
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The Canadian Conference on Artificial Intelligence (AI'06) [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=4f743244-019d-424e-8af3-cd15e9505ab0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=4f743244-019d-424e-8af3-cd15e9505ab0

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

High Performance Associative Neural Networks: Overview and Library
Dekhtyarenko, O.K.; Gorodnichy, Dimitry

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

High Performance Associative Neural

Networks: Overview and Library *

Dekhtvarenko, O.K., and Gorodnichy, D.
June 2006

* published at The Canadian Conference on Artificial Intelligence (AI'06).

Québec City, Québec, Canada. June 7-9, 2006. NRC 48496.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

High Performance Associative Neural Networks:

Overview and Library⋆

Oleksiy K. Dekhtyarenko1 and Dmitry O. Gorodnichy2

1 Institute of Mathematical Machines and Systems, Dept. of Neurotechnologies,

42 Glushkov Ave., Kiev, 03187, Ukraine.

Email: olexii AT mail.ru
2 Institute for Information Technology, National Research Council of Canada,

M-50 Montreal Rd, Ottawa, Ontario, K1A 0R6, Canada

http://synapse.vit.iit.nrc.ca

Abstract. Associative neural networks are regaining the popularity due to their

recent successful application to the problem of real-time memorization and recog-

nition in video. This paper presents a comparative overview of several most pop-

ular models of these networks, such as those learnt by the Projective Learning

rules and having Sparse architecture, and introduces an Open Source Associative

Neural Network Library which allows one to implement these models.

Keywords: Associative memory, projection learning, sparse neural network, pseudo-

inverse rule.

1 Introduction

The Associative Neural Network (AsNN) is a dynamical nonlinear system capable of

processing information via the evolution of its state in high dimensional state-space. It

evolved from the network of simple interconnected nonlinear elements, introduced by

Hebb in 1949 as formal neurons, and received most research attention after the work of

Amari [2] in 1972 and Hopfield [21] in 1982, which showed that this network possesses

associative properties.

Having many parallels with biological memory, often considered as an alternative

to von-Neumann processing, AsNNs offer a number of advantages over other neural

network models. They provide distributed storage of information, within which every

neuron stores fragments of information needed to retrieve any stored data record. The

failure of several neurons does not lead to the failure of the entire network. Like most

artificial neural networks, AsNNs are characterized by the parallel way of operation,

which enables efficient hardware implementation [20]. At the same time, unlike many

other neural paradigms (Feed-forward, RBF networks, Kohonen’s SOM, etc.) AsNNs

can be trained using non-iterative learning rules, which results in fast training of these

networks. Among non-iterative learning rules, Projection Learning rules are known to

be the most efficient, on the basis of their high capacity and best error-correction rates

[31,23,17,30].

⋆ Appeared in Canadian conference on Artificial Intelligence (AI’06), Quebec city, QB, Canada,

June 7-9, 2006.

2

Besides being fast and deterministic, non-iterative training has another advantage.

It allows one to incrementally learn new patterns as well as to delete the ones already

stored in memory [28,24]. The computational complexity of adding/erasing few images

to/from memory is considerably lower than that of the complete network retraining with

the modified dataset.

These properties of AsNNs make them very suitable for a variety of applications.

Having high generalization and error-correction capabilities, it can be used as an ef-

ficient noise-removing filter or error-tolerant associative memory. Associative lookup

is used for DB operations [6,8]. The energy minimization property allows solving of

combinatory [26] and nonlinear [35,22] optimization problems (with particular appli-

cation to computer networking [1,37]). The generalization abilities of AsNNs are used

in many classification tasks, such as image segmentation [7] and chemical substances

recognition [33]. Finally, AsNNs have been found recently very useful for video-based

recognition, where they are used to associate visual stimuli to a person’s name, with

both memorization and recognition done in real-time [19].

When designing an associative network one has to consider the following factors

contributing to the network performance:

1. Error correction capability, which shows how much noise can be tolerated by the

network;

2. Capacity, which show how many patterns can be stored, given a certain error-

correction rate;

3. Training complexity, which describes the amount of computations needed to mem-

orize a pattern;

4. Memory requirements, which defines the amount of computer memory required to

operate the network, which is usually a function of synaptic weights used in storing

the patterns by the network; and

5. Execution time, which shows how many computations are needed in pattern re-

trieval.

