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We discuss the effect of a charged impurity on the qubit encoded in the two low-energy states of an

electrostatically defined triple quantum dot with one-electron spin in each dot. The two qubit levels are

identified with the two opposite directions of the motion of a minority spin. The effect of the charged impurity

on the coded qubit is mapped onto the problem of an effective spin in a random magnetic field. The effective

magnetic field is related to exchange rather than Coulomb interaction which ensures stability of the coded qubit

with respect to charge fluctuations.
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I. INTRODUCTION

There is currently an interest in exploiting electron spin
for nanospintronic1 and quantum information processings.2–5

The advantages of electron-spin-based qubits are long coher-
ence times6 and solid-state implementation with well-
established scalable semiconductor technology. In the
electron-spin-based qubits described here electron spins are
spatially localized in the plane of the GaAs/GaAlAs hetero-
junction using voltages applied to metallic gates at the GaAs
surface. Due to random charge fluctuations of remote
impurities7 the confining potential may fluctuate and affect
the electronic states of qubits. Hu and Das Sarma8 studied
the effect of charged impurity on two-qubit gate defined by

exchange interaction between two electron-spin qubits local-

ized in a double quantum dot. In this work we study the

effect of remote charged impurity on the qubit encoded in the

two low-energy levels of electrostatically defined triple

quantum dot �TQD� with one-electron spin each.9,10 A coded

qubit controlled by exchange interaction composed of three

spins has been proposed by Di Vincenzo et al.11 Its imple-

mentation in a triple lateral quantum dot with one electron

each has been proposed by some of us in Refs. 9 and 10 and

a triple quantum dot molecule with controlled electron num-

bers has been demonstrated recently.12,13

In this work, starting from the microscopic model, we

derive the Heisenberg Hamiltonian of a TQD in the presence

of a charged impurity. We find that the charged impurity

affects significantly the confining potential and the one-

electron spectrum of a TQD. By contrast, the logical qubit

states identified with the two opposite directions of the mo-

tion of a minority spin are coupled to charged impurity via

complex exchange interactions and only weakly affected by

its presence. By mapping the coded qubit into an effective

two-level system, i.e., spin, the charge fluctuation translates

into an effective fluctuating magnetic field. This allows us to

estimate the time scale T2
� for the charged impurity

fluctuation-induced decoherence. The charge fluctuation-

induced decoherence discussed here is specific to gated ar-

chitecture used in creating coded qubit and is in addition to

material specific individual spin decoherence mechanisms

due to interaction with nuclear spins14 and a combination of

spin-orbit interaction and phonons.15

The paper is organized as follows. In Sec. II we present

and discuss microscopic, Hubbard, and Heisenberg Hamilto-

nians of a coded qubit. In Sec. III we investigate the effects

of the charged impurity on the electronic states of the TQD

charged with one and with three electrons. In Sec. IV, we

map our coded qubit into an effective spin, translate charge

fluctuations into fluctuating magnetic field, and estimate a T2
�

for a model TQD device. Conclusions are given in Sec. V.

