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Abstract—When reconstructing a specific type or class of
object using stereo, we can leverage prior knowledge of the
shape of that type of object. A popular class of object to
reconstruct is the human face. In this paper we learn a
statistical wavelet prior of the shape of the human face and
use it to constrain stereo reconstruction within a Bayesian
framework. We initialize our algorithm with a, typically noisy,
point cloud from a standard stereo algorithm, and search our
parameter space for the shape that best fits the point cloud. Due
to the wavelet basis, our shape parameters can be optimized
independently, thus simplifying and accelerating the search. We
follow this by optimizing for a secondary prior and observation:
smoothing and photoconsistency. Our method is fast, and is
robust to noise and outliers. Additionally, we obtain a shape
in an parameterized and corresponded shape space, making it
ready for further processing such as tracking, recognition or
statistical analysis.

Keywords-model-based stereo, wavelet prior, Bayesian frame-
work, graphics processing unit (GPU)

I. INTRODUCTION

Stereo reconstruction of class-specific objects, eg. human

faces, may benefit from prior knowledge of the shape of the

objects to be reconstructed. The prior models, learned from

statistical analysis of 3D shapes, constrain the reconstruc-

tion, alleviating some of the most difficult problems in stereo

such as occlusion and specularity. In practice, it is necessary

to build the prior models in a compact representation so that

they can be used efficiently to infer 3D shapes from images.

Principal component analysis (PCA) has been widely used

for this purpose. For example, Amberg et al. [1] learn a

PCA model from 3D scans and vary the model to best fit

the input images. However, PCA is a global model, which

means every parameter affects the whole shape. For stereo,

it is desirable to have a prior model that only influences

the shape variations locally. We propose a statistical wavelet

model for representing the shape variations and use it in a

Bayesian framework to reconstruct human faces from two

or more images.

Statistical shape priors have been used within single-view

reconstruction techniques, eg. Blanz and Vetter [2]. Using

multiple views gives us an observation that expresses the

likelihood of a shape based on 3D geometric constraints,

i.e. perspective correspondence between the views, as well

as surface appearance.

Stereo reconstruction can be broken into binocular stereo

and multi-view stereo. Although we only use two images,

our approach is more along the lines of multi-view ap-

proaches and could straightforwardly be extended to more

views. Scharstein and Szeliski [3] provided a survey of the

binocular case, and Seitz et al. [4] surveyed and classified

the multi-view techniques.

Amberg et al. [1] used model-based stereo to reconstruct

human faces. They used a 3D morphable model (3DMM) [2]

based on PCA of a training set of faces. In such a frame-

work, shapes are modeled as the mean shape plus a linear

combination of eigenvectors which represent eigen shape

variation modes, computed from the training set. The mean

shape was computed as the mean points’ coordinates. PCA

is a transform with global support; each shape parameter

depends on each vertex position, and vice versa. This means

that all parameters have to be optimized together, typically

in a complex gradient descent fashion, which may get stuck

in a local minimum. In contrast, we use a wavelet basis

that has localized support in both space and frequency.

This makes the transform computationally efficient, both in

terms of time and space, and allows us to use a simple

global optimization algorithm. The wavelet basis also affords

us greater variability; because the model parameters are

independent, we can generate shapes not found in the linear

subspace spanned by the training set.

Recently several methods for high-quality stereo capture

of human faces have been proposed [5], [6], [7]. While

we do not reconstruct with the same precision as some of

those methods, we do not require special face-paint, or near-

optimal lighting conditions or high-accuracy calibration. Our

approach is computationally efficient and can be orders of

magnitude faster than these methods. Our approach can

incorporate any range information, i.e. our method is not

restricted to stereo data. Additionally, we obtain a face mesh

that is in a common, corresponded shape space, making our

approach ideal for tracking and recognition.

