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Remaining life and economics of inspection in large-diameter 
pipelines

Yehuda Kleiner

National Research Council of Canada, 1200 Montreal rd. Ottawa, ON. K1A 0R6, Canada

Abstract

A probabilistic approach is proposed, in which the economic life of a large-diameter buried pipe is expressed as a function of 
various factors, including the cost and efficiency of inspection. Expert knowledge is initially used to estimate the pipe expected 
remaining life as well as the impact of inspection technology on this estimate. As ‘hard’ data are obtained about the pipe, through 
actual recorded failures as well as through systematic and opportunistic inspection, these data are used to update and refine the 
initial estimates. The approach supports rational decisions, about pipe renewal timing, inspection scheduling ands size of 
investment in an inspection campaign.
Keywords: Large-diameter pipes, remaining life, inspection economics, probabilistic, asset management, decision-support

1. Introduction

As pipes deteriorate, their likelihood of failure increases. In small-diameter water distribution mains, where 
failure consequences are relatively low, a certain level of failure frequency can typically be tolerated. In contrast, 
failure consequences in large-diameter mains are typically high, leading to a preferred strategy of failure avoidance. 
Ideally, with perfect information about, and understanding of, deterioration and failure mechanisms, a pipe would be 
scheduled for renewal just before it is about to fail, thus avoiding failure while optimizing the use of renewal 
budgets. However in reality, with less than perfect knowledge, one can only estimate this ‘sweet spot’ of renewal 
timing. 

Numerous approaches have been reported in the literature on modelling deterioration and making decisions on the 
renewal of buried pipes, though most address sewer mains (for which CCTV inspection data are more abundant) 
rather than trunk water mains. Markov process-based approaches include Abraham and Wirahadikusumah (1999), 
Kathula and McKim (1999), Jiang et al. (2000), Kleiner (2001), Micevski et al. (2002), Baik et al. (2006) and others. 
Logistic regression-based approaches include Ariaratnam et al. (2001), Davies et al. (2001), Cooper et al. (2000) and 
others. Soft-computing approaches include artificial neural networks, e.g., Tran et al. (2009); fuzzy computing 
methods, e.g., Kleiner et al. (2006a, b), Rajani et al. (2006) and others. Other noteworthy approaches include 
Bayesian belief networks by Hahn et al (2002), Younis and Knight (2010) with an ordinal regression-based model 
and dynamic programming by Ugarelli and Di Federico (2010).

Evidence about the condition of the pipe as well as plausible failure mode is provided through observable or 
measurable signs (or distress indicators) as well as through inferential indicators (such as soil properties, 
environmental or operation conditions) that point to the potential existence of deterioration mechanisms. The role of 
asset inspection is to observe and document the existence and extent of distress indicators. However, inspection 
carries its own cost, as well as accuracy limitations, it should therefore be undertaken judiciously and its benefits 
should be weighed against its cost.

The approach proposed here is probabilistic, where pipe-end-of-life is defined as an economic outcome of the 
trade-off between the expected cost of pipe deterioration and the cost of its renewal. Pipe inspection is an important 
factor that influences the expected failure cost of deteriorating pipes and the proposed approach takes this influence 
into consideration. This enables to determine what level of investment in pipe inspection is economically justified. 

Expert knowledge is initially used to estimate the expected remaining life of a large-diameter pipe, as well as the 
impact of inspection technology on this estimate. As ‘hard’ data are obtained about the pipe, through actual recorded 
failures as well as through systematic and/or opportunistic inspection, these data are used to update and refine the 
initial estimates.

A case study is presented to demonstrate the approach and its performance and applicability. This approach can 
be an attractive proposition for the effective management of large-diameter pipe assets, leading to rational decisions 



about when to plan the pipe renewal, or alternatively when to schedule the next inspection. The approach also 
provides a rational assessment about the size of investment in an inspection campaign that can be economically 
justified at the various stages in the pipe life. It also delineates the pipe age at which pipe owner should undertake 
regular pipe inspection. 