II. CODED QUBIT MODEL

A. Linear combination of harmonic-oscillator orbitals-

configuration-interaction microscopic model

For our microscopic calculation, we adopt the linear com-

bination of harmonic-oscillator orbitals-configuration-

interaction �LCHO-CI� method following our previous

work.10 With energy measured in effective Rydberg and

length in effective Bohr radius �see below� the dimensionless

Hamiltonian of Nel electrons confined in a two-dimensional

lateral TQD molecule in the presence of a charged impurity

is given by

ĤNel = �
i

�− �� i
2 + VTQD�r�i�� + �

i�j

2

�r�i − r� j�
− �

i

2

�r�i − R� imp�
,

�1�

where r�i is the �x ,y� position of ith electron, the first term is

the sum of one-electron Hamiltonians Ĥ1el
o , with VTQD�r�i� the

TQD potential, the second term accounts for the mutual Cou-

lomb interaction among electrons, and the third term de-

scribes interaction of electrons with charged impurity located

at R� imp= �Rimp ,�imp ,Zimp�. We denote the part of Eq. �1� with-

out the impurity term by ĤNel
o . The TQD potential VTQD is

approximated by three Gaussian potentials

VTQD�r�i� = − �
k=1

3

Vkexp�−
�xi−Xk�2+�yi−Yk�2

dk
2 � . �2�

Each Gaussian potential is characterized by depth Vk, width

dk, and center at �Xk, Yk�. With GaAs effective mass m�

=0.067me, dielectric function �=12.4, electron charge e, and
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Planck’s constant �, the effective Rydberg is Ry�

=m�e4
/2�2�2=5.93 meV and the effective Bohr radius is

aB
� =��2

/m�e2=9.79 nm. We consider impurity positions

such that the impurity-induced potential
2

�R� k−R� imp�
in any dot k

is much smaller than the amplitude of the electrostatically

generated confinement Vk. Our theory will be illustrated by

numerical results for a model TQD in GaAs with TQD pa-

rameters Vk=5.964 Ry� and dk=2.41805 aB
� and a distance

from the center of each quantum dot to the center of the

structure RTQD=2.8 aB
� .

Following Ref. 10, the molecular single-particle states are

written as linear combination of harmonic-oscillator �HO�
wave functions localized at each dot �LCHO�.10 For resonant

TQD with S-type HO wave function ��i� localized at ith dot

the generalized eigenvalue problem for Hamiltonian H1el
o

readily admits a solution in the form of Fourier transform of

localized orbitals

�kn� = An�i=1

3
exp�i

2�

3 n�i − 1����i�,n = − 1,0,1,

�k0� = 1/�3�1 + 2s����1� + ��2� + ��3�� ,

�k1� = 1/�3�1 − s����1� + ei2�/3��2� + ei4�/3��3�� ,

�k−1� = 1/�3�1 − s����1� + e−i2�/3��2� + e−i4�/3��3�� , �3�

where s is the overlap matrix element 	�i �� j�, i� j. The

molecular ground state �k0� is nondegenerate and the two

excited states labeled by wave vector k, �k1� and �k−1�, are

degenerate and correspond to electron moving either to the

left or to the right �charge current�.
With states i corresponding to the molecular states �ki�,

the properties of the Nel electron complex are described by

the Hamiltonian written in the second-quantized form

ĤNel = �
j

� j
0
d j

+
d j +

1

2
�
ijkl

	ji�V̂�kl�di
+
d j

+
dkdl + �

ij

	i�V̂imp�j�di
+
d j ,

�4�

where d j
+ �d j� creates �annihilates� an electron on the molecu-

lar single-particle state j �including spin� and � j
0 represents

the corresponding single-particle energy. The first term is the

sum of single-particle energies, the second sum accounts for

the mutual Coulomb interaction 	ij�V̂�kl� among electrons,

and the last sum represents the interaction 	i�V̂imp�j� between

electron and the positively charged impurity.

In the subsequent discussion, we focus on a coded qubit

with one electron in each quantum dot. The Sz=−
1

2
subspace

consists of nine configurations built with three electrons dis-

tributed on the molecular single-particle levels. In the ab-

sence of charged impurity, total wave vector Ki=−1,0 ,1, a

sum of the wave vectors of the three molecular orbitals �Eq.

