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An approximate integral method. for calculating the diffracted
component from multiple two-dimensional objects
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Canada

(Received 24 March 1993; accepted for publication 25 August 1994)

A method for determining the diffracted or scattered components due to the in.!et-actioll c"f ｾ wave

with multiple two-dimensional objects is given. The method presented uses approximate boundary

conditions to simplify the numerically cumbersome set of integral equations associated with

nonapproximate analytic solutions of the Helmholtz integral. The approximate boundary conditions,

defined here, are shown to decouple the N by N set of simultaneous equations. The approximate

boundary condilions are used to calculate the insertion loss for various sizes of two-dimensional

objects. The predictions are compared to measured results and limitations are discussed.

PACS numbers: 43.20.Fn

gral methods usually give bounded results correct to within

an order of maguitude, even when the boundary conditions

are clearly not satisfied. Furthermore, the object can be a

plane of any dimension. Figure 1 shows the source, screen,

and receiver locations Used in the insertion loss measure­

ments. Figure 2 shows the errors associated with the calcu­

lation of the scattered field due to a screen of finite dimen­

sioll using approximate methods. The geometric uniform

theory of diffraction completely fails to predict the correct

insertion loss for the low frequencies. In fact, due to its as­

ymptotic formulation, the insertion loss is diverging to infin­

ity as the frequency approaches zero. Clearly, applying the

geometrical method to a multiple screen diffraction problem

involving objects of this size would lead to a compounding

of significant errors. For the cases when geometrical methods

fail, a· multiple screen diffraction model based on the ap­

proximate integral method would be most useful. However,

the approximate integral methods are restricted to describing

only single planar objects. The KBCs would have to be

modified to make allowances for the description of the total

field on more than one screen or aperture.

The analytic methods offer a more general solution to

radiation problems as they solve the reduced wave equation

over the object's surface without approximation (I.e., with an

unapproximated set of boundary conditions). However,

methods using this technique are not without limitations, as

will be discussed briefly after the introduction of the Helm­

holtz integrals upon which they are based.

Let the surface of the object be denoted by 8D, its inte­

rior volume by D, and its exterior region by E, as shown in

Fig. 3. Equation (1)5 defines the velocity potential <P in terms

of known boundary conditions,

INTRODUCTION

I
The scattered field due to the presence of an object may

be calculated by two groups of methods: approximate or ana­

lytic. Each group is formed from the Helmholtz integral

equation. The limitations of each method is manifest in its

formulation. These will be briefly discussed to illustrate the

need for an alternate method that is capable of describing the

diffracted field liue to multiple two-dimensional objects,

when the geometrical methods fail and when the computing

time of the analytic methods becomes excessive.

The following is a list of acronyms that will be used

throughout the discussions:

(1) KBC-Kirchhoff boundary conditions,

(2) ill-Helmholtz integral,

(3) HKI-Helmholtz-Kirchhoff integral,

(4) RKI-Rayleigh-Kirchhoff integral, and

(5) MKBC-modified Kirchhoff boundary conditions.

In this paper screens are two-dimensional objects or

"thin" three-dimensional objects that can be considered as

behaving like two-dimensional objects for the wavelengths

considered.

There are two types of approximate methods: the geo­

metrical theories of diffraction, and approximate integral so­

lutions using the Kirchhoff boundary conditions. Each re­

quires that a specific set of conditions be satisfied. The

geometrical theories of diffraction (Keller's geometrical

theory of diffraction, l and Kouyoujian and Pathak's uniform

theory of diffraction2
) which invoke a high-frequency ap­

p'!:oximation are restricted to objects that can be constructed

from one or more semi-infinite half-planes. Description of

ｾ ｣ ｡ ｴ ｴ ･ ｲ ･ ､ fields due to simple objects of finite extent using

geometrical methods can lead to very substantial errors as

the solution fails to converge if restrictions on object dimen­

sion, source-object, and object-receiver distances are not'

satisfied.3 Approximate integral methods, which include the

HKIs and RKIs, are also based on a high-frequency

approximation-the KBCs.4

Unlike the geometrical theories, the approximate inte-

f f[A. ( )0 G(p,q) G( )0 <P,(q)]d
'1', q on p,q on Sq.

q q

8D

{

<p,(p)- <Po(p), peE,

= O<p,(p)- <Po(p), pe 8D,

-<po(p), peD,

(la)

51 J. Acouot Soc. Am. 97 (1). January 1995 0001 -4966/95/97(1 )/51 /11/$6.00 © 1995 Acoustical Society of America 51



(2c)

Exterior E

FIG. 3. Solid object and its surfaces used in the discussion.
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where f and c are the frequency and velocity of the wave in

free space, respectively.

Typically, Eq. (1) is used in a two-pass process to deter­

mine the field at an arbitrary point in space. First, the surface

distribution is determined using Eq. (1) (p E aD) subject to a

set of boundary conditions. Once the surface distribution is

known, then it is possible to compute the field for an arbi­

trary point in free space (p EE), again using Eq. (1). Gen­

erally, there is no closed-form solution for a body of arbitrary

shape. Consequently, the surface distribution is computed

over enough points so that the premise for numerical integra­

tion remains valid, Le., magnitude and phase are approxi­

mately constant over the area element. For high frequencies,

where the magnitude and phase may vary significantly with

small changes in distance, a very large nU!T'':-er of integration

points may have to be L:.ed, resulting in excessive computa­

tion times.