While some of these factors are determined by the training procedure applied to the net-

work, the others depend on the network architecture. Recently, it has been shown [9,12]

that Sparsely connected models of Associative Neural Networks (SAsNN), which use

only a subset of all possible inter-neuron connections, can significantly reduce the com-

putational and memory cost of the network, while not deteriorating much its associative

quality.

This paper summarizes the state of the art in the area (Section 2) and presents a com-

parative performance analysis among several most popular models of SAsNNs (Section

3). It then introduces an Open Source library developed by authors, which is made

publicly available to enable other researchers to develop their own models AsNNs of

different configurations and architectures (Section 4).

2 Attractor-based neural network model

A general model of a sparse associative network consists of N binary discrete-time

neurons connecting each other according to the following connectivity rule. The output

3

of neuron j is connected to one of the inputs of neuron i if and only if

j ∈ {Ni} (1)

where {Ni} ∈ {1, ..., N} is a subset of unique indices. The network architecture is

defined by the connectivity pattern – a set of all existing inter-neuron connections:

{Ni}, i = 1, ..., N. (2)

The connectivity pattern is characterized by the density of connections (connectivity

degree):

ρ =
N

∑

i=1

|Ni|
/

N2 (3)

and the total connection length: l =
∑N

i,j=1
distT (i, j), where distT (i, j) is a distance

function which depends on the chosen network topology. For 1-dimensional neuron

allocation total connection length can be calculated as

l =
N

∑

i=1

|Ni|
∑

j=1

|i − Ni[j]| (4)

The input, or the postsynaptic potential, of the i-th neuron, is calculated as a weighted

sum of the network outputs:

Si =
∑

j∈Ni

(1 − δij(1 − D)
)

WijYj (5)

where W is a N×N synaptic matrix of inter-neuron connections and D is the desatura-

tion coefficient specifying the degree of the neuron self-connections reduction [15,18].

Recognition of a pattern is performed as a result of network evolution governed by

the following update rule. The output, or the potential, of the i-th neuron at the next

time step is obtained after applying the sign function to the neuron input at the current

time step:

Yi(t + 1) = sign
(

Si(t)
)

. (6)

Neuron states can be updated synchronously (all at time) or asynchronously (one at

time). This paper considers the synchronous update mode only, which favors parallel

processing in hardware implementation and yields better associative properties.

The energy functions of the network, of which two are defined [21,16]:

EH(t) = Y (t)S(t + 1) (7)

ER(t) = Y (t)S(t) (8)

guarantee that, as a result of the evolution, the network converges to a stable state, called

attractor, which satisfies the stability condition:

Y (t∗) = Y (t) = Y (t + 1), (9)

where Y and S are the vectors made of is neuron inputs and outputs. It is these attractors

that represent the memory content of the network.

4

Network dynamics, Stability Condition and Attraction Radius

Unlike asynchronous associative networks with symmetric weights, which are guaran-

teed to reach a single-state attractor, proved by the fact that the network energy function

defined by Eq.7 is monotonically decreasing [21], the synchronous associative networks

with symmetric weight matrix may converge to a two-state dynamic attractor, in which

the network oscillates between two states. This can be shown by using the network en-

ergy function defined by Eq.8, for which the equality ER(t) = ER(t+2) always holds

[16].

In a general case when the weight matrix is not symmetrical, the network may have

cycles with length of order of 2n [4]. However, as shown in the simulation section of

this paper (Section 3.3), for most non-symmetrical weight matrices one may usually

expect cycles with much shorter periods.

In order to detect cycles and to make recognition fast, the update flow technique [16]

is used. Instead of storing and processing all neurons of the network according to Eq.6,

this biologically justified technique keeps the indices and signs of those neurons only

that have changed since the last iteration. Since the number of such neurons drops down

drastically as the network evolves, the number of requires multiplications becomes very

small.

The final recognition performance of the network (also referred to as the associative

strength of the network) is judged by the amount of noise the network removes as a

result of its convergence to an attractor (either static or dynamic). As can be seen, it

depends entirely on the synaptic weights of the network, namely the two factors: 1) the

way synapses connect the neurons (i.e. network architecture) and 2) the way they are

computed (i.e. the learning rule). Most common methods used for these two factors are

described below.

2.1 Network architectures

Associative networks can be designed using one of the following architectures.