�3�� of each configuration, is a good quantum number con-

served in Coulomb scattering. The scattering wave vectors

K’s which lie outside the Brillouin zone �−2� /3,2� /3� are

translated back by reciprocal-lattice vectors �2� /3�n. This

reduces the 9�9, Sz=−
1

2
, Hamiltonian matrix written in the

configuration basis 
�Ki�� to a block-diagonal matrix com-

posed of three 3�3 matrices, each of them corresponding to

a value of K=−1,0 ,1, respectively. It follows that the eigen-

states of the Hamiltonian have well defined wave vector K

and can be written as a linear combination of only configu-

rations with the same K : �Ki
0�=� j=1

3 A j
K,i�K j�.

Figure 1 shows the energy levels of the coded qubit in the

absence of impurity.9,10 The energy levels are labeled by the

corresponding eigenvectors �Ki
0�. In terms of localized con-

figurations, the six highest levels are mostly composed of

doubly occupied configurations whereas the three lowest en-

ergy levels are mainly composed of singly occupied configu-

rations

�01
0� =

1

�3
�c1↑

+ c2↓
+ c3↓

+ �0� + c1↓
+ c2↑

+ c3↓
+ �0� + c1↓

+ c2↓
+ c3↑

+ �0�� ,

�11
0� =

1

�3
�c1↑

+ c2↓
+ c3↓

+ �0� + ei2�/3c1↓
+ c2↑

+ c3↓
+ �0�

+ ei4�/3c1↓
+ c2↓

+ c3↑
+ �0�� ,

�− 11
0� =

1

�3
�c1↑

+ c2↓
+ c3↓

+ �0� + e−i2�/3c1↓
+ c2↑

+ c3↓
+ �0�

+ ei−4�/3c1↓
+ c2↓

+ c3↑
+ �0�� , �5�

where ci
+ �ci� creates �annihilates� an electron on the local-

ized HO single-particle orbital i. The state �01
0� in the K=0

subspace corresponds to the total spin S=
3

2
while the two

lowest energy coded qubit states, �11
0� and �−11

0�, have S=
1

2

and correspond to minority spin moving to the left or to the

right and hence correspond to spin current. The two coded

qubit states are separated by exchange gap 	 from the S=
3

2

spin-polarized state. In our example in Fig. 1, 	
=0.61 mRy�.

The effect of a charged impurity, the last term in Eq. �4�,
is to break the rotational symmetry and mix the electronic

configurations belonging to different total wave vectors K.

Hence the effect of impurity will be the mixing, i.e., deco-

herence of the two coded qubit states.

FIG. 1. The three low energy singly occupied states. The two

degenerate states form a coded qubit. Inset: energy spectrum of

three electrons in a resonant TQD, including singly and doubly

occupied states, grouped by total K=0,1 ,−1.
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B. Hubbard and Heisenberg models

Following Ref. 16, we first establish the Hubbard Hamil-

tonian, including impurity potential and next derive the

Heisenberg spin Hamiltonian of the coded qubit. The Hub-

bard model is obtained by orthogonalizing the localized HO

orbitals and using them as the basis for the representation of

Hamiltonian �4�,

ĤHub = �



�
i=1

3

Eici

+

ci
 + �



�
i�j

tijci

+

c j
 + U�
i=1

3

ni↑ni↓. �6�

Here Ei is the on-site energy of the ith quantum dot due to

both the applied gate voltages and impurity potential, tij is

the tunneling between ith and jth dots created by both gate

voltages and impurity potential, U is the Coulomb repulsion

between two electrons in the same dot which we here assume

to be independent of the impurity, and ni
=ci

+ ci
 is the num-

ber operator for electrons with spin 
 in ith dot. The param-

eters entering the Hubbard Hamiltonian can be related to the

matrix elements of the one-electron Hamiltonian Ĥ1el and

overlap matrix elements

Ei = 	�i�Ĥ1el��i� + 2s̃�	�i�Ĥ1el�� j� + 	�i�Ĥ1el��k��

+ s̃2�	� j�Ĥ1el�� j� + 	�k�Ĥ1el��k� + 2	� j�Ĥ1el��k�� ,

tij = 	�i�Ĥ1el�� j� + s̃�	�i�Ĥ1el��i� + 	� j�Ĥ1el�� j� + 	�i�Ĥ1el��k�

+ 	� j�Ĥ1el��k�� + s̃2�	�k�Ĥ1el��k� + 	�i�Ĥ1el�� j�

+ 	�i�Ĥ1el��k� + 	� j�Ĥ1el��k�� , �7�

where s̃=
1

3
�

1

�1+2s
−

1

�1−s
� is defined with respect to localized

HO orbital overlap matrix elements s.