When optimizing a model to best fit a set of observations,

it is desirable that the representation be compact, meaning

that most of the energy resides in a few coefficients. Thus

only those relatively few parameters need to be manipulated



to fit the model. PCA, Fourier and spherical harmonic

representations are compact, but the basis functions are not

localized in space, hence the coefficients in one scale have

to be optimized together, making the optimization problem

complex. By using a wavelet basis we are able to solve the

optimization in a simple divide-and-conquer approach. Li

et al. [8], performed segmentation of 3D Neuroradiological

data using a statistical wavelet prior similar to the one we

use here. In both cases the model is a generalized B-spline

subdivision wavelet [9].

Sun et al. [10] used strong shape priors for stereo. They

used an object-specific Markov random field (MRF) to inte-

grate shape priors seamlessly with a weak prior on surface

smoothness for articulated and deformable objects. Romeiro

and Zickler [11] coupled a 3DMM with an occlusion map

defined on the model shape to reconstruct faces in the

presence of occluding objects. While we do not handle

occluding objects, we can extend our method to incorporate

additional objects, and account for the occlusions with

little effort. Tonko and Nagel [12] used model-based stereo

of non-polyhedral objects for automatic disassembly tasks.

Zhao et al. [13] performed stereo reconstruction by first

fitting an approximate global parametric and then refining

the model using local correspondence processes. Koterba et

al. [14] studied the relationship between multi-view Active

Appearance Model (AAM) fitting and camera calibration.

Wavelets and other multi-resolution techniques have pre-

viously been used for stereo for over a decade, but most

often [15], [16], [17], [18], [19], [20] a wavelet transform

is applied to the images and then the resulting wavelet

coefficients are matched in a coarse-to-fine manner, which

allows for larger displacements between corresponding pix-

els. Miled et al. [21] used a wavelet domain representation

of the disparity map to regularize stereo reconstruction, but

their prior is an edge-preserving smoothing prior, as opposed

to a statistical shape prior.

Wavelet shape priors, have been used previously for

medical image segmentation [8], [22], and for single-view

reconstruction [23], [24].

In this paper we make the following contributions: the use

of a statistical wavelet shape prior for fast, robust model-

based stereo reconstruction of human faces; a sampling-

based Bayesian framework that can incorporate arbitrarily

many priors and observations; the re-parameterization of

human face scans with a subdivision sampling compatible

with the wavelet model. Our approach is robust with respect

to noisy observations and works under sub-optimal lighting

conditions. While we demonstrate our technique for faces,

we emphasize that we can generalize it to any shape that

is topologically equivalent to a sphere. The reconstructed

shape is captured in a common, registered shape space

making it immediately ready for other processing, such as

tracking and recognition. Additionally, we leverage a GPU-

based implementation that accelerates the bottlenecks in our

pipeline.

II. OVERVIEW

We begin by learning a statistical wavelet model of the

human face, and then use it to robustly fit the model to

noisy stereo data followed by stereo matching refinement.

Given a database of corresponded triangular meshes of laser

scans of human faces, for each face we resample it into a

subdivision surface, and then decompose the surface using

a wavelet basis [9] into independent components that are

localized in space and frequency. We then learn statistics on

the distributions of the resulting wavelet coefficients over a

training set, and then use them as a statistical prior to guide

stereo reconstruction within a Bayesian framework.

Formally, we parameterize the shape of the human face

by a high-dimensional vector space S, and learn a model

for the prior probability P (s) of a shape parameter vector

s ∈ S. We then model the observational likelihood of a set

of input images I and a point cloud from a general-purpose

stereo algorithm Y = {yi : i = 0, . . . , Ny − 1}, and we

solve for the maximum a posteriori (MAP) configuration of

s given I and Y ,

ŝ = arg max
s
P (s|I,Y) (1)

where I = {IL, IR} for the purposes of this chapter. By

Bayes’ Theorem we have the posterior

P (s|I,Y) =
P (s)P (Y|s)P (I|s,Y)