Fully-connected architecture. This architecture, often referred to as Hopfield-like, is

studied the best in literature. It provides a fast close-form solution for the network train-

ing and allows one to store (with non-zero error-correction) up to for M = 70%N
prototypes in the case of the limited size data, and up to M = 20%N prototypes

when storing data from a continuous stream. Real-time nature of learning for this ar-

chitecture made it very suitable for such tasks as on-line memorization of objects in

video[19,14]. This architecture however requires significant amount of space to store

the network weights. In particular, the amount of memory used by the network of N
neurons is N(N + 1)/2 ∗ bytes per weight. This makes, for example, the network of

size N = 1739 used in [19,14] occupy 3.5Mb on memory.

Random architecture. This architecture uses only a certain fraction of randomly lo-

cated synaptic connections. It is easy to construct and is shown to offer a good perfor-

mance for the network. It however involves many long-range interactions, which could

5

be a problem for hardware implementation.

Local or cellular architecture. In this architecture, only the neurons satisfying the

neighborhood relation (usually the location proximity) are connected. It is ideal for

hardware implementation, but results in significant deterioration of associative perfor-

mance, due to slow propagation of information and due to a tendency to form localized

groups of neurons aligned with more then one pattern [29]

Small-World architecture. It is a combination of local and random architectures [38,3,9]

and consists mostly of local connections with a few added long-range ones. It is good

for hardware implementation and is found to perform almost as good as the random

architecture. Many real-world networks fall into this category.

In Scale-Free architecture, each neuron has power-low distribution of number of con-

nections, that is most of the neurons would have few random connections, but some of

neurons would act as “highly connected hubs” being connected to many other neurons

[27]. It’s associative performance is very close to that of the random architecture.

Adaptive architecture. This, the most advanced, architecture is constructed according

to the dataset to be stored. It offers the best associative properties (with the highest

capacity per synapse) among all sparse architecture models [11].

2.2 Learning algorithms

During the learning stage, the AsNN is designed in such a way, that every pattern from

the dataset

{V m}m=1,...,M ,V m ∈ {−1,+1}N (10)

to be memorized becomes an attractor the network, defined by the stability condition of

Eq. 9.

Let the network architecture Eq.2 and the training dataset to be stored Eq.10 be

given. The Learning Rule (LR) is a way of finding the weight matrix W such that

satisfies the connectivity constraints and makes each training data vector an attractor

state with a sufficiently large radius of attraction.

Projective LR The Projective LR [25,31] is usually used for training fully-connected

AsNNs. It results in the weight matrix being equal to the projective matrix for the sub-

space spanned on the training vectors V m:

W = proj
(

{V m}m=1,...,M

)

= VV
+, (11)

where V is a matrix made of prototype vectors as its columns.

This non-iterative LR can be implemented either by using Gram-Schmidt orthogo-

nalization, or by using the Pseudo-Inverse operation, which allows one to computed it

6

incrementally:

W 0
ij = 0 (12)

Wm
ij = Wm−1

ij + dWm
ij (13)

dWm
ij = (V m

i − Sm
i)(V m

j − Sm
j)

/

||V m − WV
m||2 (14)

Having the fully-connected AsNN trained for a particular dataset, the sparse net-

work is obtained by simply pruning the weight matrix in accordance with the connec-

tivity constraints (Eq. 2).

Hebbian LR The use of Hebbian learning principle for Sparse AsNN was proposed in

[13]. It is often called the Local Projection LR and is computed as follows.

For some threshold value T > 0 and initial W = 0 repeat:

1. For next training vector V
m, the postsynaptic potential S

m is calculated;

2. Weight coefficients of every i-th neuron with Sm
i V m

i < T are updated:

j ∈ Ni : Wij = Wij +
V m

i V m
j

Ni

. (15)

3. Until Sm
i V m

i > T for all neurons and all data vectors, or a certain number of steps

is executed.