Next, we map the low-energy spectrum of the Hubbard

Hamiltonian into the Heisenberg Hamiltonian

ĤHeis = �
i�j

JijS
�

i · S� j . �8�

The Heisenberg Hamiltonian yields the coded qubit states

obtained via the LCHO-CI method. We compute the ex-

change constants Jij from the Hubbard Hamiltonian �6�
through perturbation theory in strong Coulomb interaction

regime �U� tij�. We find

Jij = 4
�tij�

2

U
� 2

1 − �	Eij/U�2
 , �9�

where 	Eij =Ei−E j. In the absence of impurity all quantum

dot energies Ei are equal and hence all exchange constants

are equal. The presence of impurity leads to modifications of

both energy levels Ei and tunneling matrix elements tij, and

hence leads to different exchange interactions Jij for different

pairs of spins i and j. The changes in Jij depend on the ratio

of the impurity-induced difference in dot energies 	Eij to the

on-site Coulomb repulsion U.

III. EFFECT OF IMPURITY ON A CODED QUBIT

A. Effect of impurity on the one-electron spectrum

We now analyze the effect of a charged impurity, the last

term in Eq. �4�, on the one-electron spectrum. We only con-

sider impurity positions which weakly modify the confining

potential of the resonant TQD.

After some algebra, the one-electron Hamiltonian, written

in the basis of molecular states 
�k0� , �k1� , �k−1��, reads

H1el =�
�k0

0 + C00
ov�Ēimp + 2t̄imp� C01

ov��Ẽimp − �t̃imp� C01
ov��Ẽimp − �t̃imp�

�

C01
ov��Ẽimp − �t̃imp�

� �k−1

0 + C11
ov�Ēimp − t̄imp� C11

ov��Ẽimp + 2�t̃imp�

C01
ov��Ẽimp − �t̃imp� C11

ov��Ẽimp + 2�t̃imp�
� �k+1

0 + C11
ov�Ēimp − t̄imp�

� . �10�

The first terms in the diagonal, �kn

0 ,n=0,−1,1, give the en-

ergy of the molecular ground state �k0� and two degenerate

excited states �k−1� , �k+1�, respectively. All remaining terms

correspond to impurity effects. Here Ēimp=
1

3
� j=1

3 E j
imp is the

average shift of the energy levels due to impurity with E j
imp

= 	� j�V̂imp�� j�. t̄imp=
1

3
�i�j=1

3 tij
imp , i� j is the average shift of

the tunneling matrix elements due to impurity, with tij
imp

= 	�i�V̂imp�� j�. �Ẽimp=
1

3
� j=1

3 �E j
impei2�/3�j−1� is related to a

shift in quantum dot energy measured from the average shift

due to impurity �Ei
imp=Ei

imp− Ēimp and �t̃imp=
1

3

��t23
imp+�t13

impei2�/3+�t12
impei4�/3� depends on deviation of each

tunneling matrix element from their average �tij
imp= tij

imp

− t̄imp , i� j. Coefficients C00
ov=

1

�1+2s� , C01
ov=

1
�1−s�1+2s

, and C11
ov

=
1

�1−s� , with s= 	�i �� j� , i� j, account for the nonorthogonal-

ity of the HO basis.

The effect of impurity potential on the one-electron spec-

trum is illustrated in Fig. 2 for a charged impurity located at

Rimp=3RTQD, �imp=� /3, and Zimp=4RTQD. We start on the

left of Fig. 2 with the one-electron spectrum in the absence

of impurity. We first consider the effect Eimp of impurity on

on-site energy levels shown as the second column in Fig. 2.

In the third column, we turn on the effect timp of impurity on

interdot tunneling. We see that these effects of impurity are
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to lower the energy of all levels proportional to the average

impurity shift Ēimp and increase the energy gap between

ground and excited states by 3 times the average impurity-

induced tunneling matrix element, 3t̄imp. In our numerical

example this shift is small due to the small overlaps between

localized orbitals �s=2.64�10−3�.
Next we consider the coupling of states �k1� and �k−1�

caused by the impurity potential in the fourth column of Fig.