2. Definitions

To establish the theoretical basis for the approach, the following definitions are made:

 Pipe – a relatively homogeneous pipe section of length L, comprising pipe segments of length l each (a total of n
= L/l segments in a pipe). All segments of a pipe are considered to belong to the same (statistical) population. 

 Pipe segment – a basic component of a pipe. For practical reasons it is convenient to define it as a single bell-to-
spigot unit in the case of jointed pipe.

 Pipe failure – occurs when a single segment fails, resulting in segment replacement or significant renovation, 
which makes the segment good as new. Pipe failure is associated with cost of failure, which includes direct, 
indirect and social costs.

 Pipe imminent failure – when inspection determines that a single pipe segment is deteriorated to a degree that 
failure can occur at any moment, and almost certain to occur before next inspection. In the following time-to-
failure analysis pipe failure and pipe imminent failure are considered to be equivalent events, i.e., ‘time to failure’ 
and ‘time to imminent failure’ are equivalent.

 Pipe rehabilitation (unscheduled) – upon failure, the segment can be rehabilitated/replaced. It is assumed that the 
rehabilitated segment is as good as new (since the segment is exposed for repair the measure needed to make it 
good as new is easily determined). 

 Pipe rehabilitation (scheduled) – undertaken following inspection, upon discovery of a substantial deficiency or 
imminent failure. Here too it is assumed that the rehabilitated /replaced segment is as good as new. 

 Pipe minor repair – whereas rehabilitation makes the pipe good as new, minor repair restores the pipe to as good 
as old. Examples: small leaks repaired with clamps, joint leak repaired with re-caulking, etc. When several minor 
repairs on a single segment lead to its replacement, it is considered a failure.

 Probability of detection (POD) – as no inspection technology is perfect, there is some likelihood that a 
substantial deficiency will not be detected.

 Probability of false positive (PFP) – probability that an inspection will erroneously identify a substantial 
deficiency.

 Pipe end of life – when it is no longer economical to perform scheduled and unscheduled local rehabilitation 
(including segment replacement) while carrying the risk of failure of segments that have not been 
replaced/renovated. In other words, the expected cost of catastrophic failures plus expected cost of imminent 
failure pre-emption become higher than the cost to replace (or renovate) the entire pipe

3. Time to failure of a pipe segment

The time to failure of a pipe segment is assumed to follow some probability distribution. The vast majority of 
pipe owners will have insufficient data to ascertain with any accuracy the exact type of distribution. Consequently, 
the Weibull distribution is proposed because of its relative simplicity and the fact that it is widely used to model 
component time to failure; however, it must be noted that the approach outlined here can be applied with any 
probability distribution that is found suitable. Ideally, the estimation of parameters for the probability distribution 
would be done based on actual historical data of failures or imminent failures in the pipe. However, as stated above, 
data about segment longevity are often lacking or not available, therefore a simple method to estimate parameters, 
based on expert opinion is also provided. The 3-parameter Weibull probability is
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where F(x) is the cumulative density function (cdf), f(x) is the probability density function (pdf),  is the scale 
parameter and  is the shape parameter and γ is the offset parameter. In the context of time to failure analysis, 
parameter γ represents a period since installation, during which no failures are expected (in some publications such a 
parameter is termed “period of resistance” to failure and is also linked to a warrantee period, where any failure is the 
responsibility of the contractor). Consequently, parameter γ can usually be estimated directly by utility experts. 
Parameters  and  can subsequently be computed based on two known pairs x1, F(x1) and x2, F(x2), using Eqs. (2):
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For example, suppose that utility experts can agree that they believe that for a certain pipe no segment will fail in 
the first 20 years after installation. Suppose that they can further agree that the median life (i.e., the time since 
installation during which 50% of the population will not fail) of segments is 100 years and 10% will survive with no 
failure to 150 years, then parameter γ = 20 years and equation (2) can be used to obtain parameters  = 92.8 and 
=2.47. Fig. 1 illustrates the resulting probability distribution of age at failure. Another example with a more (right) 
skewed distribution is provided in Fig. 1, where the same γ = 20 is considered and 50% of the pipe segments are 
believed to survive (without failure) to the age 150 years, and 10% to 180 years ( = 138.5 and  = 5.78). As can be 
seen, the Weibull distribution is quite flexible and can represent a wide array of shapes.

