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Abstract. Three microarray gene expression cancer databases are rep-
resented using neural networks and visual data mining with virtual real-
ity spaces. The databases contains dats from cancerous and noncancer-
ous tissues. In order to understand the structure of the data, structure-
preserving virtual spaces are constructed using Samann neural networks.
High quality visual representations are obtained. For the databases un-
der study, the vitual spaces are clearly polarized with two distribution
modes, each one corresponding to a different class.

1 Introduction

????? — Pendiente

2 Neural Networks for the Construction of Virtual

Reality Spaces

Virtual reality spaces for the visual representation of information systems [1,
2] were introduced in [3]. The typical desiderata for the visual representation
of data and knowledge can be formulated in terms of minimizing information
loss, maximizing structure preservation, maximizing class separability, or their
combination, which leads to single or multi-objective optimization problems. In
many cases, these concepts can be expressed deterministically using continuous
functions with well defined partial derivatives. This is the realm of classical
optimization where there is a plethora of methods with well known properties.
In the case of heterogeneous information the situation is more complex and other
techniques are required [4].



In the unsupervised case, the function f mapping the original space to the
virtual reality (geometric) space

�
m can be constructed as to maximize some

metric/non-metric structure preservation criteria as is typical in multidimen-
sional scaling [5], or minimize some error measure of information loss [6]. A
typical error measure is:

Sammon Error = 1∑
i<j

δij

∑
i<j

(δij−ζij)
2

δij (1)

where δij is a dissimilarity measure between any two objects i, j in the origi-
nal space, and ζivjv is another dissimilarity measure defined on objects iv, jv of
the virtual reality space (the images of i, j under f). Usually, the mappings f

obtained using approaches of this kind are implicit because the images of the
objects in the new space are computed directly. However, a functional represen-
tation of f can be obtained with neural networks: the Samann network. This
is a feedforward network and its architecture consists of an input layer with as
many neurons as descriptor attributes, an output layer with as many neurons as
the dimension of the virtual reality space and one or more hidden layers. The
classical way of training the Samann network is described in [7].

3 Cancer Data Sets Description

We selected three microarray gene expression cancer databases related to three
of the leading causes of cancer death in the world.

3.1 Gastric Cancer Data

A study of genes that are differentially expressed in cancerous and noncancerous
human gastric tissues was performed in [8]. The original database contained 30
samples (22 tumor, 8 normal) that were analyzed by oligonucleotide microarray,
obtaining the expression profiles for 6936 genes (7129 attributes). Using the 6272
genes that passed a prefilter procedure, cancerous and noncancerous tissues were
successfully distinguihed with a two-dimensional hierarchical clustering using
Pearson’s correlation. However, the clustering results used most of the genes
on the array. To identify the genes that were differentially expressed between
cancer and noncancerous tissues, a Mann-Whitney’s U test was applied to the
data. As a results of this analysis, 162 and 129 genes showed a higher expression
in cancerous and noncancerous tissues, respectively. In addition, several genes
associated with lymph node metastasis and histological classification (intestinal,
diffuse) were identified.

3.2 Lung Cancer Data

Gene expressions were compared in [9] for severely emphysematous lung tissue
(from smokers at lung volume reduction surgery) and normal or mildly emphyse-
matous lung tissue (from smokers undergoing resection of pulmonary nodules).



The original database contained 30 samples (18 severe emphysema, 12 mild or
no emphysema), with 22283 attributes. Genes with large detection P -vales were
filtered out, leading to a data set with 9336 genes, that were used for the sub-
sequent analysis. Nine classification algorithms were used to identify a group of
genes whose expression in the lung distinguished severe emphysema from mild
or no emphysema. First, model selection was performed for every algorithm by
leave-one-out cross-validation, and the gene list corresponding to the best model
was saved. The 102 genes reported by at least four classification algorithms were
chosen for further analysis. With these genes, a two-dimensional hierarchical
clustering using Pearson’s correlation was performed that distinguished between
severe emphysema and mild or no emphysema. Other genes were also identified
that may be causally involved in the pathogenesis of the emphysema.

