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ABSTRACT

A new operational ice dynamics module has been implemented within
the framework of the Canadian Community Ice-Ocean Model. The
formulation is based on Hibler’s viscous plastic rheology, a Particle-In-
Cell (PIC) approach to model ice advection, and a Zhang-Hibler
scheme to solve the momentum equations. The PIC approach reduces
numerical diffusion and improves the accuracy of predicting ice edge
locations. Discretizing the ice cover into a large number of particles
additionally simplifies modelling thickness distribution in great detail,
without resorting to complex assumptions concerning a thickness
distribution function. The Zhang-Hibler scheme leads to relatively high
computational efficiency, and guarantees that the plastic yield
conditions are satisfied. The program is tested using idealized cases,
which demonstrate the model’s ability to predict ice edge locations,
zones of high pressure, and ridging.

KEYWORDS: Sea ice forecasting, ice model, sea ice dynamics, ice
drift, Particle-In-Cell, viscous plastic rheology.

INTRODUCTION

Ice dynamics models are routinely run to generate short-term products
for all navigable waterways in Canada. Over the past few years, several
requirements for improvements in the operational ice model have been
identified. Those requirements include higher resolution, reduction of
numerical diffusion particularly at ice edges, and improving the
accuracy of predicting ice drift. This has prompted investigations
concerning several aspects of the ice model such as ice cover rheology
and various numerical formulations. Furthermore, a need has emerged
for efficient means of sharing the results of ice model development,
which take place at a number of agencies. Consequently, the Canadian
Community Ice-Ocean Model (CIOM) has been developed as a
framework for ice modelling research and operation. This paper reports
on the development of a new ice dynamics module within CIOM.

Early treatments of ice dynamics employed free-drift, linear viscous
and elastic-plastic models. At present, however, most ice forecasting is
based on the viscous plastic rheology and numerical formulation of
Hibler (1979). The ice forecasting program presently used by the
Canadian Ice Service is based on that model (a description was given

by Neralla, 1994). Other such operational models include PIPS (Posey
and Preller, 1997).

An examination of different rheology models by Ip et al (1991) showed
that shear strength is necessary for short-term forecasts. They also
concluded that the elliptical yield envelope of Hibler (1979) provides
the appropriate shear strength at low stresses. This contrasts with
Mohr-Coulomb criterion, which corresponds to relatively small shear
strength at low stresses. For long-term forecasts, however, the
cavitating fluid model of Flato and Hibler (1992) was shown to provide
appropriate accuracy, and additionally efficiency.

Discrete element models were also used in attempts to determine ice
rheology. For example, Hopkins and Hibler (1991), and Sayed et al
(1995) examined the deformations and stresses of assemblies of ice
floes within rectangular test areas. The results of such studies, however,
appear to depend on several factors concerning set-up of the problem,
boundary conditions, and loading method. Therefore, they have not
provided definitive conclusions regarding the appropriate shape of
yield envelopes.

Numerical diffusion associated with finite difference solutions has been
a source of inaccuracies, particularly in forecasting ice edge locations
and high pressure zones. Flato (1993) developed a Particle-In-Cell
(PIC) model, which improved the accuracy of predicting ice edge
location. The PIC model is semi-Lagrangian. It is based on using
discrete particles to model advection, while solving the momentum
equations over an Eulerian grid. Other fully Lagrangian models have
been developed including a discrete element model by Savage (1995)
and a Smooth Particle Hydrodynamics by Gutfraind and Savage
(1997). Those models greatly reduce numerical diffusion but the
relatively high computational demand precludes them from operational
use, at least at present.

As for solution of the momentum equations, Zhang and Hibler (1997)
developed a semi-implicit finite difference method that appreciably
improves efficiency. Their solution also guarantees that the yield
criterion is satisfied through the use of pseudo time steps. Hunke and
Dukowicz (1997) developed a different model based on an elastic-
viscous-plastic rheology. That model reportedly leads to substantial
improvements in computational efficiency.

The choice of modelling approach in the present work was aimed at
meeting the requirements that were mentioned earlier, while adhering
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to reliable methodologies. The main features of the model include the
use of the viscous plastic rheology of Hibler (1979) since it is the most
tested model and has been shown to suit short-term forecasting. The
numerical solution of the momentum equations follows the method of
Zhang and Hibler (1997) because of its efficiency, and in order to
ensure that yield conditions are satisfied. A PIC approach (Flato, 1993)
is used to model advection. Additionally, the PIC approach makes it
possible to keep trach of thickness distribution in great detail, and in a
simple manner. Huang and Savage (1998) showed that using PIC in
conjunction with Zhang-Hibler numerical approach gives better
resolution of ice edge locations than traditional finite difference
formulation.