Solving Eq. (1) subject to a complete set of boundary

conditions is known as the Helmholtz integral equation

method (HIEM). For infinitely thin rigid planar objects, the

method requires treatment of a very singular pole, third or­

der, in the domain of integration. Terai3 has shown that this

can be treated as the sum of three terms which do not require

special attention. The HIEM applied to a noninfinitely thin

object (Le., ｴｨｲ･･ｾ､ｩｭ･ｮｳｩｯｮ｡ｬＩ suffers from nonuniqueness

that occurs at frequencies that correspond to the characteris­

tic frequencies of the internal problem. Many methods have

been developed for eliminating the spurious results at the

characteristic frequencies.6-
11

There is a need for a simple method capable of describ­

ing the field at frequencies where the geometrical methods

fail and where the computing time of the analytical methods

applicable to two- and three-dimensional objects becomes

too great. In this paper, an approximate integral method is

developed to describe multiple two-dimensional object dif­

fraction based on a set of approximate boundary conditions

called the modified Kirchhoff boundary conditions. It is

shown that they decouple the N by N set of simultaneous

equations that define the surface potential of the analytic so­

lution. The method suffers from neither spurious results nor

the complexity of a highly singular integrand and is capable

of describing thin planar objects of finite dimension. The

1210

4>lq)]
G(p,q)a aD

q
dS q

2 468
Frequency (kHz)

,
,'-Geometrical Method,

OBJEer X(m} I ytrn Zrn

Source 0.00 0.00 a.GO
R=1""rRI 0.00 a.oo 2.65

R=iverR2 0.00 0.21 2.31

CeOlre of saeen It PI 0,00 0.00 0.80

Centre or screen at P2 0.00 0,00 1.36

Cenn orscreen 8L P3 0.00 0,00 1.53
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:8-6

ｾ 4

ｾＲ
ｾｏｲＭＺ［ＭＺＮＬｾｾ］ＭＮＺＮＮＭＭＭＭＭＭＭＭＭＭＭｬ
51_2
c:
--4

'---_-'---_-l..._--'__.l..-_..J-_-l...--J

o

FIG. 2. Comparison of approximate methods for determining the insertion

loss of a single O.4xOA m screen located at PI with the receiver at R1. The
geometric calculation used the uniform theory of diffraction (Ref. 2).

FIG. 1 Locations of meas, Ｌ ｾ ｭ ･ ｮ ｴ apparatus.

10 r----------------,

Souroe

and,

a Jf[ G(p,q)
aD

p
<Pr( q) a aD

q
8D

a eMp) -a 4>o{p)
, pEE,

aDp aop

= oa 4>r(P) -a 4>o(p) pE aD, (1b)
ao

p
ao

p
,

a 4>o(p) D- --an-' pE ,
p

where p is the point at which the velocity potential is to be

solved, q the point of integration, and n the ratio of the outer

solid angle solid subtended at p to 4'IT. The total velocity

potential <Pt is given by the sum of a scattered component <Ps

and an unobstructed component ¢o;

The free-space Green's function is given by

1 eikjp-ql

G(p,q)= -4 -I-I' (2b)
'IT p-q

where the wave number is defined as
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FIG. 4. Geometry for two-dimensional screens Ｈｳｵｲｦ｡｣･ｳｾＬ and ｾｾ used in
the discussion. .

method is used to predict the insertion loss due to multiple

two-dimensional objects or screens of finite dimension. The

predicted results are compared to the measured results and

ｬＧｾ ｾ found to be in good agreement.

(4c)

I. EQUATION FORMULATION

For the purpose of development, we consider two per­

fectly thin, flat and rigid screens as shown in' Fig. 4. The

acoustic wave propagates from the point source located at S
to the receiver R. The velocity potential on the rigid surface

is given by

(4d)

(3a)
(4e)

where 8D =I 1+I 2 • The integration is performed over both

screen II and I 2 , but each screen has two faces with nor­

mals differing in direction by 7J' radians. Equation (3) repre·

sents a set of coupled simultaneous equations. Equation (3b)

requires special treatment before it can be applied as it has a

highly singular pole of the order r -3 in the domain of inte­

gration. Terai3 has shown that it can be replaced by the sum

of three integrals. We focus our attention on Eq. (3a) as the

introduction of approximate boundary conditions will allow

us to use Eq.· (3a) alone to describe the surface potential,

thereby removing the problems associated with the singular

integrand of Eq. (3b).

Equation (3a) is expanded in terms of the surface poten­

tials on each face (see Fig. 4):

where Pt is' the point at which velocity potential is to be

determined on face Fl' and q1 the point of integration on

face F I having normal n1 • Also, let the point p lie inside the

object and be the point to which the field points on opposite

faces converge. The subscripts follow for the other faces. To

decouple Eq. (4) which defines the surface potential, con­

sider the following discussion.

Let the disturbance have a sufficiently small wavelength

that the Kirchhoff boundary conditions are valid; that is, the

disturbance on the "dark side" of each screen will be zero.