2. The energy gap is given by 	�GAP
1el =2�C11

ov��Ẽimp+2�t̃imp��.
Due to the small overlaps, i.e., �tij

imp�10−3�Ei
imp, the energy

gap created by impurity can be approximated by

	�GAP
1el � 2��Ẽimp�

=
2

3
��E1

imp −
E2

imp + E3
imp

2

2

+
3

4
�E2

imp − E3
imp�2.

�11�

If we neglect the coupling of the excited states to the �k0�
state which has much lower energy, we conclude that the

energy gap caused by the impurity is proportional to the

differences between the impurity on-site shifts Ei
imp

= 	�i�
−2

�r�−R� imp�
��i�. Making a Taylor-series expansion and keep-

ing only the first term we find that the energy shift due to the

impurity potential of dot i is Ei
imp� −2

�R� i−R� imp�
, where R� i is the

position of the center of dot i. Therefore the energy gap

created by the impurity is proportional to the differences be-

tween the values of the impurity potential at the center of

each dot. In the last two columns of Fig. 2 we compare the

approximate gap to the gap calculated by exact diagonaliza-

tion and we see that the two approaches agree very well.

Figure 3 shows the one-electron spectra of the TQD as a

function of impurity positions calculated by diagonalization

of the Hamiltonian �4� with Nel=1. The spectra show the

splitting of the doubly degenerate levels, its dependence on

the distance of the impurity from the TQD, and on the posi-

tion with respect to symmetry axis of the TQD. The charged

impurity modifies the one-electron spectra through direct

Coulomb interaction, which mixes states �k1� and �k−1� and

redistributes charge density on the dots as a function of

charged impurity positions. Hence, results from Fig. 3 indi-

cate that any quantum information processing schemes trying

to utilize the electron’s charge degree of freedom17,18 will

have to consider the decoherence channel induced by the

charge fluctuations.

B. Effect of impurity on the coded qubit spectrum

We calculate the eigenenergies and eigenvectors of the

coded qubit Hamiltonian in the presence of impurity �4� in

the basis of eigenvectors of the resonant TQD with three

electrons without the impurity, 
�Ki
0��, discussed in Sec. II.

The impurity matrix elements in the basis 
�Ki
0�� are calcu-

lated as a linear combination of the impurity matrix elements

in the basis of configurations 
�Ki��,

	Ki
0�V̂imp�K j�

0� = �
p=1

3

�
q=1

3

Ap
K,i

Aq
K�,j	Kp�V̂imp�Kq�� , �12�

with

	Kp�V̂imp�Kq�� = 	0�dkp3↑
dkp2↓

dkp1↓
� �

n=−1

1

�
m=−1

1

Ṽnm
impdkn

+
dkm
�

�dkq1↓

+
dkq2↓

+
dkq3↑

+ �0� ,

which is zero unless configurations �Kp� and �Kq�� differ at

most in the spin orbital of only one of the three electrons.

Ap
K,i are the coefficients of the three-electron eigenfunctions


�Ki
0�� written in terms of the configurations 
�Ki�� and Ṽnm

imp

= 	kn� −2

�r�−R� imp�
�km� are the molecular impurity matrix elements.

Figure 4�a� shows the splitting of low-energy levels

�black lines� of a coded qubit obtained by the diagonalization

of the full Hamiltonian for various distances between the

TQD and the charged impurity. Figure 4�b� shows the same

splitting but as a function of the positions with respect to

symmetry axis of the TQD.

No Impurity

x2

impE

x2
impt

x2

Coupling
±1=k Impurity

Interactions

E
n
e
rg
y
(R
y
*)

FIG. 2. Evolution of the energy levels of one electron in a triple

quantum dot in the presence of a charged impurity as function of

interaction type. See text for details. “x2” denotes a doubly degen-

erate level.