P (Y)P (I|Y)
(2)

which, because I and Y are constant, simplifies to

P (s|I,Y) = cobsP (s)P (Y|s)P (I|s,Y) (3)

where cobs is a constant of proportionality. We further

factor the prior into a component based on the statistics

of the training set and a smoothing component: P (s) =
Pst(s)Psm(s). More details of the model are given in Section

III. We compute the MAP configuration through energy

minimization as described in Section IV. Our straightforard

optimization technique, which is a combination of Monte

Carlo sampling or particle filtering methods and iterative

partial maximization, is made feasible by the properties

of the wavelet basis. We implement our technique using

GPU programming and standard image processing tools

in a framework that allows the incorporation additional

observations and priors as described in Section V, where

we also present results on stereo data and low-resolution,

relatively noisy laser range scans.

III. THE MODEL

We model the surface we wish to reconstruct as a wavelet

decomposition of a subdivision surface. Although we map

the face to a plane, we use a second-generation subdivision

wavelet scheme [9] that allows our model to be extended to

any surface that can be mapped onto the unit sphere.



In the learning phase of our method, we start with a

database or training set of triangular meshes of laser-scanned

faces. However, these meshes are not subdivision surfaces,

which prevents the use of a wavelet model, so we resample

them onto a Catmull-Clark subdivision grid by stereographic

projection of a template face. Corresponding vertices of all

faces are mapped to the same point on the plane, that of the

template, to preserve correspondence. We then decompose

the surface into its wavelet coefficients. This, in turn, allows

us to compute a statistical model of the wavelet coefficients

generated from a database of such scans, and use it as a

strong statistical prior to guide surface estimation.

Before we can proceed we must rigidly align the shapes

in the training set, i.e. put them all in the same coordinate

system, so that the variation in the 3D coordinates of the

vertices is due only to the change in the shape, and not to

any rotation, translation or scaling. Hence, we first align

the triangular meshes with each other using generalized

Procrustes alignment (GPA) [25], which iteratively aligns

each shape in the set to the average shape of the set. After

each iteration the average shape is recomputed using the

realigned shapes. We then rigidly align the resulting mean

face to the template mesh.

A. Subdivision Resampling

The triangular meshes are resampled onto a quadrilateral

Catmull-Clark subdivision surface configured as a regular

2D grid as follows. We stereographically project the template

mesh onto a plane aligned with the front of the face and

passing through its centroid, saving the mapping as 2D

coordinates in the plane. Let this plane be at z = 1.

Stereographic projection maps the entire surface of a sphere

to a plane, mapping a 3D point to the point in the plane at

z = 1 that is passed through by the line-segment connecting

the 3D point and the point [0 0 −1]T . Let pn be an arbitrary

vertex in the template triangular mesh. This vertex is mapped

to a point in the plane xn by stereographic projection as

follows,

xn =

[

xn/(zn + 1)
yn/(zn + 1)

]

where pn = [xn yn zn]T . Let pi,n be the same vertex

in triangular mesh i from the training set; pi,n is mapped

to the same position in the plane xn as is the template

vertex pn, for every mesh i in the training set. In this

way, corresponding vertices are always mapped to the same

position in the plane, and because all meshes have the same

connectivity and all their faces are planar, any point in the

plane that is covered by applying this mapping to any one of

the meshes corresponds to the same point on any of the other

meshes under the same mapping. Thus, we can resample

the surfaces while maintaining the correspondence between

surfaces.

The planar coordinates are used as texture coordinates

to resample the triangular mesh using the rasterization

capabilities of the GPU. The locations of grid points are

chosen by defining an orthographic projection of the texture

coordinates using the rectangle bounding the mesh in the

plane. The resolution of the grid is determined by taking

an arbitrary base resolution and subdividing it the desired

number of times.

