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ABSTRACT: The physical mechanisms that lead to pipe breakage are often very complex and not well un-
derstood, and data on the physical condition of pipes is scarce. Conversely, many water utilities do maintain 
records of pipe failure (or repair) events, which can be used for the statistical analysis of breakage patterns to 
discern the deterioration of water mains.  

The structural deterioration of water mains and their subsequent failure are complex processes, which are af-
fected by many factors, both static (e.g., pipe material, size, age, soil type) and dynamic (e.g., climate, ca-
thodic protection, pressure zone changes). Several models exist in the literature, which use various statistical 
methods to analyze breakage patterns of pipe breakage histories. Some of these models were designed to ad-
dress individual water mains, while others can handle only relatively large groups of pipes, which are pre-
sumed to be homogeneous with respect to their deterioration patterns. Dynamic factors can currently be con-
sidered only in one a model that was designed to deal with pipe groups. While group deterioration analysis is 
important for high-level renewal planning, operational considerations require the prioritization of individual 
pipe for renewal within such groups. 

The National Research Council of Canada (NRC), with support from the American Water Works Association 
Research Foundation (AwwaRF) is undertaking research to develop an approach that will allow the consid-
eration of dynamic factors that influence the breakage patterns of individual water mains. This research is en-
tering its third year and in this paper we provide some interesting interim insights and results. 

1 INTRODUCTION  

The structural deterioration of water mains and their 

subsequent failures are complex processes, which 

are affected by many factors, both static (e.g., pipe 

material, size, age, soil type) and dynamic (e.g., cli-

mate, cathodic protection, pressure zone changes). 

Limited knowledge and scarcity of data render the 

physical modeling of all distribution water mains 

impractical. In contrast, statistically derived empiri-

cal models can be useful for small-diameter water 

mains for which low cost of failure does not justify 

expensive data acquisition campaigns. 

Statistical methods to predict water main breaks 
use available historical data on past failures to iden-
tify pipe breakage patterns. These patterns are then 
assumed to continue into the future in order to pre-
dict the future breakage rate of a water main or its 
probability of breakage. Statistical methods can be 
classified broadly into deterministic, probabilistic 
multi-covariate and probabilistic single-covariate 
(namely time) models. These models are typically 

applied to grouped data (Kleiner and Rajani, 2001). 
Deterministic models predict breakage rates using 
two or more parameters, based on pipe age and 
breakage history, e.g., Shamir and Howard (1979), 
Walski and Pellicia (1982) and Clark et al. (1982). 
Many factors, operational, environmental and fac-
tors dependent on pipe material, jointly affect the 
breakage rate of a water main. The population of 
water mains has to be partitioned into groups that 
are appreciably uniform and homogeneous with re-
spect to these factors, in order for two or three pa-
rameters to capture a true breakage pattern. The par-
titioning of data into groups, however, warrants 
careful attention because two conflicting objectives 
are involved. On one hand the groups have to be 
small enough to be uniform but, at the same time, 
the groups have to be large enough to provide results 
that are statistically significant. Probabilistic multi-
covariate models, such as those based on the propor-
tional hazards statistical model (e.g., Andreou et al., 
1987; Eisenbeis, 1994) or on non-homogeneous 
Poisson process (e.g., Constantine and Darroch, 
1993; Røstum, 2000), can explicitly and quantita-



tively consider most of the covariates in the analysis. 
This ability makes them potentially powerful to pre-
dict future breakage rates of water mains. It also re-
duces the need to pre-partition the data into groups, 
although often some level of partitioning may still 
be required. Other types of approaches include ac-
celerated failure time (Røstum, 2000) and models 
that attempt to fit probability distributions to inter-
break time durations in pipes, e.g., Gustafson and 
Clancy (1999), Mailhot et al. (2003) and Dridi et al. 
(2005). 