Fig. 1. Examples probability distribution of pipe segment time to failure.

These expert opinion-based initial estimated parameters are referred to as ‘semi-informative’ parameters because 
they are not (or are minimally) based on ‘hard’ failure data. A detailed description of how to continually update these 
semi-informative parameters using real incoming failure and inspection data is provided in a later section.

4. Pipe rate of failure

We define failure rate (t) as the expected annual number of failures or imminent failure in year t:
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where n is the number of segments in the pipe.

5. Pipe life-cycle cost

5.1. Cost of single cycle

Let Cr denote entire pipe replacement cost, Cf denote segment failure cost (including emergency repair and all 
direct, indirect and social costs) and Cb denote the cost of planned segment rehabilitation/replacement (i.e., cost of 
failure pre-emption). For simplicity, it is tentatively assumed that the cost of inspection can be somehow expressed 
in terms of annual disbursements, CI. The expected total annual cost associated with the pipe at year t is given by
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In the life-cycle of the pipe, we assume that as the pipe ages and deteriorates C(t) increases over time until the 
pipe is replaced at its end of life tend. In reality, a relatively small fraction of the n segments will have been renewed 
by tend, therefore it is reasonable to assume for simplicity that a single segment will not fail more than once during 
one pipe renewal cycle (i.e., a renewed/replaced segment is assumed to survive to tend).

The total discounted cost of a complete renewal cycle excluding initial installation cost but including pipe 
replacement cost at year T, is given by (r is the social discount rate)
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5.2. Cost of perpetual cycles to infinity

The life-cycle of the pipe will theoretically include perpetual renewal cycles to infinity. The consideration of 
perpetual renewal cycles obviates the need to define a planning horizon and consider the residual value of the pipe at 
the end of this planning horizon. If as a first approximation we assume that these perpetual renewal cycles are 
identical, it can be shown that the present value of the cost of the infinite series of renewal cycles is given by
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The value T = T** that minimises Cinf is the expected useful life of the pipe, given the aforementioned 
assumptions. The value of T** can easily be found by using trial and error or simple numerical techniques, such as 
the ‘Solver’ utility in MS-Excel.

5.3. Life-cycle cost of existing pipe (present to next replacement) and remaining useful life

Suppose we want to analyse an existing pipe of age to, with segment time-to-failure distribution parameters , 
and γ; cost of replacement Cr, cost of failure Cf and cost of failure pre-emption Cb. The failure rate of this pipe (t) is 
computed with equation (3) The total life-cycle cost Ctot of this pipe from present to infinity is given by
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The value T = T* that minimises Ctot is the expected remaining useful life of the pipe, given the aforementioned 
assumptions. The value of T* can easily be found by using trial and error or simple numerical techniques, such as the 
‘Solver’ utility in MS-Excel.



5.4. When should a pipe owner start undertaking regular inspection?

It is intuitively understood that inspection is justified only when its benefits outweigh its cost. From Eq. (5) it can 
be seen that the net benefits (NB) of inspection at year t are given by
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where the left term on the right hand side is the ‘do nothing’ expected cost and the secont term (in the curly 
braces) is the annual expected cost including inspection. Rearranging Eq. Error! Reference source not found.8) we
obtained that the year t = Ti at which the benefits of inspection equal its cost (i.e., NB = 0) is when
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where the numerator represents inspection costs (false positives are an un-intended cost) and the denominator 
represents benefits. Since the rate of failure is non-decreases with pipe age it makes economic sense to avoid 
inspection in the early years of the pipe when t ≤ Ti.