B. Wavelet Decomposition

Let us denote the surface by f : R
2 → R

3, and further

by f(x) at grid point x = (x, y). The wavelet model is then

expressed by

f(x) =
∑

n∈V (0)

v0
nφ

0
n(x) +

N
∑

j=0

∑

m∈W (j)

wj
mψ

j
m(x) (4)

where the terms are defined as follows. The set of vertices

in the level-j approximation of the surface is denoted by

V (j), and vj
n denotes a specific vertex, hence v0

n denotes a

3D-vector scaling coefficient. The approximation is refined

through subdivision by adding the vertices wj
m ∈ W (j),

thus V (j + 1) = V (j) ∪ W (j). The wavelet coefficients

wj
m are also 3D vectors. The basis function φ0

n(x) de-

notes the lowest-resolution scaling function centered on

the vertex indexed by n, and ψj
m(x) denotes the level-j

wavelet basis function centered on the vertex indexed by m.

The corresponding coefficients v0
n and wj

m form our shape

representation which we wish to best fit to an observation by

minimizing an energy function. Specifically, we concatenate

the coefficients into a shape parameter vector s, with the

lowest resolution coefficients coming first. Let us denote the

(3D) coefficient indexed by k by sk.

Because these basis functions have only local support,

f(x) only depends on a few coefficients, and the coefficients

can be computed in linear time. Both decomposition and

reconstruction are comprised of a series of lifting operations

of O(1) complexity at each node at each resolution level.

Let Nv denote the number of vertices in the full resolution

mesh. Since there are Nv/4
N−j nodes in level j, and

Nv +Nv/4+Nv/16+ . . . < 2Nv , the total number of times

the lifting operations must be applied is O(Nv) in either

the decomposition or reconstruction. The lifting operations

effectively predict one coefficient using its neighbors in the

grid, subtract the prediction from the true value leaving the

residual component that is not correlated to the neighbors

according to that prediction model or filter. Because the

transform is biorthogonal, we may assume the coefficients

are fully decorrelated, i.e. independent, and can be optimized

individually.

C. Statistical Prior

We now define the observation and prior components

of our model. We model the prior probability of the

wavelet coefficients as independent Gaussian distributions,

and compute statistics on a database of face shapes. Let si



Figure 1. Left: The surface f̄ reconstructed from the mean shape vector s̄.
Right: false color visualization of the magnitude of the standard deviation
of the model parameters associated with each vertex in the full-resolution
grid mesh, |σk|.

denote the shape parameter vector of face i in the database

F = {fi, si, ri}F1 , where F is the number of faces in our

database and ri will be defined shortly. Our prior model is

defined by three shape quantities. The first is simply the

mean shape parameter vector

s̄k =
1

n

F
∑

i=1

sk
i (5)

for k = 0, . . . , C − 1, where C is the number of wavelet

coefficients and each 3D coefficient vector sk in a shape

parameter vector s can be treated independently because of

the decorrelating and localizing properties of the wavelet

basis functions. The face surface f̄ that is reconstructed by

applying (4) to s̄ is shown in Figure 1.

While we can perform statistical analysis on each sk

independently of other values of k, we must consider

their three components together. Each sk is a 3D vector

representing either the scale (absolute value) or the detail

(relative value) of the shape at a particular frequency and

spatial location. However, the coordinate axes in general do

not correspond to the main directions of variation in F of

sk
i , i = 1, . . . , F . Therefore, we perform PCA on each set

of coefficient vectors, to obtain 3D vectors rk
i that represent

position along the directions of greatest variation, and 3× 3
matrices Uk that transform these coordinates to our original

world coordinate system, as in

sk
i = s̄k + Ukrk

i (6)

where we write sk = [xk
s , y

k
s , z

k
s ]T and rk = [xk

r , y
k
r , z

k
r ]T

to denote the components of these vectors, and r =
[r0T , r1T , . . .]T to denote the complete vector of statistical

shape parameters.

Due to the orthogonality of the wavelet basis functions

and the basis of the principal component analysis, we may

justify assuming that rk is independent from rm for m 6= k,

and that the components xk
r , yk

r and zk
r form zero-mean

Gaussian distributions that are independent from each other.