All the models described above can only deal 
with static covariates. Water utilities have observed 
that operations such as pressure control, cathodic 
protection (both systematic (retrofit) and opportunis-
tic (hot spot)) and external environment (water tem-
perature and soil moisture deficit) can have a sub-
stantial impact on water main failure patterns. 
Neglecting to account for these effects can lead to 
inaccurate conclusions, which result in sub-optimal 
renewal strategies. Kleiner and Rajani (2000, 2004) 
proposed a model that considers both static and dy-
namic influences on the breakage pattern of water 
mains. It is a deterministic model, which works only 
with groups of pipes. In this paper we report on in-
terim results of research intended to extend this 
model to consider individual (rather than groups of) 
water mains to enable effective prioritization of the 
renewal of these individual water mains. 

The rest of this paper is organised as follows: 
Section 2 provides an introduction to the analysis of 
historical breakage patterns of groups of water 
mains, with the consideration of time-dependant 
(dynamic) effects. Section 3 describes on-going re-
search on ways to “explain” variations in breakage 
patterns of individual mains, and Section 4 provides 
a summary and direction of further research. 

2 MODELLING DYNAMIC EFFECTS ON 
BREAKAGE PATTERNS OF GROUPS OF 
PIPES 

The model proposed by Kleiner and Rajani (2000, 
2004), named D-WARP (Distribution Water mAins 
Renewal Planner), addresses the deterioration rates 
of a homogeneous group of distribution water mains. 
It considers time-dependent (dynamic) factors such 
as temperature (in the form of freezing index), soil 
moisture (in the form of rainfall deficit), and ca-
thodic protection (CP) strategies, including hot spot 
CP as well as systematic retrofit CP. Non-time-
dependent (or static) factors such as pipe character-
istics and soil type are implicitly considered through 
the formation of homogeneous water main groups. 
The underlying premise is that a homogeneous 
group of pipes experiences a steady increase in 
breakage rate (hereafter referred to as “background 
ageing rate” or simply “ageing rate”), upon which 

year-to-year variations occur. Some of these varia-
tions can be attributed to time-dependent factors. 
Once background ageing rates is discerned, it can be 
used to project future breakage rates. In addition, the 
impact of operational strategies such as schedules of 
cathodic protection (both hot spot and retrofit) can 
be superimposed on this background ageing. Subse-
quently, the life cycle costs of various scenarios op-
erational strategies can be evaluated and fine-tuned 
to achieve maximum efficiency in resource alloca-
tion.  

 D-WARP uses a general, multi-covariate expo-
nential model to discern breakage patterns while 
considering time-dependent factors: 

T
txa

t exNxN
⋅= )()(

0t   (1) 

where xt = vector of time-dependent covariates pre-

vailing at time t, N(xt) = number of breaks resulting 

from xt, a = vector of parameters corresponding to 

the covariates x; xto= vector of baseline x values at 

year of reference to. Time-dependent covariates (or 

“explanatory variables”) can be pipe age, tempera-

ture, soil moisture, number of effective CP anodes, 

etc. Parameters ( )
0t

xN  and a can be found by least 

square regression or by using the maximum likeli-

hood (ML) method. 

The multi-covariate model is applied to groups of 
water mains that are assumed homogeneous with re-
spect to their deterioration rates. Grouping of water 
mains is typically based on some or all of the static 
factors (e.g., by material type, diameter, vintage, 
geographical location, etc.) for which data are avail-
able. Although the mathematical model is not re-
stricted in the number of covariates it can consider, 
data availability (or rather unavailability) is usually 
the limiting factor. Currently the only time-
dependent covariates that are considered are age, 
temperature, winter soil moisture, annual soil mois-
ture, hotspot cathodic protection and retrofit ca-
thodic protection. Freezing index is used as a surro-
gate measure for annual temperature. Two schemes 
of rain deficit are used as surrogate measures for 
winter soil moisture and annual soil moisture. De-
tails on these surrogate measures are provided in 
Kleiner and Rajani (2002).  

Hot spot cathodic protection is the practice of op-
portunistically installing a protective (sacrificial) 
anode at the location of a pipe repair. These anodes 
are typically installed without any monitoring and 
stay in the ground until total depletion, usually with-
out replacement.  