This allows for the immediate simplification of Eq. (4) as

now the surface potentials only need to be defined on a

single face of each screen. Using the fact that the normal

derivative of the free-space Green's function is zero when

both P and q are coplanar, we get

(Sa)

(5b)

1 f f aG(p,q)2' tP,(p)-tPo(p) = q,t(q) aO
q

dsq ,

I,

pe'!.2. ｱ ｅ ｾ ｬ Ｇ

1
2' q,/(p)- tPo(P) =0.

(4a)

(3b)

pedD,

which gives
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Equation (6a) is simply twice the KBC for a point in an

aperture (aperture 1) that is defined by a rigid screen. Equa­

tion (6b) is the sum of an unobstructed component and a

scattered component where the scattered component is the

second RKl evaluated over the first screen. Using Babinet's

principle (the unobstructed disturbance at a point p is the

sum of the disturbances from the aperture. and a complemen­

tary aperture that replaces the screen), Equation (6b) can be

interpreted as beiog twice the field at a point in free space

due to an aperture defined by screen 1. The factors of 2 arise

from the fact that we have constrained the point of observa­

tion to lie on a screen surface. Due to the similarity to the

KBC for an aperture and the RKls, Eq. (6) will be called the

where we have dropped the subscripts for the integration and

field points and the normals have heen taken to face away

from the other screen.

Equations (5) represent a set of approximate coupled

simultaneous equations. To decouple the set of simultaneous

equations, consider the following geometrical discussion. Let

the term "disturb;mce" mean velocity potential (<p); let I,
define screen 1, and let I, define screen 2. As given by Eq.

2(a), the disturbance on I, will be the sum of components

from the direct wave cPo and a scattered component <p, . Since

I, is planar, there is no scattered component from points on

II [by Eqs. (3) and (Sa)]. However, II lloes e":,,,;ence a

scattered componeot from I,. Employing geometrical con­

cepts, the wave propagating from the source, as shown in

Fig. 4, will have been diffracted 2n +1 times before it

reaches I" where n is the multiple number (n = 1...00). Again

using an argument from the geometrical theories of diffrac­

tion, the field is attenuated by approximately the wave num­

ber (k)' after each diffraction by a large screen. Thus the

scattered energy at the first screen which is due solely to a

backscattered component from I, will be down by approxi­

mately k(2n+l). Thus for moderate to high frequencies, the

contribution due to multiples can be considered negligible,

unless a low-order multiple facilitates a direct path to the

receiver. By the same procedure, it can be argued that if a

scattered component on Ii is to be considered, it would be

due solely to the component from I, and the effects of mul­

tiple scattering should be ignored.

These arguments give the following boundary condi­

tions and definitions of the surface potentials:

1 JJ aG(p,q)2 <p,(p) - <po(p) = <p,(q) an
q

ds q ,

I,

pE!", qEI,.

(9)

(8)

(7)

(lOa)

a.G:...(:....a:.;.,b.:.,)d_A..::..b
-2 -

anb \<p,(a)\
2aG(b,b )dAb <p,(b)

1- ---'--'-'-I
anb

aG(a,b)
+2<p,(b) a dAb'

nb

JJ
aG(a,b)

+2 <p,(b) anb dsb,

I,

<p,(a) = 2<po(a)

. aG(b,a)
<p,(b) = 2<Po(b) +2<p,(a) an, dA,

aG(b,b)
+2<p,(b) a dAb'

nb

JJ
aG(b,a)

<p,(b)=2<po(b)+2 <p,(a) an, ds,

I,

=!2<Po(a)1
2<po(b) .

2_a:...:G:,..:(:.;.a,::.,a:.;.)d::.,A.:,'
1--

an,

aG(b,a)dA,
- 2 -'-'---'-=­

an,

Thus far, no assumptions have been made about the ob­

ject. However, if the object is planar then the second term of

element (1,1) is zero, so too is that of element (2,2). Apply­

ing the arguments used to formulate the MKBCs, the second

term of element (1,2) is zero since we have assumed that I 2

does not contribu.te to the field experienced at II' Expressing

the remaining terms by their definite integrals gives

JJ
. aG(b,b)

+2 <p,(b) anb dsb.

I,

Equation (7) is discretized as if it were being numeri­

cally integrated:

Collecting like terms and expressing them in a matrix form

we get

JJ
aG(a,a)

<p,(a)=2<Po(a)+2 <p,(a) an, ds,

II

aG(a,a)
<p,(a)=2<Po(a)+2<p,(a) a dA,

n,

modified Kirchhoff boundary conditions.. An approximation,
of the total disturbance for an arbitrary point in space (p E E)

with an infinitely hard planar screen(s) present is given by

applying the MKBCs to Eq. (la).

It can be shown that the method of MKBC decouples the

N by N set of equations of the ｾｉ [Eq. (la)]. Let there be a

single point of integration on each screen. There could be

any number, but a single point is sufficient for illustration.