From the training set we can learn the standard deviation of

each component σk = [σk
x, σ

k
y , σ

k
z ]T . The standard deviation

across the surface is show in the right side of Figure 1. This

allows us to write the prior probability of a surface f as

P (f) = P (s) = P (r) (7)

where f relates to s by (4), and s relates to r by (6) and

P (r) =
∏

k

P (rk) (8)

and

P (rk) =

(

1

σk
x

√
2π
e
−

(xk
r )2

2(σk
x)2

)

·
(

1

σk
y

√
2π
e
−

(yk
r )2

2(σk
y )2

)

·
(

1

σk
z

√
2π
e
−

(zk
r )2

2(σk
z )2

)

(9)

D. Observations

To model the likelihood of observing the point cloud Y
and the images I, given a shape parameter vector s, we

reconstruct the surface f(x) from s using (4). We assume the

point cloud is a noisy approximation of the surface f, with

approximately zero-mean Gaussian noise. Hence, we model

the probability of observing the point set, given the current

mesh, as an exponential distribution on the sum-of-squared

distances of the model vertices to their nearest neighbors

in the point cloud. In practice, most stereo algorithms have

some systemic error in addition to noise, but we alleviate

this by using a truncation threshold on the nearest neighbor

distance in addition to using a prior.

We further assume the surface is approximately Lam-

bertian, and project the surface into both images and per-

form stereo matching during a refinement stage. Although

human skin can be both quite specular and translucent,

we counteract the effects through the statistical prior and

through matching techniques. We use robust matching costs

to account for outliers due to specularities and we explicitly

take self-occlusion into account. Our framework can be

extended to include additional occluders. We further use an

anisotropic second-order smoothing energy to regularize the

refinement. We define our likelihood as an exponential dis-

tribution, where because they are deterministically related,

P (I|r,Y) = P (I|s,Y) = P (I|f,Y) (10)

and

P (I|f,Y) ∝ exp(−EM (f,Y, IL, IR)) (11)

where EM is a matching cost defined in Section IV. The

matching depends on the point cloud in that the nearest

neighbor distance is used to determine how far to sample

during stereo refinement, when the mesh f is optimized with

respect to 11.

While a smoothness constraint is conceptually a prior,

i.e. the prior knowledge that the face is piecewise smooth,

because it is applied to the mesh vertices and not to the



wavelet coefficients, we treat it as part of the refinement

process, optimized in conjunction with the matching cost.

IV. THE ENERGY FUNCTION AND MINIMIZATION

In this section, we derive an energy or objective function

from our probability model, and describe how we minimize

that function. Our energy function consists of two parts,

again representing observation and prior of our model.

Our first data cost is the sum-of-squared distances of the

model vertices f to their nearest neighbors in the point cloud

Y , obtained as an initial estimate from a conventional stereo

algorithm. On initialization, we find the nearest neighbor of

each vertex in f. The energy is then

ENN =
∑

x

min (‖f(x)− yx‖ , τNN ) (12)

where yx ∈ Y is the nearest neighbor of f(x), and τNN is

a truncation constant to mitigate the effect of outliers, noise

and incomplete data (i.e. holes in the point cloud where the

initial stereo estimate could not reconstruct the surface).

Our matching energy EM is defined over the surface map

and the input images,

EM (f,Y, I) =
∑

i

∑

j 6=i

∑

x

wM (x)D(Ii, Ij , f(x)) (13)

where i, j ∈ [0, |I|−1] denote the each pair of reference and

matching images in the set, D is a point-wise dissimilarity

measure, and wM (x) is a per-vertex weight. The dissimilar-

ity D is defined as

D(Ii, Ij ,p) = 1−NCC(Ii(q), Ij(Hijq)) (14)

where NCC(·, ·) is the normalized cross-correlation (aver-

aged over the red, green and blue channels) of two image

patches containing an equal number of samples, Ii(q) de-

notes the image patch around point q, which is the projection

of p into image Ii, and Hij is the homography mapping a

point in the image plane of Ii to the plane tangent to the

surface at point p with normal n to the image plane of Ij .