The following sections of the paper will discuss the governing
equations and numerical solution method. Organiztion of the program
and results of idealized test follow.

GOVERNING EQUATIONS

Momentum and rheology equations

The ice cover is considered to move under the action of air and water
drag, Coriolis force, and water surface tilt. Thus, the two-dimensional
balance of linear momentum for a unit area of the ice cover is
expressed as follows
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where ρice is the ice density, h is the ice thickness, u
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 is the velocity

vector, σ is the stress tensor, k
r

  is the unit vector normal to the ice

cover surface, f is Coriolis parameter, and aτr and wτr  are the air and

water drag stresses, respectively, g is the gravitational acceleration, and
H is sea surface elevation. The air and water drag stresses are given by
the following quadratic formulas
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where ca and cw are the air and wind drag coefficients, aU
r

 is wind

velocity, wU
r

 is water velocity, β is the water turning angle, θ is the air

turning angle, and ρa and ρw are the air and water densities,
respectively. Eq. (2) assumes that ice velocity is small compared to
wind velocity. The turning angle, β is assumed to be the same for wind
and water stresses.

A general form of the stress-strain rate relationship may be given by
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where 
•

ijε  is the strain rate, P is the compressive strength as defined by

Hibler (1979), and η and ζ are the shear and bulk viscosities,
respectively. We note that P is different from the mean normal stress,
which is commonly used in continuum mechanics literature. The
compressive strength, P is usually considered to increase with
increasing ice compactness, A (area of ice/total area). We use here the
formula of Hibler (1979)
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where P* is a reference ice strength, and C is a constant.

For small strain rates below a certain threshold, η and ζ are assumed to
be constants and consequently the flow would be viscous. As strain
rates exceed the threshold values, η and ζ can be chosen to represent a
plastic yield envelope.

Hibler (1979) used an elliptic yield envelope and an associated flow
rule to model the plastic regime. In that case the bulk and shear
viscosities would be given by

22 e

P ζηζ =
∆

= (6)

where ∆ is given by

( )















−++++=∆

•
−

•••
−−

••

0
22

22
2

11
2

12
222

22
2

11 ,)1(241)(max εεεεεε eee
(7)

where 
•

11ε  , 
•

22ε , and 
•

12ε  are the components of the strain rate

tensor, 
•

0ε is the threshold strain rate, and e is the ratio between the

major and minor axes  of the elliptical yield envelope.

Particle-In-Cell (PIC) advection

According to PIC formulation (Flato, 1993), the ice cover is discretized
into individual particles that are advected in a Lagrangian manner.
Each particle is considered to have an area and a thickness. For each
time step, the particle velocities are determined by interpolating node
velocities of an Eulerian grid. Particles can then be advected. The area
and mass of all particles within each grid cell are then averaged to
update the thickness and ice concentration at the Eulerian grid nodes.

A bilinear interpolation function is used to map variables between the
particles and the Eulerian grid. For a particle n at location xp, yp, and
grid node co-ordinates (xij, yij), the interpolation coefficients ω would
be given by
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where t is time, and ∆x and ∆y are the grid cell dimensions.

Thus, the particle velocity components, up and vp can be calculated as
follows
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where u(i,j) and v(i,j) are the velocity components of the Eulerian
velocity grid.

Once particles’ velocities are determined, advection of a particle, n at
location X, can be expressed as
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where u is the particle’s velocity vector and ∆t is the time step.
Following Flato (1993), the integral in Eq. (11) is approximated by

2
)),,((),(

,)),(()),,((

t
ttntn

ttntdttn
tt

t

∆+=

∆=′′′∫
∆+

XuXX

XuXu

*

*

(12)

The updated thickness and concentration are determined at each time
step by mapping particles’ areas and volumes back to the Eulerian grid.
In the present case, as will be discussed later, a staggered B-grid is
used. Therefore the thickness and concentration values correspond to a
set of nodes different from those used for the velocities. The values of
node concentration c(xij, t) are determined as follows
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where A(n,t) is the area of particle n. The values of node thickness are
then calculated as follows
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where V(n,t) is the volume of particle n.