6. Influence of inspection technology on pipe life-cycle cost and remaining life

Eq. (7) can be readily used to quantify the impact of an inspection technology on the pipe life cycle cost (Ctot) and 
on its remaining life (t*). Essentially, as the pipe deteriorates the expected number of imminent failure increases. 
Inspection allows to pre-empt some of these imminent failure (through scheduled repair), thus preventing them from 
‘maturing’ into a full blown failure, which typically carries a higher cost than scheduled repair. The higher the POD 
of a given inspection technology the higher the expected cost savings, which in turn justifies a higher investment in 
this technology. This concept is intuitively understood by all practitioners and the proposed approach allows 
quantifying it in a rational manner.

Example:

 Assume a (to.=) 30-year old pipe, 800m long (n = 200 segments, 4m long each). 
 The probability distribution in the previous example (left curve in Figure 1) is assumed to govern segment time-

to-failure, with  = 93,  = 2.5 and γ = 20 years. 
 Replacement cost is estimated at Cr = $800,000, cost of failure Cf = $100,000/event and cost of planned repair 

Cb = $20,000/event. 
 Future replacement pipes are assumed to have superior longevity, with time-to-failure distribution parameters 

corresponding to the right curve in Figure 1, i.e., ’ = 138.5, ’ = 5.78 and γ’ = 20 years. 
 Costs associated with the replacement pipes are assumed to be identical to the existing pipe, i.e., at Cr = C’r, 

Cf = C’f and Cb = C’b. 
 Assume that for both current and future pipes inspection of the entire pipe costs $50,000, with POD = 0.5 and 

PFP = 0, and that this inspection provides a 5-year reliable identification capability (i.e., there is no need to 
inspect more frequently than every 5 years. Consequently, the annual inspection cost can be approximated at 
CI = $10,000.

Using equations (3) through (6), the steady-state future cycle duration is calculated to be T** = 95 years. The 
present value (discounted to the next replacement year) of the perpetual cost to infinity of all future replacement 
cycles (including O&M and capital investment but excluding the capital investment in the next replacement) is 
calculated to be Cinf(T**) = $416,000.

Using equation (7), the optimal time to replace the existing pipe (i.e., its remaining useful life) is computed to be 
T* = 8 years. The total cost (discounted to the present) from the present to infinity is computed to be Ctot(T

*) = 
$1,160,000.

Clearly, a higher inspection POD will ‘convert’ actual failures to pre-empted failure, thus reducing total cost and 
extending the useful life of the current pipe. Figure 2 illustrates the effect of POD on the pipe remaining life and total 



life-cycle cost. It shows that in our example increasing POD from 0.5 to 0.9 for example, can extend the remaining 
economic life of the current pipe from 9 to 20 years and reduce the discounted life cycle cost from about $1.16M to 
about 1.0M. This would justify increasing the annual inspection budget by up to (1.16M - 1.0M) / (20 - 8) ≈ $12K. 
If we continue to assume that inspection will be implemented at 5-year intervals, this means that an inspection up-
front cost of up to approximately $110K can be justified.

Figure 3 illustrates how life-cycle costs and remaining life vary at different pipe ages. Figure 3a shows that 
improved POD will reduce the expected life-cycle costs at any pipe age. However, the pipe expected useful 
(economic) life varies depending on POD level. As the pipe reaches its maximum useful life it is assumed to be 
replaced shortly and therefore the marginal benefit of inspection declines (curves become closer to each other).

Figure 3b demonstrates that as long as the pipe is not older than a certain threshold, its age has no bearing on the 
remaining life for a given POD. In our example, at age 20 the pipe remaining life with POD = 0.8 is 25 years for a 
total of (20 + 25 =) 45 years of useful economic life. Similarly, at age 30 with the same POD, remaining life will be 
15 years, for a total useful economic life of 45 years, and so forth (total useful life always adds up to 45 years). 
However, at age 40 a POD of at least 0.7 would be needed to extend the pipe economic remaining life.

Fig. 2. Impact of POD on remaining life and total cost.

Fig. 3. Impact of POD and pipe age on remaining life and total cost.



7. Using historical data to estimate/update distribution parameters

There are three types of historical data that can be used to estimate the parameters of the probability distribution 
of time to failure of the population of segments in a pipe. These include actual failures, imminent failure observed at 
an inspection session (from a statistical point of view imminent failures are treated here as failures) and not-yet-
failed (surviving) segments at the analysis period. 

