalski form if the tail of the rule consists of the conjunction of
the atoms of the negative literals of the clause, and the head consists of the
disjunction of the positive literals. Thus we construct rules of the form:

p1 ∧ . . . ∧ pm → q1 ∨ . . . ∨ qn

Such a rule is interpreted as “the set of tasks {p1, . . . , pm}, when observed as a
whole, is always immediately followed by one of the tasks in {q1, . . . , qn}”. So the
conjunction of tasks p1, . . . , pm being observed implies the disjunction q1, . . . , qn.
For convenience, such rules are henceforth denoted as p1 . . . pm → q1, . . . , qn.

The set of rules is constructed as follows. Let W ′ represent the activity for
which an explanation is desired, and let C+ ⊆ C be the set of cases consistent
with W ′ and C− = C \ C+, as defined above. Let C+

−W ′ be a transformation of

C+ where, for every c in C+, there is a corresponding c′ in C+

−W ′ where c′ is
equivalent to c with two differences: (1) the specific tasks in c that represent a
trace through W ′ (i.e. the part that makes it consistent with W ′) are removed,
and (2) a dummy task (denoted by “w′”), which replaces the removed trace
from W ′, is appended to the end. For example, let W ′ be represented by the
execution of task A followed by task B. Then the case KABD in C+ would
be represented by KDw′ in C+

−W ′ . This then represents that a case with K

executed earlier than D, with no other activity (save for activity in W ′), can
cause activity in W ′ to occur (since the case includes w′). Also, let C−

W ′

o

be the

cases in C− with dummy tasks (denoted by “w′

o
”) appended to the end. Given



8

these transformations, a task successor rule is then created for every subsentence
of activity (minus the dummy task w′) that appears in a case in C+

−W ′ , with the
activities in the subsentence making up the tail of the rule. The head of the rule
is then the disjunction of all tasks that immediately follow that set of activity
in any case in C+

−W ′ ∪ C−

W ′

o

.

Example 1 (Task Successor Rules). Let the set of cases be {PQR,PRS,RMN ,
TQV }, and let W ′ simply represent the execution of task R. Then C+ =
{PQR,PRS,RMN}, C− = {TV Q} and thus C+

−W ′ = {PQw′, PSw′,MNw′}

and C−

W ′

o

= {TV Qw′

o
}. The set of task successor rules is then:

P → Q,S Q → w′, w′

o

S → w′ M → N

N → w′ PQ → w′

PS → w′ MN → w′

Once the rules are constructed, they are converted to clauses in conjunctive
normal form. Binary resolution is then applied to find new clauses where w′ is the
only positive literal. Atoms from the negative literals must then necessarily imply
w′, where w′ represents a trace of activity from W ′. Thus the tasks represented
by these atoms make up an abductive explanation. One could also make use
of other mechanisms, such as assumption-based truth maintenance systems, to
generate the abductive explanations.

Example 2 (Abductive Traces). Given the task successor rules generated in Ex-
ample 1, one could perform the following sequence of resolutions and conclude
that the presence of task P implies W ′:

P̄QS, P̄ Q̄w′ → P̄Sw′

P̄Sw′, S̄w′ → P̄w′

The set of abductive traces that would ultimately be found for this example is
{P, S,M,N, PS,MN,PQ}. Thus the observation of any of these seven sequences
implies that R will be performed. Note that the inclusion of w′

o
in C−

W ′

o

(and

subsequently in the task successor rule Q → w′, w′

o
) ensures that Q is not chosen

as an abductive explanation.

Even from a small example such as this, we see that an unnecessarily large
number of explanations can be generated. As mentioned above, it is desirable to
obtain abductive traces that are task-minimal. That is, it is more simplified to
present either M or N as abductive explanations of R, rather than specify that
both M and N are needed. Moreover, it also quite desirable to obtain workflow
representations that depict only enough information that will minimally but
completely explain W ′, and are thus complete and trace-minimal. In the above
example, both P and S are explanations for R; however, it would be redundant
to report both explanations, since P would explain the appearance of R in any
case that S would.



9

Example 3 (Task-Minimal Traces). The set of abductive traces from Example 2
that are task-minimal is {P, S,M,N}. This is obtained by simply removing the
supersets.

Example 4 (Complete Workflows). Using only the task-minimal traces in Ex-
ample 3, there are six complete abductive workflows. Since each trace in this
example consists of only a single event, each abductive workflow representation
will consist of a number of possible single-event sequences, and thus are denoted
here simply as a list of these events. The complete workflows are PM,PN,PMN ,
PSM,PSN,PSMN . This means that, if event R occurs, each of the six com-
plete workflows will contain an explanation that occurred (i.e. either P or M

will have occurred, and either P or N will have occurred, and either P or M or
N will have occurred, etc.)

Example 5 (Trace-Minimal Workflows). Of the six complete workflows discussed
in Example 4, only PM and PN are trace-minimal.

One can see that workflows that are complete, task-minimal and trace-
minimal are quite desirable, not only because they are very concise and thus
can be verified easily, but also because one can be assured that the workflow
will necessarily contain an explanation that is triggering the critical behaviour.
In the examples above, if the workflow PM was chosen, a compliance officer
observing that activity R took place could easily check to see whether either P

or M was executed. If not, one could conclude that there was not a sufficient
motivation for R to occur, and could choose to investigate the matter further.