Let point a be located on It> and point b on I 2 . Equation

(la) is therefore a set of 2 by 2 simultaneous equations as

shown below:

(6b)

(6a)

(5c)

[
PEI2 ,

qEI;.JJ
aG(p,q)

+ <p,(q) an
q

dsq ,

I,

and
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(lOb)

or

(12a)

(l2b)

The disturbance at a point in free space, given by Eq.
(11), involves a quadruple integral (a surface integral of a

surface integral) in addition to two surface integrals. Since

there is generally no closed-form solution, numerical meth­

ods must be employed, making the process very time con­

suming. It would be highly desirable to reduce the surface

integrals to a lower order, that is, a line integral around the

rim of the aperture. Maggi and later Robinowitcz have stated

that the HKI can be reduced to a line integral. I2 However,

when a similar procedure is applied to the Rayleigh integrals,

the method fails because a perfect differential can not be

formed in the new coordinate system. Terai3 used an image

point source to construct a perfect differential. This has the

effect of transforming the Rayleigh integral into the HKI. It

has been shown13 that the HKI is just the mean of the first

and second RKIs. Consequently, it can be shown that either

of the RKIs can be replaced by the HKI without undue error

when the two RKIs are approximately equal. This occurs

when

III. EQUAnON SIMPUFICATION

(4) Itl and I 2 coplanar: Since II and I 2 are coplanar, so

too are the points p and q. Since the normal derivative of the

Green's function is zero for coplanar points, the last term in

Eq. (6b) is zero. The remaining integrals can be expressed as

a single surface integral over the screen.

(5) II and I 2 crossed: There exist a finite number of

points along the line of intersection between II and I 2 .

These points are contained in both I 1 and I 2 and are there­

fore singular points in the domain of integration of Eq. (6b).

The singularity only occurs when p =q and can consequently

be removed by using Eq. (6a) under these conditions.

(6) II_oo: The second term becomes minus the unob­

structed and cancels with the first term. The expression con­
tained in the brackets of the last term becomes minus the

unobstructed at the point p on the second screen. The result

is no field at the observer.

(7) I 2-oo: Invoking the reciprocity theorem of Kirch­

hoff, the last term becomes minus the second, thus canceling,

while the first and third terms cancel. The result is no field at

the observer.

The method of MKBC is based on the high-frequency

approximation of the KBC. Consequently, we expect it to

perform better in the high frequencies where the boundary

conditions are more likely to be satisfied. As will be shown,

the approximation is quite good, even when the wavelength

of the disturbance is similar to the object's dimension. For

objects that are quite close together, the number of integra­

tion points will have to be chosen such that the premise for

numerical integration is valid (magnitude and phase approxi­

mately constant across each integration area element). This

might require a significant number of points for very small

separations.

ff
aG(b,a)

cP,(b)= 2cPo(b) +2 cP,(a) aDa dsb •

II

Thus the MKBCs decouple the Helmholtz integral equa­

tions by using a high-frequency approximation based on the

KBC for a single planar screen or aperture. Equation (lOa) is

just twice the KBC. Equation (lOb) is twice the second RKI

and can be thought of as being twice the disturbance that

would have been. ｾ ｸ ｰ ･ ｲ ｩ ･ ｮ ｣ ･ ､ in free space if a screen were

placed between it and the source. The factors of 2 arise be­

cause it is assumed that the point p at which Eq. (10) is

evaluated lies on a surface and hence there is a mirror image

present. The disturbance for a point in free space is given by

applying the MKBCs to the HI. The expanded equation for

an arbitrary ｲ ｣ ｾ ｴ in space (R) exterior to the objects (R eE)

is given by applying Eq. (6) to Eq. (ra), with the result:

f f
aG(s,q)

cPt(R)=</Jo(R) +2 cPo(q) aDI dS q

II

a.nd

II. UMITlNG CONDITIONS

. aG(p,R) (11)
x a dsp '

D2

As expected from Eq. (2a), the total disturbance is the

sum of an unobstructed component [the first term in Eq. (11)]

and one or more scattered components (the remaining terms).

The second and third terms of Eq. (11) are just the RKI

describing the scattered components that would be experi­

enced at the point of observation (R) if the screen(s) were

apertures. The final term may be thought of as the scattered

component from the second object due to a scattered com­

ponent from the first (the term contained between the brack­

ets).

+2Jf </Jo(P) ｡ｇ｡ｾｾｐＩ dsp

12

Consider the result of Eq. (11) when the source and

observer are on opposite sides of both II and I 2 as shown in

Fig. 2, under the following conditions:

(1) II-O: The effect of the first screen vanishes. The

second term tends to zero so too does the fourth. The result­

ing equation is just the RKI evaluated over I 2 expressing the

disturbance at R due to the presence of the screen It2 •

(2) Ir-.O: The effect of the second screen vanishes. The

third term tends to zero so too does the fourth. The resulting

equation is just the RKI evaluated over II expressing the

disturbance at R due to the presence of the It!.
(3) II and I 2-O: It follows from the above that the

second, third and fourth terms will tend to zero leaving just

the unobstructed component.

55 J. Acoust. Soc. Am" Vol. 97, No.1, January 1995 T. R. T. Nightingale: Diffraction from two-dimensional objects 55



where Isqj is approximately equal to the source-object dis­

ｴ ｾ ｣ ･ and IqRI is approximately equal to the object-receiver

distance for small objects. Thus when either Eqs. (12a) or

12(b) are satisfied for the appropriate boundary condition,

the RKI can be replaced by the HKI and consequently the

Maggi transform of the HKI. The Maggi transformation is

given by

and where t is the tangent to the rim r. The boolean € is 1

when the line connecting the source and the point of obser­

vation intersects the radiating surface; otherwise, it is zero.