While the date of an actual failure provides an actual data point, imminent failures observed at an inspection 
session can only be associated with a time interval (e.g., since last inspection or since installation) because the exact 
timing at which they reached imminent failure state is not known. Such failures (or imminent failures) that are 
known to have occurred within a time interval are termed ‘interval-censored data’. The pipe segments that are known 
to have survived to the end of the observation period (in our case the present analysis timing) are termed ‘right-
censored data’.

In some cases it is possible that the data are so-called left-truncated, i.e., the pipe owner/operator started recording 
failures only after a certain date, resulting in a ‘blank’ period between pipe-installation and that date, during which 
failures may or may not have occurred. In the analysis presented here no special consideration is given to left 
truncated data and the entire period between pipe-installation and first inspection is considered as interval-censored 
data regardless of when record keeping began.

The maximum a posteriori (MAP) method is proposed for estimating distribution parameters. This method is a 
derivative of the Bayesian approach to estimate distribution parameters, based on some prior knowledge (or belief) 
combined with observational data. This approach is especially useful in cases where observational data are scarce (as 
is the case in most large-diameter buried pipelines) but there exists some general knowledge about the behaviour of 
the population at hand, typically elicited from experts.

We assume that our Weibull distribution parameters , ,   are normally distributed with means  ,  ,  and 
standard deviations   ,  ,  respectively. The log-likelihood of the posterior function is given by
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where R is the total number of recorded actual failures, ti is the pipe age at failure i (i = 1, 2,..,R), M is the number 
of surviving segments at the year of analysis and T is the pipe age at the year of analysis, K is the number of 
inspections ever undertaken on a given pipe. Inspection j is undertaken at pipe age τj (j = 0, 1, 2, ...,K). Note that τj=0

refers to the time of γ years after pipe installation (before then the pipe is expected to have zero failures) and
therefore τj=0 = γ. mj denotes the number of imminent failures discovered at inspection j (it is consistently assumed 
that mj=0 = 0). The maximum a posteriori (MAP) estimates ��, �� , �� are those values of parameters α, β and γ which 
maximize the value of the posterior probability in Eq. (10).

8. Concluding comments

A probabilistic approach was presented, where pipe-end-of-life is defined as an economic outcome of the trade-
off between the cost of pipe deterioration and cost of its renewal. The pipe end of life is when the expected cost of 
catastrophic failures plus expected cost of planned repairs/renewal become higher than the cost to replace (or 
renovate) the entire pipe The proposed approach takes into consideration the influence of pipe inspection on the cost 
of deterioration and, which enables the determination of an economically justified level of investment in pipe 
inspection. 



Expert knowledge is initially used to estimate the pipe expected remaining life. As ‘hard’ data are obtained about 
the pipe, through actual recorded failures as well as through systematic and opportunistic inspection, these data are 
used to update and refine the initial estimates, using a Bayesian updating technique.

The probability of detection POD refers to the overall capability of an inspection technology coupled with the 
interpretation of the inspection results to obtain accurate information about the pipe condition. In reality, it is not 
easy to determine with accuracy the POD of a given inspection technique or NDE (non-destructive evaluation) 
technology. Many NDE technologies are proprietary and data about their POD and PFP are either nonexistent or not 
publicly available. Estimation of POD must be done in consultation with experienced personnel as well as with the 
technology vendor, if applicable. 

Often, the interpretation of inspection results will be coded as some ordinal condition rating, such as condition 1 
to 5 or 1 to 7, etc., with or without linguistic descriptors such as Good, Fair, Bad, etc. To use the model presented 
here it is necessary to determine a threshold rating, at which a pipe section will be considered to be in a state of 
imminent failure. For example, if the pipe condition is rated on a scale of 1 (best) to 7 (worst), the practitioner may 
decide that a condition rating of 6 or higher is considered ‘imminent failure’. 

An additional benefit of inspection is the possible avoidance of grossly premature replacement. However, this 
benefit cannot be adequately quantified without knowing the basis upon which an untimely replacement was 
undertaken.
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