Delta LR Iterative Delta LR is an adaptation of the Widrow-Hoff Delta learning rule

[39] which is used for perceptron-like models. It searches for W as a solution of (10)

using the first order gradient-descent optimization:

W = argW minE(W) = argW ‖minWV − V ‖2. (16)

For some learning rate value α > 0, the desired error value ǫ > 0 and initial W = 0
repeat:

1. For next training vector V
m, the postsynaptic potential S

m is calculated;

2. Weight coefficients of each i-th neuron are updated:

j ∈ Ni : Wij = Wij + α(Sm
i − V m

i)V m
j . (17)

3. Until E(W) < ǫ, or a certain number of steps is executed.

It can be proved that the weight matrix calculated using the Delta LR with zero

initialization converges to the weight matrix obtained by the Pseudo-Inverse LR.

Pseudo-Inverse LR Non-iterative Pseudo-Inverse LR was originally proposed for the

calculation of symmetrical weight matrices in Cellular AsNN [5]. Here we describe the

simplified version of this algorithm. This version produces a nonsymmetrical weight

matrix, which voids the condition for the guaranteed absolute stability of the network,

but yet results in better associative performance.

7

To allow for structural contraints imposed by the sparse architecture, a selection

operator Φi that sparsifies the columns of a matrix is introduced:

Φi : (l × n) → (l × Ni). (18)

This operator retains only those columns of its matrix argument that correspond to

neuron indices contained in Ni.

Denoting the i-th row of the training data matrix as Vi, the weights of the i-th

neuron are calculated as a solution of the following “fixed point” equation:

Φi(W i) · Φi(VT)T = Vi. (19)

The solution to this equation can be found using the matrix pseudo-inversion operator:

Φi(W i) = Vi ·
(

Φi(VT)T
)+

(20)

3 Comparative performance analysis

To compare the associative performance of the networks trained with different architec-

tures and learning algorithms, we provide experimental results obtained using random

data vectors with independent non-biased components Yl ∈ {−1,+1}. In the follow-

ing simulations, the Attraction Radius (AR) of the network, defined as the maximal

Hemming distance from which the network is guaranteed to converge to a desired at-

tractor, is measured for the networks trained with different learning rules and different

architectures.

3.1 Influence of learning rule

Figure 1a shows the error-correction rates, measured by the average Attraction Radius

of the network, as a function of the learning rule. The network of size N = 256 neurons

with cellular architecture defined by the following connectivity criterion is used:

j ∈ Ni ⇐⇒ (i − j + N) mod N ≤ 2r (21)

where r is the Connection Radius of the network with the value r = 12, which corre-

sponds to the network with connectivity degree ρ = (2r + 1)n/n2 ≈ 0.1.

The threshold parameter for the Hebbian LR is set to T = 10, error value for Delta

LR ǫ = 0.0001. For each new data vector added to the memory, Attraction Radius is

estimated, as the maximum amount of noise which has been completely removed by

the network for every stored pattern during 100 test epochs.

Figure 1b shows the computational complexity of the training algorithms, which

is calculated as follows. For the iterative learning rules, it is taken equal to 2rnlm
where l is the number of training epochs and m is the number of patterns being stored

(epoch size). This estimation is based on 2r complexity of weights update of a single

neuron for a single pattern. For the Projective LR, the training complexity is taken as

the complexity of training the fully-connected network, which is n2m. For the Pseudo-

Inverse LR, it equals 2rm2n, where 2rm2 is the complexity of the solution of Eq. 20

for a single neuron.

8

a) b)

Fig. 1. Associative performance and training complexity as a function of learning rule.

3.2 Influence of network architecture

It is not only the training algorithm that determines the associative properties of the

network, but also the number and the location of the synaptic connections.

The empirical study from [36] shows that trained fully connected Hopfield net-

work still performs well even after the removal of 80% of neuron connections that have

the least absolute values. The location of the remaining connections becomes of great

importance for the associative properties of the network and reflects the hidden interre-

lationships of stored data. This selection rule can be used to set the architecture of the

sparse network for further training.

Work [11] studies the sparse AsNN learnt with Pseudo-Inverse LR , the architecture

of which is set according to above decribed weight selection rule and shows that the per-

formance of the networks with such an adaptive architecture is superior to the networks

with other types of connectivity. This is further illustrated in Figure 2, which shows the

attraction radius as a function of the connectivity degree for the several sparse asso-

ciative networks: with Adaptive (PI WS), random, cellular (Eq.21) and anti-Adaptive

(PI WS Reverse) architectures. The last one is based on the least absolute values com-

puted with the fully connected Hopfield network. Attraction radius for the network of

N = 200 neurons which stores M = 20 patterns is computed.