This is given by

Hij = Kj

(

Rij −
tijnT

di

)

K−1
i (15)

where Ki and Kj are the intrinsic calibration matrices of Ii
and Ij , the matrix [Rij |tij ] transforms coordinates relative

to Ii to coordinates relative to Ij , and di is the depth of p

with respect to Ii. Thus, Hij projectively maps points in the

image patch surround q in image Ii, to the tangent plane to

the surface at point p, to the correspondging point in Ij .

The per-vertex weight is designed to reflect the reliability

of the dissimilarity or photo-consistency function D. As

described further below, the refinement stage iteratively takes

the current mesh f, and for each vertex f(x) with normal

n(x), samples the smoothing and photoconsistency functions

at points above and below the mesh vertex along the normal

direction. Let these sample points be denoted by pm, and

thus we have matching cost samples D(Ii, Ij ,pm), where

m is an index. Let D̂(x) = minmD(Ii, Ij ,pm) denote the

minimum dissimilarity or matching cost for a given vertex.

Then the matching weight is given by

wM (x) =
∑

m

(

D(Ii, Ij ,pm)− D̂(x)
)

(16)

which is greatest when there is one low miminum of the

matching cost, and the rest of the samples are high. Hence,

the weight is highest when the matching cost gives the most

distinctive information about the surface. We further use

depth-buffering to determine if a point is visible in both

the reference and matching images. If it is not, wM (x) is

set to zero.

For a smoothing energy term we use the distance of a

vertex to an average of the neighboring vertices. We first

compute the smoothed vertex position

f̄(x) =
wx(f(xl) + f(xr)) + wy(f(xu) + f(xd))

2(wx + wy)
(17)

where xl = (x−1, y), xr = (x+1, y), xu and xd are defined

similarly. The horizontal weight is defined as

wx = exp
(

− (‖f(xl)− f(x)‖ − ‖f(xr)− f(x)‖)2
)

and wy is defined similarly. This smoothing is a variation

of the one used by Beeler et al. [6] for disparity map

refinement. Because we have a quadrilateral mesh, we can

apply it to the vertex coordinates. The smoothing energy is

then

Esm(f) =
∑

x

∥

∥f(x)− f̄(x)
∥

∥ (18)

reflecting how each vertex in f deviates from the anisotropic

average of its neighbors (17).

The prior or regularization term in our energy function is

taken directly as the negative logarithm of the prior P (r).
That is,

Est(r) =
∑

k

(

(xk
r )2

2(σk
x)2

+
(yk

r )2

2(σk
y )2

+
(zk

r )2

2(σk
z )2

)

. (19)

We combine these to get our energy or objective function,

E(s) = wstEst(r) + wNNENN (f) + EM (f) + wsmEsm(f)
(20)

where f and r are related to s as before, and wst, wNN and

wsm are user-controlled parameters.

To minimize (20) we break the optimization into two

parts. We first use sampling methods based on the learned

distributions of our model parameters to minimize Estat

and ENN . As noted by Li et al. [8], we can serialize

the parameter sampling because the orthogonality of the

wavelet basis and the principal components allows us to

assume independence between parameters. This leads to a

complexity of O(PS) for P parameters and S samples



instead of O(PS) without the independence assumption.

We examine two sampling strategies: uniform sampling

and stochastic sampling. In the first case, we sample each

parameter (xk
r ,yk

r or zk
r ) uniformly within three standard

deviations (eg. ±3σk
x). In the second case, values of, for

example, xk
r are chosen at random from the distribution

N (0, σk
x).

After each sample value xk
r , the wavelet coefficient sk is

reconstructed using the PCA eigenvectors Uk and the mean

shape coefficient s̄k, then the face surface f is reconstructed

using (4).