FIG. 3. Energy spectrum of one electron in a TQD in the pres-

ence of an impurity located in the plane Zimp=4RTQD as a function

of Rimp and �imp. Rimp is given in units of RTQD. �imp is measured

from the symmetry axis that goes through the center of a quantum

dot. The zero energy is set to the ground level of the resonant TQD.
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The full Hamiltonian containing all doubly and singly oc-
cupied configurations can be approximated by the 2�2
Hamiltonian in the subspace of the two logical qubit levels
�11

0� and �−11
0�. The spectra obtained by diagonalizing this

approximate 2�2 Hamiltonian, shown as shorter lines in

Fig. 4, agree well with results of the full calculations.

Let us now turn to the analysis of the effects of charged

impurity on the coded qubit described by the Heisenberg

model. For a system of three localized spins with total

Sz=−
1

2
we can build a basis equivalent to the eigenvectors of

Eq. �5�, in terms of states describing minority spin moving to

the left, to the right, or being stationary, as


�KHeis�� = 
�1Heis� =
1
�3

��↑↓↓� + ei2�/3�↓↑↓� + ei4�/3�↓↓↑�� ,

�− 1Heis� =
1
�3

��↑↓↓� + e−i2�/3�↓↑↓� + e−i4�/3�↓↓↑�� ,


�0Heis� =
1
�3

��↑↓↓� + �↓↑↓� + �↓↓↑��� .

After some algebra, the Heisenberg Hamiltonian in this basis

reads

HHeis = �− 3/4Jav 3/2	� 0

3/2	 − 3/4Jav 0

0 0 3/4Jav

� , �13�

where Jav=
J12+J13+J23

3
, 	=

J23+ei2�/3J12+ei4�/3J13

3
, and the exchange

couplings are positive. Similarly to �01
0� in Eq. �5�, the basis

vector �0Heis� has S=
3

2
and does not couple to the S=

1

2
vec-

tors �1Heis� and �−1Heis�, which form the spin-coded qubit. For

a resonant TQD these two qubit states are degenerate, J’s are

equal and �	�=0, reproducing the results of microscopic cal-

culations. When the system is detuned by the charged impu-

rity the coded qubit levels are mixed and split, with the en-

ergy gap given by

	�GAP
3el = 3�	� =��J23 −

J12 + J13

2

2

+
3

4
�J12 − J13�

2.

�14�

We see that the energy gap in the three-electron TQD

created by the impurity depends on differences in Jij, which

depend on �tij�2 and 	Eij through Eq. �9�. For a resonant

TQD, neglecting the dependence of tunneling matrix ele-

ments on impurity potential allows us to express the gap in

the coded qubit spectrum in terms of the exchange constant

in the absence of impurity, J0, and �	Eij /U�2,

	�GAP
3el = J0���	E23/U�2 −

�	E12/U�2 + �	E13/U�2

2
�2

+
3

4
��	E12/U�2 − �	E13/U�2�2

. �15�

We see that while the splitting of the single-particle spectrum
is proportional to differences of single-particle energies 	Eij,
the splitting of coded qubit levels is proportional to differ-
ences in �	Eij /U�2. Since 	Eij 
U, the energy gap created
by the impurity in the three-electron spectrum is several or-
ders of magnitude smaller than the gap created in the one-

electron spectrum. In other words, the direct Coulomb repul-

sion significantly modifies the charge distribution of the

TQD in single electron case. In the case of three highly lo-

calized electrons, the effect of charged impurity is to modify

the spin distribution of the TQD through much weaker ex-

change interactions.

IV. DEPHASING OF THE CODED QUBIT

A. Effective random magnetic fields

It has been shown in Sec II A that the two eigenstates of

the degenerate ground state of three electrons with Sz=−
1

2
in

(a)

(b)

FIG. 4. �Color online� Two lowest energy levels of three elec-

trons in a TQD in the presence of an impurity for different impurity

positions in the plane Zimp=4RTQD, with ground level normalized to

zero. Top: radius dependence for �imp=0. Bottom: angle depen-

dence for impurity Rimp=3RTQD.
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a triple quantum dot, �11
0� and �−11

0�, form a coded qubit.