Retrofit cathodic protection refers to the practice 
of systematically protecting existing pipes with gal-
vanic cathodic protection, whereby an anode is at-
tached to each pipe segment (typically 6 m or 20’ 
length), or if the water main is electrically continu-



ous a bank of anodes in a single anode bed is suffi-
cient. Kleiner and Rajani (2004) described in detail 
how cathodic protection is considered in the multi-
covariate model (Equation 1). Figure 1 provides an 
illustration of an example group of pipes for which a 
HS CP program was started in 1984.  

The break history analysis in D-WARP provides 
the coefficients a for background ageing, climatic 
covariates and cathodic protection effects. Once 
background ageing has been discerned, it is assumed 
that the group of pipes will continue to age at the 
same rate. It is also assumed that the cathodic pro-
tection effects observed in the past will continue to 
prevail if CP is continued. Based on these assump-
tions a forecast of future breakage rates can be 
made. Note that climate effects are usually not con-
sidered in this forecast because they require a credi-
ble climate forecast, including temperatures and pre-
cipitation  
 

Figure 1. Breakage pattern of cathodically protected pipes (HS 
CP started 1984) 

3 INVESTIGATING VARIABILITIES IN 
BREAKAGE COUNT OF INDIVIDUAL PIPES 
WITHIN A HOMOGENEOUS GROUP 

The ultimate goal of the research on which this 
paper reports is to develop an operational tool for 
network owners and planners to be able to prioritise 
individual water mains for renewal, while consider-
ing both static and dynamic effects that influence 
pipe deterioration rates. The underlying assumption 
of our approach is that within a homogeneous group 
of pipes, some of the variations in breakage rates 
among individual water mains are a result of irre-
ducible random natural variation (aleatory uncer-
tainty), while some of the variation (epistemic un-
certainty) can be explained by the existence of some 
factors. These factors need to be identified and sub-
sequently expressed as covariates (or “explanatory 
variables”) in a mathematical model. 

3.1 Candidate covariate: pipe length 

In practically all reported analyses of breakage 
frequency in pipe groups (including those cited in 

Section 1, as well as others), the aggregate length of 
the pipes in a group has been used as a normalizing 
factor. This has the implication that breaks are dis-
tributed uniformly along the pipes, which carries the 
expectation that the number of breaks be directly 
proportional to the length of pipes. The literature 
also reflects that pipe length has frequently been 
used as a covariate capable of “explaining” at least 
some of the variability observed in individual water 
mains. Researchers (e.g., Andreou et al, 1987; Ei-
senbeis, 1994; Røstum, 2000, and others) used the 
log transform or n-th root of pipe length as a covari-
ate in their proportional hazards models. These re-
searchers reported various results with respect to the 
“quality” of pipe length as a covariate. In some wa-
ter distribution networks, length was found to be sta-
tistically significant, while in others it was not. Ad-
ditionally, pipe length was found to be significant 
for some pipe materials (CI, PVC) when the number 
of previous breaks was between 1 and 3, while in-
significant when the number of previous breaks was 
0 or equal or greater than 4. In other materials (AC) 
it was found to be not significant at any level of 
previous breaks. In some cases, when the length was 
found to be significant, the coefficient (in the expo-
nent) was obtained with values around 0.5. This im-
plied that the hazard was proportional to the square 
root of the pipe length. Giustolisi et al. (2005) used 
Evolutionary Polynomial Regression (EPR) to find 
polynomial expressions that predict the breakage 
rate of pipes. In several data sets length was found to 
be a good predictor. 

These inconclusive results on using length as co-
variate, motivated us to re-examine pipe length as a 
candidate covariate for explaining differences in 
breakage intensity of individual pipes in a homoge-
neous group. The length of individual water mains is 
typically in the order of magnitude of no more than 
several hundreds of meters. A protocol was therefore 
developed to artificially generate pipes with a wider 
range of lengths:  

a) Extract a homogeneous group of pipes (same di-

ameter, material, vintage, cathodic protection). 