One of the main drawbacks of statistical shape priors,

especially for face reconstruction, is that they produce overly

regularized results that do not deviate sufficiently from the

mean shape. This is particularly a concern for faces, where

much of the identifying detail is contained in finer scales.

Hence, after optimizing the first five levels of coefficients

using the sampling method described above, we follow

with an iterative mesh refinement stage that minimizes EM

and Esmooth together. Following refinement we transform

the surface back into the model parameters. We formulate

this two-stage optimization as iterative partial maximization,

where we optimize the model in terms of one part of the

energy function and then in terms of the other. The first

part is the combined energy of the statistical prior and the

nearest neighbor distance. The second part is the smoothing

and matching energies.

As mentioned above, refinement proceeds by sampling

along the normal directions for each vertex in the mesh.

Thus for mesh vertex f(x) with normal n(x), we have sample

points pm = f(x) +mδxn(x) for m = −Nr, . . . , Nr, where

δx is a user-controlled step size parameter. The sample

that minimizes the combination of smoothing and matching

energies is taken as the new vertex position. That is,

f(x)← arg min
m

Eref (pm)

where Eref is the per-vertex combined smoothing and

matching energy,

Eref (pm) = wsm

∥

∥pm − f̄(x)
∥

∥+ wM (x)D(Ii, Ij ,pm)
(21)

favoring smooth surfaces where matching information is

missing or unreliable. Refinement is performed by iteratively

sampling in this way for each reference-matching image pair

in succession.

V. EXPERIMENTS

This section documents our experimental validation of

our approach, including the implementation, and the results

obtained.

A. Implementation

Our implementation uses CUDA, OpenGL, OpenCV and

CLAPACK. Our images were captured using a Canon Rebel

EOS XTi 400D, a 10 Mpixel digital SLR camera, and

downsampled by a factor of two. For calibration we used

publicly available structure-from-motion software [26]. For

initial stereo estimates we used PMVS [27] and OpenCV’s

graph cut stereo [28].

We perform registration manually, selecting landmarks

first on the template face model, then selecting the same

points in the same order in the initial stereo/range data.

From this an initial estimate of the similarity transform

between the model space and the initial data is computed

using linear least-squares. While this is a major limitation

of our method in its current instantiation, this step could

be replaced by automatic mutli-view face detection and

localization in the input images, for example by a method

such as that of Koterba et al. [14]. Such an automated

registration method would likely be equally or more accurate

as manually selecting landmarks in noisy point-clouds. This

might also remove the need for the initial stereo estimate,

as the model could be fitted directly to the disparity space

images (DSI) of the input images.

For our wavelet we started with a base mesh of 2×3 and

subdivide eight times to get the full-resolution grid mesh of

129 × 257. We perform the resampling of the training set

using OpenGL and GLSL. Each vertex in the template mesh

is stereographically projected onto a plane aligned with the

front of the face. Then, each corresponding vertex in every

other mesh is mapped to the same position in the plane,

thus preserving correspondence. The initial stereographic

projection is performed on the CPU, but the resampling of

the meshes in the training set is performed on the GPU. This

makes the learning part of the approach very fast. To learn

from a training set of 100 faces takes only a few minutes,

plus the time to first perform the GPA to align the faces.

The (inverse) wavelet transform (4) must be performed

for every sample value of every sampled coefficient. In

our current framework, we optimize the first five levels of

coefficients (P = 561× 3 = 1683 model parameters) using

independent parameter sampling, with S = 50 samples per

parameter. This means the surface must be reconstructed

from the model parameters 84150 times, hence the speed of

the transform is crucial to the speed of the overall apprach.