State �0L�= �11
0� is identified with minority spin moving

clockwise and state �1L�= �−11
0� with minority spin moving

anticlockwise. Initialization of the qubit states is possible by

applying a magnetic field perpendicular to the TQD.19 In

Sec. III B we showed that the effect of the impurity on this

qubit can be described by the effective 2�2 Hamiltonian

Ĥqubit = �Eo + 	0L�V̂imp�0L� 	0L�V̂imp�1L�

	1L�V̂imp�0L� Eo + 	1L�V̂imp�1L�

 , �16�

where Eo is the energy of the qubit level in the absence of

impurity and the impurity matrix elements are calculated

with Eq. �12�. Hence the coded qubit is an effective spin S

=
1

2
with clockwise spin-current state �0L� corresponding to

spin up and counterclockwise spin-current state �1L� repre-

sented by spin down. In this picture the charged impurity

acts as an effective magnetic field B� eff. Since charge densities

of both qubit states are equal, the impurity couples to each of

them in the same manner, hence 	0L�V̂imp�0L�= 	1L�V̂imp�1L�. It

follows that the impurity effective magnetic field B� eff does

not have a z component. The in-plane component of B� eff

�	0L�V̂imp�1L� flips the spin and leads to dephasing of the

coded qubit. We have converted the charged impurity-

induced decoherence problem to a problem of dephasing of a

spin by a random magnetic field.20–22 We have shown how to

compute this effective field once the fluctuating impurity is

identified.

B. Estimation of T2
�

We now turn to estimate T2
� of the coded qubit due to the

fluctuating in-plane magnetic field.20,21 Following Ref. 7, on

average, we expect each charged impurity to last 1.0 s with a

quiet interval of 0.2 s between successive impurity appear-

ances. These experimental findings suggest that there is a

significant mismatch between charged impurity fluctuating

time scale and inherent coded qubit dynamics time scale,

which is characterized by 	�GAP
3el

/�=O��s�. Hence we only

need to simulate the time evolution of the coded qubit in the

presence of a single charged impurity. First, we initialize a

coded qubit at t=0 in a given state. Next, we randomly select

position of impurity, its switch-on time Timp, and lifetime

�imp. We then simulate the time evolution of the coded qubit

up to certain time t� and measure its state. This constitutes

one complete numerical experiment in our study. We repeat

the same procedures N times; each time we initialize the

coded qubit in exactly the same state but let it evolve in the

presence of different charged impurity. The averaged time

evolution, based on these N numerical experiments, of the

(a)

(d)(c)

(b)
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imp
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Y
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)
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p
|/
<
B
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<
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>
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x

FIG. 5. �Color online� Top left: the x and y coordinates of 200 charged impurities randomly generated in a rectangular box restricted in

x, y, and z dimensions from −5 RTQD to 5 RTQD, from −5 RTQD to 5 RTQD, and from 4 RTQD to 8 RTQD, respectively. Circle of radius

1 RTQD around the origin outlines the size of the TQD device while the center of the TQD is located at the origin. The circled impurity is

used in experiment no. 5. Top right: The magnitudes of effective magnetic fields due to 200 charged impurities in the ensemble. The circled

effective magnetic field is used in experiment no. 5. Lower left: the fluctuation of the effective magnetic field in experiment no. 5 is specified

by T5
imp, the time it is switched on, and �5

imp, its lifetime. Lower right: the simulated time evolution of x component of Bloch vector, Sx�t�,
in effective magnetic field Bext+B5

imp, for experiment no. 5. In this study, we set Bext= 	Bimp�.
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off-diagonal density-matrix elements of the coded qubit suf-

fers exponential decay, which is characterized by T2
�.