3.3 Liver Cancer Data

Zebrafish liver tumors were analyzed and compared with human liver tumors in
[10]. First, liver tumors in zebrafish were generated by treating them with car-
cinogens. Then, the expression profiles of zebrafish liver tumors were compared
with those of zebrafish normal liver tissues using a Wilcoxon rank-sum test. The
original database had 20 samples (10 normal, 10 tumor) and 16512 attributes. As
a result of this comparison, a zebrafish liver tumor differentially expressed gene
set consisting of 2315 gene features was obtained. This data set was used for the
comparison with human tumors. The results suggest that the molecular similar-
ities between zebrafish and human liver tumors are greater than the molecular
similarities between other types of tumors (gastric, lung and prostate).

4 Experiments

4.1 Experimental Setting

Data sets. We tested the aforementioned original microarray gene expression
databases for gastric [8] (7129 attributes, 22 tumor and 8 normal samples), lung
[9] (22283 attributes, 18 severe emphysema and 12 mild or no emphysema sam-
ples) and liver cancer [10] (16512 attributes, 10 normal and 10 tumor samples).
These databases can be found at ???no se si son publicas???.

Data preprocessing. For gastric and lung data, each gene was scaled to mean
zero and standard deviation one (original data were not normalized). For liver
data, no transformation was performed (original data were log2 ratios).

Model training. For every data set, Samann networks were constructed to
map the original data to a 3-D virtual reality space. The activation functions
used were sinusoidal for the first hidden layer and hyperbolic tangent for the
rest. A collection of models was obtained by varying some of the network con-
trolling parameters (number of units and weights range in the first hidden layer,



Sammon Error

Data Set Minimum Maximum Mean Std.Dev.

Gastric Cancer 0.062950 0.077452 0.072862 0.003346
Lung Cancer 0.079242 0.107842 0.094693 0.006978
Liver Cancer 0.039905 0.055640 0.049857 0.003621

Table 1. Statistics of the best 1000 Samann networks obtained.

learning rates, momentum, number of iterations, random seeds), for a total of
1944 Samann networks for every data set.

Computing environment. All of the experiments were conducted on a Condor
pool (http://www.cs.wisc.edu/condor/) located at the Institute for Informa-
tion Technology, National Research Council Canada.

4.2 Results

The distributions of the Sammon error showed a good behavior, since it was
skewed towards the smallest errors and fluctuating within a narrow range. In
table 1 some statistics of the experiments can be found: minimum, maximum,
mean and standard deviation for the best (i.e., with smallest Sammon error)
1000 networks.

Clearly, it is impossible to represent a virtual reality space on printed me-
dia (navigation, interaction, and world changes are all lost). Therefore, only
snapshots can be presented. Figures 1, 2 and 3 show the virtual reality spaces
corresponding to the best networks for the gastric, lung and liver cancer data
sets respectively. Although the mapping was generated from an unsupervised
perspective (i.e., without looking at the class labels), points of every class were
labelled a posteriori. Transparent membranes wrap the corresponding classes.

The low value of the Sammon error indicates that the spaces preserved most
of the distance structure of the data, therefore, giving a good idea about the
distribution in the original spaces. The three vitual spaces are clearly polarized
with two distribution modes, each one corresponding to a different class. Note,
however, that classes are more crearly differentiated for the liver and gastric
data sets than for the lung data set, where a certain level of overlapping exists.
In this case, data seems to be placed in a spherical surface, with classes roughly
separated by a hyperplane (in the virtual space).

The advantage of using Samann networks is that, since the mapping f be-
tween the original and the virtual space is explicit, a new sample can be easily
transformed and visualized in the virtual space. Since the distance between any
two objects is an indication of their dissimilarity, the new point is more likely
to belong to the same class of its nearest neighbors. This helps ???la toma de
decisiones??? and avoids numerical computations from scratch (clustering or
classification procedures, see section 3)



5 Conclusions
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Fig. 1. Virtual reality space of the gastric cancer data set (Sammon error = 0.063).
Dark and light spheres are noncancerous and cancerous samples, respectively. Trans-
parent membranes wrap the corresponding classes.



Fig. 2. Virtual reality space of the lung cancer data set (Sammon error = 0.079).
Dark and light spheres are severe emphysema and no or mild emphysema, respectively.
Transparent membranes wrap the corresponding classes.



Fig. 3. Virtual reality space of the liver cancer data set (Sammon error = 0.040). Dark
and light spheres are normal and tumor samples, respectively. Transparent membranes
wrap the corresponding classes.