The resulting concentration and thickness are further modified to
account for ridging, which may occur if ice converges. If the
concentration at a node, according to Eq. (13), is larger than unity, its
value is adjusted to one. The thickness at that node is also increased to
conserve the volume of ice. The correction of concentration is mapped
back to the particles. A factor F (larger than or equal to1) is used to
reduce the area of each particle. Note that the volume of each particle is

conserved. Thus, the thickness of a particle is increased by the factor F.
The value of F is determined by
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THE NUMERICAL APPROACH

The solution is implemented using a staggered B-grid. The velocity
components are defined at the corners of the velocity grid. All scalar
values (pressure, viscosities, thickness and concentration) are defined at
the centres of the grid cells.

Starting from a given initial configuration, the numerical solution of the
above governing equations updates the velocities, pressures,
thicknesses and concentrations at each time step. The main logic of the
solution consists of the following steps:

• Advect the particles to new positions using Eqs. (11) and (12).
• Determine the thickness and concentration values by interpolating

the area and volume of the particles to the scalar grid, according to
Eqs. (13) and (14).

• Correct the thickness and concentration values by adjusting
concentrations higher than unity. Next correct the area and
thickness of each particle with the aid of Eq. (15).

• Calculate the pressures on the scalar grid using Eq. (5).
• Solve the momentum equations on the velocity grid. This is the

major part of the solution, and is discussed below.
• Determine particle velocities by interpolating values from the

velocity grid using Eq. (10).

Solution of the momentum equations follows the approach of Zhang
and Hibler (1997). The solution steps may be summarized as follows.
The momentum equations are arranged, with some terms to be treated
implicitly, and others to be treated explicitly. A modified Euler time-
stepping scheme is then used to solve the momentum equations in two
levels. In the first level, the viscosity coefficients and diagonal water
drag terms are considered to be functions of the previous time step. In
the second level, those terms are evaluated using velocities at the centre
of the time step. In those two levels, the off-diagonal water drag and
Coriolis force terms are treated explicitly. Therefore, a third level
correction is carried out in order to treat those terms implicitly. That
correction produces a stable solution, with no strict limitations on the
time step.  The first and second level solutions can be done using either
line relaxation or point relaxation. Although Zhang and Hibler (1997)
indicate that line relaxation is more efficient, point relaxation is simpler
and is used here in order to enhance simplicity and maintainability of
the program. The preceding solution steps do not guarantee that the
plastic yield condition is satisfied. In order to ensure that all stresses lie
within the yield envelope, Zhang and Hibler introduced an additional
pseudo time step iteration loop. This loop can be restricted to the
second level solution, and corresponds to adjusting the viscosity
coefficients each pseudo time step. The preceding discussion gives an
outline of the solution method. Details of that method were given by
Zhang and Hibler (1997).
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Boundary Conditions

Land boundaries are introduced to the program via a mask, which
assigns a value of 0 or 1 to cell centres (or thickness nodes). A value of
0 corresponds to land. All velocity nodes surrounding a land mask
value of 0 are considered to have zero velocities; i.e. a no-slip
condition is used at land boundaries.

The edge of the ice cover requires a more complex treatment, since its
location changes throughout the solution steps. A velocity node is
considered to correspond to open-water, when ice thickness (averaged
from the 4 surrounding cell centres) is smaller than a minimum value
(e.g. 0.05 m). For open water nodes, the momentum equations are
solved as usual, but using a minimum value for ice thickness. Such a
minimum value is needed to avoid divisions by zero. This procedure is
commonly used to produce a continuous velocity field at the ice edge
(Flato, 1998). Tests of the present program showed that this procedure
gives more realistic results than those obtained by setting the velocities
to zeros at open-water nodes.

At the outflow boundaries of the grid, a mask is used to assign zero
values to cell centres. The corresponding values of the pressure and
viscosity coefficients are set to zeros. Velocity nodes outside the
outflow boundary are assigned zero values.

PROGRAM ORGANIZATION

The Community Ice-Ocean Model

The CIOM is a framework for implementation of ice forecasting
models. It is aimed at facilitating sharing of new developments and
handling various input data formats. The approach of CIOM is based
on encapsulating the various components of ice-ocean models in
modules with standard interfaces. Thus modules can be shared and
exchanged with relatively small effort. The framework of CIOM, as
illustrated in Fig. 1, consists of an Ice Module, Ocean Module, and an
Atmosphere Module. Those modules are connected via a Control
Program. The data are defined in a Master Data Structure.

Fig. 1: Schematic diagram of the Community Ice-Ocean Model.