It can be seen that the network with adaptive architecture approaches the associative

performance of its fully-connected counterpart using less than 20% of available connec-

tions. It can also be noticed that the performance of the network changes drastically, in

phase transition manner: from no associative recall at all to a very good associative

recall, when only a few extra neurons are added. As shown in [12], the network connec-

tivity degree at which such a phase transition happens depends linearly on normalized

memory loading.

The idea of Adaptive Architecture selection can also be used to implement the effi-

cient rewiring of the networks with Small-World connectivity architecture [10], where

the architecture aims to minimize the total connection length of Eq. 4.

9

Fig. 2. Associative performance of the network as a function of the network architec-

ture.

3.3 Influence of non-symmetrical weights on network convergence

Omitting the symmetrization procedure of the weight matrix when learning the network

with in the Pseudo-Inverse LR yields better associative performance, but no longer guar-

antees the absolute stability of the network. It appears however that the network remains

stable with initial states set within the basins of attraction. To see how the convergence

goes if the initial states are distributed allover the state space, we run the following

experiment (see Figure 3). Two 1D cellular networks with N = 256 neurons and con-

nection radius r = 12 has been trained to store two identical sets of m = 6 randomly

generated patterns. Then 1000000 convergence processes have been executed for every

network starting from random initial conditions. Network with nonsymmetrical matrix

was falling into dynamic attractors more often, yet the probability of the longest cycle

(of length 4) was vanishingly small (0.0003)

4 Library

The associative neural network models described in this paper are implemented as an

Open Source Associative Neural Network Library (AsNNLib), written in C++, the de-

scription of which follows.

4.1 Classes

The relationship between the main library classes is shown in Figure 4. Solid lines mark

the inheritance and dashed ones mark the “uses” relationship.

The base class of all associative networks is AssociativeUnit. It defines the

interface of two main functions train and recall to store and retrieve data pairs

{X, Y } (stored in IOData class) in hetero-associative memory fashion.

10

Fig. 3. Number of cycles of different length reached during the convergence.

The derived class AssociativeNet is the base class for autoassociative neural

networks. The most important function of this class is converge function which imple-

ments the dynamical behavior of the network, i.e. the convergence process used to re-

trieve data from the memory. Extended version of this function extendedConverge

is used to analyze the behavior of the convergence process itself, as it keeps track of all

points visited by the network during its evolution in the state-space and signalizes if a

cycle occurs.

The memory desaturation technique (Eq.5) is implemented in the same class by

using the desatCoeff parameter. For sparse neural networks with rapidly growing

diagonal elements the near-optimal value of desaturation coefficient can be set by call-

ing adjustDesaturationCoefficient

D = 0.15
M

trace(W)
. (22)

Usually only few neurons change their state between two consecutive convergence

steps. Therefore the new postsynaptic potentials can be calculated incrementally by

updating only those of them that have changed since the last iteration This incremen-

tal procedure, called Update Flow Technique [18], increases significantly the speed

of convergence process, compared to the direct calculation of the postsynaptic po-

tential by Eq.5. The interface for optimized postsynapse calculation is specified by

processBinary function.

Two classes FullNet and SparseNet are derived from AssociativeNet and

provide the weights storage for fully connected and sparse network models. Both classes

implement the processBinary function which supports the memory desaturation

technique. Weights in SparseNet are stored in two arrays: as array of weight values

and as array of weight indices. Network architecture can be set to 1D local (Eq.16), 2D

local, random by calling one of set*Architecture functions.

11

Classes derived from FullNet or SparseNet implement the learning algorithms.

Fully-connected AsNN with projective LR is implemented by FullProjectiveNet

class. Its sparse analogue with the same LR is implemented by the class SparseProjectiveNet.

Classes HebbianSparseNet and DeltaSparseNet correspond to sparse networks

with iterative Hebbian and Delta iterative LRs. Non-iterative Pseudo-Inverse LR is im-

plemented by PseudoInverseNet class with an extra erase operation that enables

incremental deletion of patterns from the memory. Two classes, AdaptiveSparseNet

and SmallWorldNet are derived from PseudoInverseNet and provide the function-

ality for the construction on networks with more efficient architectures that can exploit

the correlations in the stored data.