Total number of individual pipes in the group is 

N. For each pipe i (i = 1, 2, ..., N), record its 

length, li, and the number of breaks, bi, observed 

during the analysis period.  

b) Compute the correlation (Pearson) coefficient 

between li. and bi (individual pipes). 

c) Set a constant, say, MaxPipes = 2. 

d) Generate a positive random integer NoPipe 

where NoPipe ≤ MaxPipes 

e) Generate NoPipe positive unique random num-

bers, say k1, k2, …, kNoPipe. each of which ≤ N. 

f) Record the sum of lengths Lj = Σ(lk1, lk2 …) and 

the sum the breaks, BBj = Σ(bk1, bk2 …). 



g) Repeat steps (d) to (f) thousand (1000) times. 

We now have 1000 pairs Lj and Bj (j = 1, 2, …, 

1000). 

h) Compute the (Pearson) correlation coefficient 

between Lj and BB

 

j. 
i) Repeat steps (d) to (h) for MaxPipes = 2, 5, 10, 

20, 30, 50, 100, 500 and 1000. 
The protocol was applied, with similar results, to 
three different data sets from three major Canadian 

cities. Figure 2 illustrates detailed results for one of 
them, while Figure 3 compares the overall correla-
tions for all three data sets. 

Figure 2 demonstrates that while in the macro 
level (long pipe lengths) there is clear linear correla-
tion between pipe length and number of breaks, in 
the micro level (shorter pipe lengths) this correlation 
is completely overtaken by “noise”, which is the 
natural variation between pipes. In fact, viewing 
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Figure 2. Linear correlation between pipe lengths and breaks: Ottawa dataset CI, 150 mm pipes ( BLBB = correlation length/breaks)ρ



graph a to graph h (top right to bottom left in Figure 
2) is akin to zooming in on the bottom left corner of 
the graph a.  

 

 
Figure 3. Variation of linear correlation coefficients with pipe 
lengths in 3 cities  

 
It appears that the intuitive understanding that higher 
exposure leads to more observed breaks must be true 
since pipe length is a surrogate for exposure. How-
ever, the natural randomness inherent in the rela-
tionship between length and breaks is relatively 
high. Further, while pipe length is a continuous 
physical property, pipe break is a discrete entity. In-
dividual pipes, whose length might typically vary 
between a few tens and a few hundreds of meters, 
typically do not experience too many breaks before 
they are replaced. This discrete nature of breakage 
data amplifies the natural randomness in relatively 
short pipes. Consequently, the randomness or the 
“noise” in the data all but completely overwhelms 
any mathematical relationship when comparing in-

dividual mains. However, when the variability in 
pipe lengths is big, the aggregate number of breaks 
becomes continuous-like in its behaviour and the 
natural randomness produces “noise” that is much 
smaller relative to the mathematical relationship and 
therefore no longer overwhelms this relationship. It 
should be noted that repeating the same exercise 
with powers (between zero and unity) and log of 
lengths yielded similar results. 

While Pearson’s linear correlation was rather low 
between length and breaks of individual mains, 
Spearman’s rank correlation proved significantly 
higher. Spearman’s rank correlation values for the 
individual water mains in Ottawa, Scarborough and 
Calgary were 0.38, 0.40 and 0.56 compared to Pear-
son’s linear correlation values of 0.23, 0.23 and 
0.46, respectively. 
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3.2 Candidate covariate: pipe failure history 

Pipe failure history can be characterised by the num-
ber of previous failures (NOPF), as well as the tem-
poral pattern of these failures, i.e., recency of these 
failures. Models reported in the literature (e.g., An-
dreou et al, 1987; Eisenbeis, 1994; Røstum, 2000) 
only considered NOPF as a covariate pertaining to 
pipe failure history. . 

To investigate how NOPF can be a predictor for 
future breaks,, we established a reference year and 
defined time windows for past and future pipe 
breaks, WinPast and WinFuture, respectively as as 
illustrated in Figure 4. The number of recorded 
breaks in WinPast was correlated to the number of 
recorded breaks in WinFuture. This was done for 
different reference years as well as for variouse t, 
values of WinPast and WinFuture. Observed trends 
(some intuitively expected, others not as much) 
were: 

• Correlations between total number of past breaks 

and total number of future breaks increases as the 

length of the WinPast increased. 