Figure 5�a� shows the positions of N=200 randomly gen-

erated charged impurities used in this study. For each of

these 200 charged impurities, we perform LCHO-CI calcula-

tion to obtain the effective magnetic field as explained in

Sec. IV A. Figure 5�b� shows the distribution of effective

magnetic fields. Next, we specify the fluctuating aspects of

the effective magnetic field by assigning the lifetime �i
imp and

switch-on time Ti
imp to the ith charged impurity. The random

generations of �i
imp and Ti

imp are done with the mean of the

distribution equal to 1.0 and 0.2 s as extracted from Ref. 7.

At this stage, we have completely specified the fluctuating

magnetic fields due to charged impurities. We next solve the

Bloch equation of the coded qubit separately for each

experiment,

dSi

dt
= �Si � �Bi

imp�t� + Bext� , �17�

where Sx=�12+�21, Sy = i��12−�21�, and Sz=�22−�11, �ij are

density-matrix elements of the coded qubit, Bi
imp�t� is the

effective magnetic field due to ith impurity, Bext denotes the

effective external magnetic field, and � is effective gyromag-

netic ratio of the coded qubit inferred from ��Bi
imp�t���

=	�GAP
3el . Let us follow through the entire computational pro-

cedure for one particular impurity. In Figs. 5�a� and 5�b�, a

circle is drawn, respectively, around the charged impurity

position no. 5 and the associated effective magnetic field

derived from LCHO-CI calculation. Figure 5�c� shows the

B5
imp, which is turned on at T5

imp and lasts for �5
imp. Figure 5�d�

shows the time evolution of Bloch vector component Sx�t�
for the coded qubit in the presence of Bext+B5

imp and Bext

= 	Bimp�=�iBi
imp�t� /N. As shown in the figure, the coded qu-

bit always undergoes coherent time evolution even in the

presence of charge fluctuations. The dephasing of Bloch vec-

tor, similar to inhomogeneous broadening effects in NMR

characterized by T2
�, only emerges from averaging the time

evolutions of the coded qubit over N impurities, i.e., 	S�t��
=�iSi�t� /N.

To estimate T2
�, we fit 	S�t�� to the result of the time

evolution of Seff satisfying effective Bloch equation with

parameter T2
�,

dSeff

dt
= �Seff � Bext −

Seff,�

T2
�

, �18�

where Seff denotes the effective Bloch vector and Seff,� de-

notes the effective Bloch vector perpendicular to the exter-

nally applied field. The value of T2
� is a function of 	Timp�,

	�imp�, and averaged distance of the charged impurity from

the TQD with dominant contribution from 	Timp�.
Figure 6 shows the simulated and fitted result of 	Sx�t�� in

the presence of external field Bext= 	Bimp�, with extracted

value T2
�=0.2s. These times are much longer than the re-

ported dephasing times of individual spins due to nuclear

spins.21,23,24

Time (s)

S
x

FIG. 6. �Color online� Oscillating curve represents the simulated time evolution of the averaged Bloch vector x component, �Sx�t��.

Decaying curve shows the envelope of the decaying oscillation for the x component of effective Bloch vector, Seff,x�t�.
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V. CONCLUSIONS

In conclusion, we discussed here the effects of a charged

impurity on the qubit encoded in the two low-energy levels

of an electrostatically defined triple quantum dot with one-

electron spin in each dot. The two qubit levels were identi-

fied with the two opposite directions of the motion of a mi-

nority spin. The effects of the random charged impurity on

the coded qubit were mapped onto the problem of an effec-

tive spin in a random magnetic field. The effective magnetic

field was computed as a function of impurity position. It was

shown that the effective magnetic field is related to varia-

tions of exchange interaction, which were demonstrated to be

orders of magnitude smaller than the impurity-induced varia-

tions of the one-electron levels. These results predict stability

of the coded qubit based on electron spin with respect to

random charge fluctuations. We estimate the inhomogeneous

dephasing time T2
� of coded qubit and find it to be much

longer than the dephasing times due to nuclear spins.
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