By comparing the results of the HKI and RKI shown in Fig.

2, it can be seen that for the objects and orientations consid­

ered here, Eq. (12) is a good approximation. Substituting Eq.

(13) into Eq. (11) gives

cP(R)=lf.!o(R)O-€l+E2-€3)+-4
1 f al·tl dl
'IT r 1

ep(p) =€cPo(p) - Ｔｾ Ira·t dl,

where

where

ro=qs, rl =qp,

(13a)

(13b)

(13c)

IV. LIMITATIONS AND APPLICATIONS

The method presented provides a simple method for de­

termining the disturbance due to multiple screens. While we

have expressed the parameters of the problem in terms of

multiple screens, it can also be interpreted in a more conven­

tional way as being a problem involving multiple

apertures-the aperture being defined as the screen's ex­

tended plane. The only limit of integration explicitly ex­

pressed in terms of the screen is the last term of Eq. (14) as

the others are expressed as contour integrals around the

screen/aperture boundary.

The method presented is constrained by several limita­

tions. First, the objects to be described must be constructed

from finite two-dimensional planes as it was assumed that

the normal derivative of the Green's function G(p,q) was

zero. Second, the KBCs must be satisfied. This restricts the

method to describe disturbances whose wavelength is much

less than the object's dimension. Despite these limitations,

the method is less restrictive than the geometrical methods.

Even if the approximate boundary conditions are not satis­

fied, the method still gives results that indicate the correct

trend and in most cases the correct order of magnitude. This

is quite unlike the geometrical method (UTD) of Fig. 2

which diverged rapidly when similar conditions were not

met.

The application of the Maggi transformation to Eq. (11)

introduces an additional constraint other than those given by

Eq. (12). The transform fails if the point of observation lies

on the edge of the geometrical shadow.!2 In that case, Eq.

(11) should be used rather than the simplified method.

I

V. RESULTS

Substituting the values given in Eq. (15) into Eq. (14)

gives the following simple description for the cases consid­

ered here:

For the screens and geometries considered here, the line be­

tween the source and observation points always intersects the

radiating surface, so

This section is broken into two parts. The first addresses

the measurement system and the physical properties it must

have if the measurements and theoretical predictions are to

be compared. In the final part, measured and predicted inser­

tion losses are directly compared and the results discussed.

A. Measurement system and basic requirements

The measurement system must reflect any explicit or

implicit assumptions that were made during the formation of

the MKBCs. These assumptions become requirements for the

measurement system. They are

(1) source used must be a point source (Le., omnidirec­

tional),

(2) KBCs must be satisfied for the screen(s) considered (this

also implies that the transmission loss through the screen

must be sufficiently high), and

(3) screens used must behave as if they were infinitely thin.

Possible errors associated with these will be investigated

in the sections following a description of the general mea­

surement system.

1. General system

A convenient method for examining the accuracy of the

theory is to compare the measured and predicted insertion

loss due to a pair of screens. The measured insertion loss can

be obtained by taking the ratio of the transfer functions (be-

(15)

(14)

aG(R,p) (16)

a
.ds

p
•

up

Having only two terms, a single and triple integral, Eq.

(16) is much more compact. If the integration time ｶ ｡ ｲ ｩ ｾ ｳ

directly with the number of integration points and there are

N points on each edge for line integrals and N 2 are used for

the surface integrals, then Eq. (16) is 2N times faster to

evaluate than Eq. (11).
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FIG. 5. The effect on single screen insertion loss due to a directional source.

OAXOA m screen located at PI with the receiver at R1.
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FIG. 6. Cross section of the constructed point source. Dimensions are in

millimeters and are approximate.

tween the source excitation impulse and the microphone sig­

nal) with and without It; ｾ ｣ ｲ ･ ･ ｮ Ｈ ｳ Ｉ in place. The predicted

insertion loss is the ratio between the predicted sound­

pressure level at the receiver with and without the screen(s)

in place. The measurements were conducted in an anechoic

chamber to minimize the effects of room reflections. Since

no anechoic room is perfectly absorptive, time gating tech­

niques were used to remove unwanted reflections. A high­

pass filter set at 200 Hz was used to remove low-frequency

building noise.

mmm Funnel

_ Driver cone

HHi!!!!,!!!!!!1 Plasticine

l1li Driver baffle

ｾ Absorption

oAperture

2. Source

In order to compare the measured results with the theo­

retical predictions, which assume an ideal point source, it is

necessary to construct a source that radiates energy equally

in all radial directions. To illustrate this, the insertion loss for

a OAXO.4 m screen at position PI and receiver position RI

was measured using two different sources. The results are
shown in Fig. 5. The first, a highly directional source, was a

Philips ADOI63 high-frequency driver having a cone diam­

eter of about 2.5 em mounted in a O.14XO.14XO.25 m ply­

wood enclosure with sharp comers. The other, a much less

directional source, used the same driver but the baffle effects

were reduced by locating the O.75-cm-diameter radiating sur­

face at the end of a long cylinder. Krishnappa14 used a simi­

lar method.