In practice, some parameters have very small variation in

the database (eg. σk
x < 10−12) and we do not sample

those parameters, so the total number of inverse wavelet

transforms that must be performed is 60750 in our current

setup. Each transform takes 0.202ms using our CUDA-

based GPU implementation, for a total of 12.272s spent

reconstructing the surface. This is compared to slightly

over 1 ms per transform using a highly optimized CPU

implementation. (Note that with the dimensions we are

using, the entire wavelet data fits in the CPU cache, making

this virtually optimal CPU performance.) The GPU wavelet

transform splits the computation into blocks that overlap by

two vertices/coefficients on all sides, reads the coefficients



Figure 2. Left to right: input image, initial point cloud, reconstruction
before refinement (level 4), after refinement.

Figure 3. Left to right: input image, initial point cloud, reconstruction,
mean face for comparison. Note that the face is reconstructed in spite of
the fact that the subject is wearing glasses which causes severe problems
for the initial stereo estimate.

into shared memory, and performs the lifting operations in

shared memory. If the number of blocks required is less

than the number of multi-processors on the GPU then the

transform can be performed in-place, writing to the same

global memory it reads from. One evaluation of ENN takes

0.671ms, for a total of 41.550s over the entire algorithm. In

total, the parameter sampling takes just over 67s.

The refinement stage takes 0.794s for 200 iterations (per

reference-matching image pair), three samples per vertex per

iteration, and two images. It also breaks the computation

into overlapping blocks. For each vertex in each block, we

use a reference thread and a matching thread, which share

the computation. One thread computes the normal, while

the other computes the anisotropic average, both using the

neighboring vertices in shared memory. The reference thread

then samples the window in the reference image, while

the matching thread samples the window in the matching

image, each thread storing the samples in shared memory.

(We use 3 × 3 windows for NCC.) The remainder of

the NCC computation is divided between the two threads,

and the resulting matching cost for each sample saved for

computation of the per-vertex matching weight.

B. Results

Figure 2 shows the results of our reconstruction algo-

rithm applied to a stereo pair, with an initial point cloud

from a general stereo algorithm [27]. Despite the noise in

the original point cloud, the reconstruction after parameter

sampling (second from right) captures the shape of the

face with some artifacts due to the independence of the

shape parameters, while the post-refinement reconstruction

smooths the artifacts while preserving shape detail. Note

how the reconstruction captures the fact that the mouth is

Figure 4. Fitting the model to a laser scan. Left to right: point cloud,
reconstruction before refinement, after refinement, original mesh.

Figure 5. Fitting the model to a laser scan. Left to right: point cloud,
reconstruction before refinement, after refinement, original mesh.

slightly lower on the left side than on the right side, as in

the input image. Figure 3 shows another result, this time

with the initial point cloud from graph cuts [28]. It is again

quite noisy, and it also exhibits fronto-paralle bias. Note that

the subject is wearing glasses, and predictably the initial

point contains only outliers around the eyes. Nonetheless

our method constructs a plausible surface for the entire

face. The mean face is shown next to the reconstruction for

comparison. Note how the nose is elongated and the cheek

bones are more prominent in the reconstruction as in the

input image.

Figure 4 and 5 show the results of reconstruction by fitting

the prior model to laser-scan data. Since these point clouds

are more reliable than stereo data, we increase the weight

wNN . Note how the shape of the nose in Figure 4 is captured

accurately without the noise that is present in the original

mesh (far right). The reconstruction captures the shape of

the nose and cheek bones in both cases while smoothing the

surface and increasing the resolution. The noise or artifacts

in the reconstructions are along the outside of the face where

the prior is less reliable. Since there are no images to go

with these point clouds, the refinement consists only of

smoothing.

VI. DISCUSSION

We have presented a method for fast and robust model-

based stereo using a statistical wavelet shape prior. We

have demonstrated this approach for human faces using both

stereo and laser-scan data. The most interesting direction for

future work is to introduce a temporal term into the model

and use this framework for stereo tracking. Such an approach

would distinguish between tracking the changes in shape

from tracking the changes in position relative to the cameras.

This could be used to help avoid drift that occurs in optical



flow-based tracking. We currently register the initial stereo

data to the shape template with user selected landmarks, but

to automate this process is a natural avenue for future work.
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