• Correlations between total number of past breaks 

and total number of future break increases as the 

length of WinFuture increased. 

• Correlations between total number of past breaks 

and total number of future break generally vary 

for different RefYears. However, these variations 

depend on the lengths of WinPast and WinFuture. 

As WinPast and WinFuture increase, these varia-

tions decrease and these variations all but disap-

pear for WinPast ≥ 10 years and WinFuture ≥ 10. 

Earliest data 

Latest dataReference year (RefYear) 
Recorded break

Past w indow (W inPast) Future w indow (W inFuture )

Figure 4. Timeline to explore pipe failure history

• The correlation between total number of past 

breaks and total number of future when WinFu-

ture = 1 year is very small (approximately be-

tween 0 and 0.2) and varies highly with RefYear, 

regardless of length of WinPast. This suggests 



that the possibility of predicting next year’s 

breakage in individual water mains, using their 

past number of breaks is doubtful. 

• Correlations between total number of past breaks 

and total number of future break when WinFuture 

≥ 5 years and WinPast ≥ 15 years have values 

approaching 0.4. 

3.3 Candidate covariate: geographical clustering 

Water utilities often lack data that are (directly or 
indirectly) geographically related, such as soil data, 
overburden characteristics (land development, traffic 
loading), historical installation practices, groundwa-
ter fluctuations, transient pressures, poor bedding, 
etc. These data, if available, may sometimes help to 
“explain” variations in breakage rates. Under the 
hypothesis that geographical clustering of historical 
breaks could be a surrogate for these often missing 
data, we examined the viability of using geographi-
cal clustering of historical breaks as a possible pre-
dictor to explain variability of breakage rates among 
individual water mains in a homogeneous group of 
pipes. The examination comprised the following 
steps: 

a) Extract a homogeneous group of N pipes (same 

diameter, material, vintage, cathodic protection). 

For each pipe i (i = 1, 2, ..., N) record the number 

of breaks b
t
i, observed at each year t in the analy-

sis period T (t = 1, 2, …T). 

b) For a reference year RefYear (⊆ T), select a win-

dow of historical years WinPast and a window of 

future years WinFuture. WinPast comprises Tp 

years, where the first year is equal to (RefYear - 

Tp + 1) and the last year equals RefYear. WinFu-

ture comprises Tf years, where the first year is 

equal to (RefYear + 1) and the last year equals 

(RefYear + Tf). 

c) Based on WinPast breakage data create C geo-

graphical clusters. A break belongs to cluster cj 

(j = 1, 2, …, C) if its Euclidean distance from the 

centroid of cj is smaller than its distance from the 

centroid of every other cluster cj (i ≠ j). The clus-

tering algorithm K-Means as described by Mac-

Queen (1967) was used.  

d) Partition all pipes into the C clusters, based on 

their distances from the centroids of the clusters. 

e) Create C clustering covariates for each pipe, 

based on the pipe distance from the centroids of 

the respective clusters. These covariates are sup-

posed to predict the number of breaks observed 

during WinPast. 

f) Train the model on the WinPast data by finding C 

coefficients that minimise the sum of square dif-

ferences between observed and predicted number 

of breaks in WinPast. 
Use the C coefficients to predict breaks for Win-

Future. 
Figure 5 illustrates an example of break cluster-

ing (6 clusters) in a group of cast iron 150 and 
200 mm water mains, installed in Edmonton, Canada 
between 1902 and 1945.  
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Figure 5. Example of historical breaks partitioned into six clus-
ters  