As shown in Fig. 6, the point source was constructed

from a simple hard plastic funnel cut so its mouth was just

wider than the driver's radiating surface. Steel wool was

placed in the mouth in an effort to offer additional damping

to the "driver's cone. Mineral wool was inserted in the throat

to damp the standing waves that formed due to the mis­

matched impedance between the funnel's throat and the air

outside. The driver and funnel were then encased in a thick

layer of plasticine to add mass in an effort to increase the

transmission loss so the energy radiated by the sides was

negligible relative to that from the aperture. The shape of the

encasement was smooth and slowly varying, to remove any

surface discontinuities. A sharp gradient in either the surface

normal or its impedance becomes a line or point source as

stated by Keller's geometrical theory of diffraction. Extend­

ing the encasement to the back of the driver also improved

its performance by creating a surface of homogeneous im­

pedance. The amount of absorption in the funnel's throat was

chosen to attenuate the standing waves so that a sharp pulse

could be emitted without undue smearing while maximizing

the usable signal. If time gating techniques are to be used,

then it. is very important to have a source that has a very

short-tune constant so that the source does not continue to

ring and emit energy after the pulse has arrived at the re­

ceiver. Several different types of driving elements were

tested. The type of element that had the longest ring was a

piezoelement, followed by a voice coil of a hom driver as

used by Krishnappa. Of the voice coil drivers, the KEF 1'27

had a shorter ring than the Phillips high-frequency driver but

also had lower efficiency. Since there was a small path­

length difference between the chamber floor and the bottom

of the screen(s), the pulse duration had to be minimized.

Thus the KEF driver was chosen. Alternatively, an inverse

filter could have been used to create an excitation signal that,

when emitted by the driver, would produce a near-delta func­

tion.

A point source was created which radiated energy uni­

formly to within ±O.75 dB over a solid angle of 11'/2 sr for an

effective frequency range of 0.2-12.8 kHz. Comparing the

results shown in Fig. 5 (with the object close to the source)

to those shown in Fig. 7 (with the object further away), it can

be seen that the effect of source directionality is reduced as

the solid angle subtended from the source by the object is
diminished.

3. Objects

The two-dimensional square screens were constructed

from 19-mm plywood with square edges. Three different

sizes were used: OAXO.4, O.5xO.5, and O.6xO.6 m, and

could be located at the three positions shown in Fig. 1. The
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FIG. 7. The effect on single screen insertion loss due to a directional source.
O.4XO.4 m screen located at P3 with the receiver at RI.

FIG. 9. Single screen insertion loss for O.SXO.5 m screens of various thick­
nesses located at P3 with the receiver on axis at Rl. The two measurements
of the 19·mm screen were made with different lime gates after the screen
was removed and replaced to indicate measurement repeatability.

FIG. 8. Estimation of the field on the dark side of a single O.6xO.6 m screen
at P3. The microphone positions are located very close to the screen's
surface (10 mm) to measure the sound pressure radiated by the dark side of
the screen at the positions. This will provide insight to the validity of the
KBCs for objects of this size.

not entirely satisfied in the region defined by the extended

plane of the screen (Le., system's aperture) since the inser­

tion loss is nonzero.

Figure 2 which compared measured and predicted inser­

tion losses for a single screen shows that formulation based

on the KBCs overestimated the insertion loss in the low fre­

quencies but the agreement does improve with increasing

frequency. This suggests that for source, object, and receiver

positions considered here, theories that use the KBCs will
underestimate the sound-pressure level in the low frequen­

cies. This may be explained by considering the KBC and

MKBC assumption that there is no disturbance on the dark

side of the screen(s). In reality, for wavelengths similar to the

screen dimension there will most likely be a significant dis­

turbance. Terai,3 when he performed an analytic determina·

tion of the field on the dark side of a screen, found that even

when the wavelength was about twice the object's dimension

the disturbance on the dark side was comparable to that on

the front. He also found that for source, object, and receiver

configurations similar to those used here, the approximate

KBC based method underestimated the receiver sound pres­

sure. It is possible that when the disturbance on the dark side

is summed it will tend to add in phase at the receiver, thereby

reducing the insertion loss. Despite the fact the KBCs are not

entirely satisfied in the low frequencies, the trend of the in·

sertion loss curve is correctly predicted and the magnitude is

usually accurate to within a few decibels for a single screen.

The other assumption of the theoretical formulation is

that the screen(s) can be considered as "thin" (i.e., one

whose dimension approaches zero relative to the wave­

length). The insertion loss of a 19-mm plywood screen was

compared to that of a 3.2-mm steel plate to determine if the

plywood screens can be considered thin. The measured in­

senion loss for 0.5 X0.5 m screen of various thicknesses is

shown in Fig. 9. The results suggest that for frequencies up

to about 8500 Hz the 19-mm-thick screen is behaving simi­

larly to the much thinner 3.2·mm screen. For frequencies

greater than 8500 Hz, the two screens exhibit different inser­

tion losses with the difference apparently increasing with fre­

quency. The plywood SCreen was removed and replaced and

the measurement repeated with slightly different time gates

to detennine if the observed difference was due to measure-

•
•

•
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screens T""JISt satisfy several conditions if the predictions are

to be accurately compared to the measured results.