The exchange of data takes place through interface modules: Ice
Interface Module, Ocean Interface Module, and Atmosphere Interface
Module. Each module also has its local variables. The values stored in
the Master Data Structure are copied back and forth each time a module
(e.g. the Ice Module) is called. Coding of the interface modules was
developed by Chave and Fissel (1996). The Control Program directs
intitialization, scheduling and time stepping. The Control Program also
connects to utility modules that handle some input and output

operations. The interface modules allow off-the-shelf model
components to be coupled with minimal code restructuring. The design
also enables inter-model data exchange on different grids. The output
module provides a uniform file structure for analysis and visualization
of the results.

Outline of the Ice Module

The new Ice Module consists of a number of subroutines, which
initialize and solve the dynamics equations. The initialization
subroutine, is called only once at the start of a run. The first 3
subroutines read the input files (including land mask, ice chart and Ice
Module parameters). After reading the input, a subroutine is called to
place particles in each grid cell and to initialize the area and thickness
of each particle.  Two more subroutines are next called to calculate the
pressure for each grid cell, and to map the velocities from the velocity
grid to the particles. The steps of program initialization are summarized
as follows:

• Read ice data. This consists of area concentration and thickness of
each category (1 to 10), and for each grid cell. Initial velocities are
assigned to the velocity grid.

• Initialize particle information. For each cell, the number of
particles belonging to each category is determined, particles are
placed within the cell, and a thickness and area are assigned to
each particle.

• Pressure is calculated for each cell.
• Velocities are mapped from the velocity grid to particles.

The dynamics is called at each time step, with updated wind, ocean and
thermodynamics variables. The main steps follow the above discussion
of the numerical approach.

IDEALIZED TEST CASES

Operation of the program is examined in this section by considering
two cases of idealized geometry and environmental forcing. An initial
ice cover of 0.5 m thickness and 0.95 concentration is assumed to cover
an area of 80 km by 100 km, with a land boundary at the east side. The
grid consists of 10 km square cells, with 50 particles per cell. The
initial positions of the particles are shown in Fig. 2. The ice cover is
subjected to a constant uniform wind with a westerly component of 3.5
m/s and a southerly component of 6 m/s. The water current is assumed
to be zero. The values of other run parameters are:

time step         30 minutes
mean latitude (for calculating Coriolis parameter) 35 degrees
air drag coefficient 0.003
water drag coefficient 0.005
turning angles (both air and water) 0
ice strength, P* 104 Pa
Elliptical yield envelope axes ratio, e 2

The resulting particle positions after 50 hours are shown in Fig 2. The
resulting thickness, concentration, and velocity distributions are shown
in Fig 3. A second test case was carried out using similar conditions to
case 1, but also adding a land boundary at the northeast. The resulting
particle positions are shown in Fig. 4.

The present results predict reasonable trends. The magnitude of
predicted velocities and drift rates are in accordance with those of free
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drift. The differences appear to correspond to the expected effects of
land boundaries and the resulting internal ice pressure.

6 m/s

3.5 m/s

WIND

Land boundary

Fig. 2: Initial particle positions for the test cases.

Initial ice boundary

Fig. 3a: Particle positions after 50 hours (node numbers are shown
on the East and North coordinates).

Fig. 3b: Pressure (P) distribution after 50 hours.

Fig. 3c: Thickness distribution after 50 hours.

CONCLUSIONS

A new Ice Module has been implemented within the framework of the
Canadian Community Ice-Ocean Model (CIOM). The program
includes two significant features, which meet previously established
model requirements. The first feature is the use of a PIC scheme for ice
advection. This reduces numerical diffusion, and particularly improves
the accuracy of predicting ice edge locations. Discretizing the ice cover
into a large number of particles has additional advantages. For
example, thickness distribution is represented at great detail without
resorting to arbitrary assumptions concerning a thickness distribution
function.

The second main feature of the program is the use of the Zhang-Hibler
numerical method to solve the momentum equations. That method
leads to substantial improvements in the computational efficiency.
Additionally, through the use of pseudo time steps, it guarantees that
plastic yield conditions are satisfied.

Hibler’s viscous-plastic rheology is used in the present program since it
is the most tested and accepted model. That rheology gives the ice
cover a shear resistance, which is needed for the length and time scale
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of interest. The Ice Module can be extended to include other plastic
yield conditions such as the Mohr-Coulomb criterion.

The program was tested using idealized cases. Further testing using
observations from the Gulf of St. Lawrence are currently underway.

Initial ice boundary

Fig. 4: Particle positions after 50 hours, north land barrier
introduced.
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