4 COMBINING EXPLANATORY VARIABLE 
INTO A PREDICTIVE MODEL 

Based on the observations reported in the previous 

section, we concluded that with the given type of 

data it was more tenable to forecast the relative ex-

pected breakage frequency of individual pipes 

within a homogeneous group of pipes. We therefore 

set out to address the following challenge: “In a ho-

mogeneous group comprising N individual pipes, 

with available breakage history of T years, find 

which n pipes are expected to have the highest num-

ber of breaks in the next y years”. The following 

procedure is proposed: 

a) Select RefYear and partition the observation pe-

riod T into WinPast and WinFuture. Identify n 

pipes with the highest number of breaks in period 

WinFuture. Record these pipes in a list named Lf. 

b) Similar to step (a) above, identify n pipes with 

the highest number of break in period WinPast 

and record them in a list named L1. 

c) Identify n pipes with the highest length and re-

cord them in a list named L2.  

d) Identify n pipes that the cluster analysis predicted 

to have the highest number of breaks and record 

them in a list named L3. 



e) Assign weights W1, W2, W3 to lists named L1, L2, 

L3, respectively. These weights will serve as ini-

tial values to be optimized later. 

f) Identify pipes that appear in lists L1, and L2 and 

L3 and record these pipes in a list named L1,2,3. 

Similarly, identify pipes that appear in lists L1, 

and L2 and record these pipes in a list named L1,2. 
List named L1,3 will comprise pipes that appear in 

lists L1 and L3., and list named L2,3 will comprise 

pipes that appear in lists L2 and L3.  

g) If a pipe appears in a higher order list, remove it 

from all the corresponding lower order lists. For 

example, if a pipe appears in list L1,2,3 it should be 

removed from lists L1,2, L1,3, L2,3 , L1, L2, and L3. In 

this way every pipe will appear only once in the 7 

lists. 

h) Pipes in list L1,2,3 are assigned weight W1,2,3 = W1 

+ W2 + W3. Pipes in list L1,2 are assigned weight 

W1,2 = W1 +W2, and so on. 

i) Rank all pipes (from the 7 lists) by their assigned 

weight in descending order. The n pipes with the 

highest weights are those predicted by the model 

to have the highest number of breaks in the future 

window. Record these pipes in a list LW . 

j) Denote by H the number of pipes (“hits”) that ap-

pear in both lists Lw and Lf. 

k) Find a set of weights (Wi ; i = 1, 2, 3) that maxi-

mizes H. 
This procedure was applied to several datasets 

and demonstrated relatively good results. For exam-
ple, on a set of 1349 150 mm CI pipes (Scarbor-
ough), installed between 1945 and 1960, the number 
of “hits” was H = 21 pipes on attempting to predict 
n = 75 pipes with the highest number of breaks.  

4.1 Evaluation of prediction quality 

To evaluate the quality of prediction it is proposed 
to compare it to the probability of obtaining the 
same results with a random draw, i.e., what is the 
probability of randomly selecting n out of N pipes, 
so that H of the selected pipes (H ≤ n) truly belong 
to the n pipes with the highest number of breaks. In 
our example, N = 1349, n = 75, H = 21, Figure 6 il-
lustrates that obtaining more than 21 “hits” at ran-
dom has virtually zero probability (1 – cumulative 
probability). 

5 SUMMARY AND CONCLUSIONS 

The analysis of historical breakage patterns in a rela-
tively homogeneous group of pipes can provide in-
sight into the expected future trends of the group. 
However, it is rarely feasible to replace an entire 
group of pipes due to budgetary constraints, there-
fore there is a need to prioritise the replacement of 

individual pipes within such a group. The first step 
towards prioritisation is to discern differences be-
tween the individual pipes, specifically, how to pre-
dict that one pipe will fail more frequently than an-
other in the same group? 
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Figure 6. Probability of obtaining results by random selection 

 
In this paper we have reported on the examina-

tion of three candidate indicators (covariates), pipe 
length, number of previous observed failures and 
pipe and break clustering. A weighted ranking – 
based procedure was presented, whereby these indi-
cators are used to forecast the pipes with the highest 
number of breaks in a homogeneous group of pipes. 
The quality of the prediction was ascertained by 
comparing the prediction to random selection. More 
research is planned to test the procedure for consis-
tency across varying time windows and reference 
years as well as across different data sets. 
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