The most basic requirement is that the screens should

satisfy the KBCs upon which the MKBCs are built. This

means that the disturbance on the dark side of the screen

(Le., the side not facing the source) is negligible with respect

to the disturbance on the side facing the sourCe. A further

requirement is that the presence of the screen does not affect

the field experienced in the extended plane of the screen (Le.,

the aperture). For wavelengths that are similar to the dimen­

sions of the screen, the disturbance on the dark side of the

screen does not satisfy the KBCs as shown by Fig. 8. If the

KBCs were truly satisfied, then the insertion loss for all

points immediately behind the screen but displaced a very

small distance would be infinite for all frequencies. The fact

that the insertion loss is not infinite will be due in part to the

finite transmission ｬ ｯ ｾ ｳ of the plywood screen especially in

the low frequencies. Also, Fig. 8 shows that the KBCs are
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FIG. 10. Single screen insertion loss for O.SXO.S m screens of various
tbicknesses located at P3 witb tbe receiver moved off-axis to R2. The

results indicate that effect of screen thickness on measured insertion loss is

a function of source, screen, and receiver location.

FIG. 12, Insertion loss due to two screens O.6XO.6 m located at position

Pi; O.6XO.6 m located at position P2, with tbe receiver at Ri, N=12.

FIG. 11. Insertion loss due to two screens 0.4XO.4 m located at position Pl;

OAXO.4 m located at position P2. witb tbe receiver at Rl. The number of

integration points on each edge, N, is varied to sbow tbe effect of under
sampling.

B. Comparison of measured and predicted results

Equation (16) waS used to compute the insertion loss for

various systems. For the purposes of numerical integration,

each edge was divided into 12 segments (N::::; 12), giving a

total of 48 segments for line integrals and 144· for surface

integrals. The location. and the weighting of the integration

points were determiited by Gauss-Legendre quadratures.

The insertion loss was computed on a 386-based 25-MHz

personal computer at discrete frequencies every 200 Hz over

the measurement range 200-12800 Hz and took approxi­

mately 90 s. Screen size, location, and point of observation

are changed. The predictions are compared to measured re­

sults and a method for determining the ninnber of integration

points will be given. ..

Figure 11 shows the measured and predicted level

change due to the system of screens (O,4XOA m at position

PI; 0.4 XOA m at position P2; receiver position R1). The

predicted results show ｴ ｾ ･ correct trends in the frequency

response of t.he inSertion loss, but the predicted results con­

sistently overestimate the insertion loss. The overestimation

can be as q1Uch as 3 dB. The predictions computed using

three different numbers of integration points show that it is

necessary to correctly choose the number of points as under­

sampling will affect the high-frequency results. Figure 12

shows that increasing both screens' size to O.6XO.6 m does

not affect the agreement. In both cases the model tends to

overestimate the insertion loss in the low frequencies (i.e.,

when the wavelength is comparable to the object's dimen­

sion). This is due to the higb·frequency approximation of the

KBCs upon which the MKBCs are based. As was shown in
Fig. 2 (for a single screen), the KBCs and hence the MKBCs

become a better approximation to the true field potential. on

the dark side of a screen as the frequency increases. The fact

that there are now two screens is likely to compound this

error. Differences between measured and predicted results

for frequencies greater than 8000 Hz may be due to the finite

thickness of the screens. The thickness effects for a single

screen, shown in Figs. 9 and 10, will be compounded since

the system consists of two screens.

The method presented does not suffer from spurious re­

sults at the eigenfrequencies of the space between the two

objects as shown by the smooth continuous curves. For the
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ment repeatability. From the figure it can be seen that the

difference due to thickness is greater than the uncertainty due

to measurement repeatability. Thus the observed differences

are due to the finite tbickness of the screens.

Figure 10 compares the measured insertion losses of a

19-mm and a 6-mm screen when the receiving point is

moved off-axis. It can be seen that a significant difference

between the two measured insertion 10ssg§ starts near 9500

Hz and the maximum difference is nearly 7 dB. This sug·

gests that the effect of screen thickness on the measured

insertion loss is both a function of frequency and the relative

positions of the object and receiver. Despite this apparent

uncertainty for very high frequencies, the 19-mm plywood

screen exhibits similar insertion loss trends to screens of

much lesser thickness. Thus 19-mm screens prove to behave

like thin screens for most frequencies of interest, and in the

very high frequencies they exhibit similar insertion loss

trends to screens having much less thickness.

In the formulation of the MKBCs, and consequently

Eqs. (11) and (16), it was assumed that the scattered compo­

nent at I z was due solely to a component which had under­

gone a single diffraction (i.e., multiple diffractions between

I 1 and I z did not occur). Consequently, absorption was

placed on the dark side of the screen nearest the source.
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FIG. 13. Insertion loss due to two screens O.SXO.S m located at position

P1; O.SXO.S m located at position P3, with the receiver at R2, N=12.
FIG. 15. Insertion loss due to two screens O.6XO.6 m located at position

P1; 0.4XO.4 m located at position P2, with the receiver at Rl, N=12.
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C. Determining the number of Integration points

Selecting an adequate number of numerical integration

points is critical to attaining a prediction that is not contami­

nated in the high frequencies. Figure 11 has already shown

the significant effect that using insufficient integration points

can have on results. The number of points required will be a

function of the frequency, the size of the screens, and the

geometry between the source (either the point source or a

field point on a screen) and the receptor points. Figure 16

shows two adjacent receptor points P1 and P2 having dis­

tances r 1 and r 2 to the field point $. In general, the follOWing

must hold:

ence, for the range 6-12.8 kHz, while for frequencies less

than 6 kHz, the trend and details of the insertion loss are

correctly represented by· the prediction which is within 3 dB

of the measured. In Fig. 15, the screens are interchanged and

the degree of agreement remains similar. That is, the predic­

tion tends to overestimate the insertion loss. The difference is
typically less than 3 dB for frequencies below 6 kHz. For

frequencies above 6 kHz both the trend and magnitude are

correctly predicted. It is interesting to note that the level

change during the first 4. kHz is very similar.