5 Results

As a first step in the investigation of abductive workflow mining, we perform a
few simple tests to get an idea of how the general idea can work by reducing
the size of the workflow representation. To accomplish this, we employ a naive
method for finding abductive workflows where we simply search the set of cases
for strings of tasks that imply W ′. This will help to accomplish the main goal
of the paper, which is to investigate the potential of abductive mining in terms
of its effectiveness in simplifying complex workflows.

We start by building a workflow model W for the entire set C. W is then
used to discover traces in the model that correspond to a path through W ′.
An activity ai that directly precedes this path and an activity ao that directly
follows it are then chosen to form a larger path that contains the path through
W ′. We then search the rest of the model to determine if there is a sequence that
contains ai and ao, with activity not consistent with W ′ in between. If one is
found, then a new ai or ao is selected, or perhaps a longer sequence of preceding
or following activities is selected. If this is not the case, however, then executing
ai and ao necessarily causes activity in W ′ to be performed in between, and thus
this is an abductive trace. This process continues until a complete abductive
model is found.



10

To get an idea of by how much the size of the workflow graph is reduced by
simply considering the abductive model, we ran tests on five example log files
that are packaged with the ProM process management software [5]. We used
our own miner to build the workflow, and then we chose a single task to be the
target and found the corresponding abductive model that explains the target.
The average number of transitions and arcs produced for each of the original
and abductive model are presented in Table 1. The data shows that, in these
tests the abductive model was less than one quarter the size of the original in
terms of the number of both transitions and arcs.

Original Workflow Abductive Workflow

Number of transitions 156.2 37.2
Number of arcs 318.6 77.0

Table 1. Average size of the original and abductive workflow models for our workflow
miner

To show that the abductive model can score a significant reduction on work-
flows for other miners, we ran the tests on the α miner as well, a particularly
tough one to reduce, since very few transitions are used in α-algorithm-mined
workflows. The results for these tests are depicted in Table 2. The data shows
that significant reduction took place, as the workflows were cut to less than half
the size.

Original Workflow Abductive Workflow

Number of transitions 12.0 5.6
Number of arcs 33.2 15.6

Table 2. Average size of the original and abductive workflow models for the α miner

6 Conclusions and Future Work

In this paper we discuss a new approach to modeling workflow, referred to as
abductive workflow mining. With this approach, small concise workflows can be
modeled that are found to necessarily cause some activity in question to occur.
This is especially useful in the area of compliance checking where there is a small
number of critical tasks that need to be checked. The resulting smaller workflow
means that errors are less likely, and can also be more easily understood by a
human analyst that might be trying to make sense of what went wrong. We
employ a rule mining approach that searches the log in an effort to construct
task successor rules, which indicate which tasks follow which other tasks in
the underlying process. These rules, which are initially represented in Kowalski
form, are then converted to CNF, and binary resolution is used to determine



11

the abductive explanations for the given critical activity. Tests on a very naive
method for discovering abductive workflows show that the size of workflows can
be significantly reduced.

While the technique performed well on a simple example presented in the
paper, it is not guaranteed to find all abductive explanations. First, consider for
example the transformed sets C+

−W ′ = {PQw′, QPw′} and C−

W ′

o

= {QPXw′

o
}.

Writing the clauses by preserving the order of tasks, we can see that P being
executed before Q should necessarily imply W ′. However, when considering these
as clauses in binary resolution, PQ is treated no different from QP . And since
QP does not necessarily imply W ′, no abductive explanations will be found. A
second example of the technique’s shortcomings arises in the transformed sets
C+

−W ′ = {PQRw′, SQTw′} and C−

W ′

o

= {V TWw′

o
}. Clearly, Q is an explanation

for W ′. However, the way the rules are written, Q is only specified to imply that
R or T will be observed, and the observation of T does not imply W ′. So Q will
not be deemed an explanation by the resolution engine. Clearly there is much to
be done to ensure that more (or all) explanations can be found. Accomplishing
this task is the major focus of future work.

References

1. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Data

and Knowledge Engineering, 47(2):237–267, 2003.
2. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining:

Discovering process models from event logs. IEEE Transactions on Knowledge

and Data Engineering, 16(9):1128–1142, 2004.
3. James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, 1977.
4. D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical

Approach. Oxford University Press, Inc., New York NY, USA, 1998.
5. ProM. The ProM framework. ”http://is.tm.tue.nl/∼cgunther/dev/prom/”, 2007.
6. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.
7. Wil M.P. van der Aalst, V. Rubin, B.F. van Dongen1, E. Kindler, and C.W. Gun-

ther1. Process mining: A two-step approach using transition systems and regions.
Technical report, Eindhoven University of Technology, 2006.

8. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining: Dis-
covering process mining models from event logs. IEEE Transactions on Knowledge

and Data Engineering, 16(9):1128–1142, 2004.
9. B.F. van Dongen, N. Busi, G.M. Pinna, and W.M.P. van der Aalst. An itera-

tive algorithm for applying the theory of regions in process mining. Technical
report, Department of Technology Management, Eindhoven University of Technol-
ogy, 2006.

10. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models
from event-based data using little thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003.

11. L. Wen, J. Wang, and J.G. Sun. Detecting implicit dependencies between tasks
from event logs. In Frontiers of WWW Research and Development - APWeb 2006,
volume 3841, pages 591–603. Springer Berlin / Heidelberg, 2006.