12102 468
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case when SCreens are located at positions PI and P2, the

fundamental ｦ ｲ ･ Ｌ ｜ ｵ ｾ ｣ ｹ is approximately 310 Hz.
Figure 13 shows that the measured and predicted inser­

tion losses for an off-axis point of observation (Le., receiver

position R2). For frequencies up to 9 kHz, the measured and

predicted results agree within about 4 dB (with the prediction

showing a higher insertion loss). After 9 kHz, the prediction

only follows the general trend of the measured insertion loss.

The difference between measured and computed may be due

to the screens' finite thickness and also the uncertainty in the

true relative positions of the source, screens, and receiver.

Uncertainties in the object's position can significantly alter

both the phase and magnitude of the predicted disturbance on

the objects and ultimately the sound-pressure level at the

receiver. To illustrate the sensitivity of the insertion loss on

the screens' position, the computer model was run with the

screens' position shifted by 2 cm in the positive Y direction.

Figure 13 shows a significant insertion loss change for fre­

quencies greater than 9000 Hz. This effect should not be

unexpected since shifting the screens by 2 em represents a

change in position by more than X/2 at 9000 Hz. Ideally,

detailed measurements made as a function of small pertUrba­

tions would be used to evaluate this effect. However, such

data are not available at the present time.

Thus far, only two screens of uniform size have been

used. Now the case when the screens are of unequal size is

considered. Figure 14 shows the result when there is a 0.4

XO.4 m screen at position PI and a O.6xO.6 m screen at

position P3. Agreement is very good, less than 2 dB differ-

FIG. 14. Insertion loss due to two screens OAXO.4 m located at position

PI; O.6XO.6 m located at position P2, with the receiver at RI, N= 12,

FIG. 16. Sketch showing integration points and the screen geometries used

in determining the number of integration points for the O,4XOA m screens

located at positions PI and P2 of Fig. 11.
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where 8 is some fraction of a wavelength. If the Nyquist

sampling theorem is applied, then 8= 'A/2. If the angle be­

tween the line '1 and plane is 0, then Eq. (17) can be rewrit­

ten as

(ri+d2 sin2 O)1I2+d cos O-'t=8= Al2. (18)

Ideally, this would hold for all angles of 0 that are applicable

to the system. For the geometry of the two screen system of

Fig. 11, the range of angles is quite limited. The largest range

occurring with the source on the first screen and the receptor

points on the ｳｾ｣ｯｮ､ screen is shown in Fig. 16. In this case,

the range is approximately 53°-90°. Figure 11 showed that

with 6 points used for the line integrals and 36 for the sur­

face integrals, the error due to under sampling begins at

about 6200 Hz. Using the wavelength at 6200 Hz (0.0553
m), Eq.. (18) suggests that there should be less than nine

points on each edge (0=53") but more than ｴｨｲ･ｾ points (0

=90°). Using nine points on each edge would satisfy the

condition [Eq. (18)] for the range of angles 53°:S;;(}:!i;;90° but

appears to be too conservative when the observed results of

Fig. 11 indicated that only six points were required. How­

ever, the mean of the two extremes (three points and nine

points) represents a number which is in good 'agreement with

the observed requirement of six points on each edge. This

method requires further work to determine its applicability to

more general geometries.

VI. CONCLUSIONS

The method of MKBC based on the KBCs has proved to

be effective in predicting the surface potential on multiple

two-dimensional objects. The MKBCs, when applied to the

HIEM, decouple the N by N set of simultaneous equations.

The resulting expressions for the surface potential can easily

be integrated as there are no poles in the domain.

Experimentally the method was shown to offer a reason­

able prediction of the disturbance at a point in space when

there were two intervening screens. However, the method did

suffer from the limitations associated with the KBCs upon

whieh it is based. This was characterized by the method un"

derestimating the sound-pressure level at the receiver in the

low frequencies (hence an overestimation of the screens' in­

sertion loss). Despite this, the correct insertion loss trends

were exhibited and the agreement tended to improve with

frequency. Experimental work revealed that the 19-mm

square edge screens used could not be considered "infinitely

thin" for frequencies greater than about 8500 Hz as the

thickness began to affect insertion loss. The effect of screen

thickness was most pronounced for receiver positions off-.

axis. The screens' finite thickness may have contributed to

the deviation between measured and predicted results in the

high frequencies. The insertion loss was shown to be greatly

effected by shifts in position when distance Al2 or greater.

The MKBCs provide a convenient alternative, especially

for objects and frequencies that are not well suited to either

the geometrical theories of diffraction or the analytic meth­

ods. The method of MKBC forms the basis for describing a

special class of diffraction problems.
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