ModularNet represents the associative memory model that uses a set of AsNN

(modules) organized in a growing tree structure. It has the ability to store amounts of

data exceeding by far its dimension, thus overcoming the memory limitation of a single

AsNN [32]. Any AsNN class can be used as the building block of ModularNet.

Fig. 4. Hierarchy of main classes in Open Source Associative Neural Network Library.

4.2 Testing functions

The main testing functions getRAttraction and getNormalizedRAttraction are

used to estimate absolute (Eq.8) and normalized Attraction Radius [23] of the network.

Network capacity, equal to the maximum number of vectors that can be stored in net-

work subject to certain value of Attraction Radius, is calculated by getCapacity func-

tion. Testing function can be applied to any subclass of AssociativeUnit.

12

Fig. 5. The structure of Associative Modular Classifier.

4.3 Associative Classifier

Though the classification task represents a heteroassociative mapping, it can also be

solved using the autoassociative AsNNs. The AsNNLib library implements two of the

possible approaches - Associative Modular Classifier and Convergence-Based Classi-

fier. Associative Modular Classifier consists of modules represented by AsNNs. The

number of modules is equal to the number of classes with every module storing the

instances of the particular class (Figure 5). To classify input vector X , the difference

coefficient is calculated for every module

diff =
‖WiX − X‖2

‖X‖2
(23)

and the class decision is made according to the module with the smallest value of this

coefficient.

The idea is to store both the input features and the class label as a single state-vector.

At the classification stage, the part of the AsNN input corresponding to input features

is set, while the other part, representing class label, remains unspecified (or set to some

random values). The missing class information is then restored during the convergence

process due to the pattern-completion capabilities of the AsNN. This functionality is

implemented by the AssociativeClassifier class.

Using the AsNN as a hereroassociative classifier was found very useful for real-time

applications, the example of which is face memorization/recognition from video done

in [19], where the name of the person in video is recovered as a result of the network

evolution from the state defined by the visual stimulus presented to the network. An-

other application that requires fast on-board training is portable gas analyzing devices

13

(“Electronic Nose” tools). Associative Modular Classifier has been shown to be a fast

odor classifier offering good results comparing to other neural models [34].

5 Conclusion

This paper provided a motivation and the necessary background needed for implement-

ing associative neural networks of different architectures. It has also presented exper-

imental results comparing the performance of different sparse associative neural net-

works and introduced the High Performance Associative Neural Network library which

allows one to implement these networks.

This library is made publicly available at http://synapse.vit.iit.nrc/memory/pinn,

mirrored at http://perceptual-vision.com/memory/pinn. Its development was motivated

by several factors, the most important of which are the associative properties of these

networks which make them very suitable for many applications. Recent results in ap-

plying these networks to one of the most challenging computer vision tasks — real-time

memorization and recognition of faces from video, is a clear demonstration of this.

Acknowledgements

The sparse associative neural network library described in this paper is implemented

by the first author of the paper, as part of his PhD project at the Department of Neu-

rotechnologies of the Institute of Mathematical Machines and Systems of the Ukrainian

Academy of Sciences.

References

1. C. Ahn, R. Ramakrishna, C. Kang, and I. Choi. Shortest path routing algorithm using hop-

field neural network. Electronics Letters, 37(19)(19):1176–1178, 13 September 2001.
2. S. I. Amari. Learning patterns and pattern sequences by self-organizing nets. IEEE Trans-

actions on Computers, 21(11):1197–1206, November 1972.
3. J. W. Bohland and A. A. Minai. Efficient associative memory using small-world architecture.

Neurocomputing, 38:489–496, 2001. Elsevier.
4. J. Bruck. On the Convergence Properties of the Hopfield Model. Proceedings of the IEEE,

78:1579–1585, October 1990.
5. M. Brucoli, L. Carnimeo, and G. Grassi. Discrete-time cellular neural networks for associa-

tive memories with learning and forgetting capabilities. IEEE Transactions on Circuits and

Systems, 42:396399, July 1995.
6. C.-H. Chen and V. Honavar. A neural network architecture for high-speed database query

processing. Microcomputer Applications, 15:7–13, 1996.
7. K.-S. Cheng, J.-S. Lin, and C.-W. Mao. The application of competitive hopfield neural net-

work to medical image segmentation. IEEE Transactions on Medical Imaging, 15(4)(4):560–

567, August 1996.
8. Y.-M. Chung, W. M. Pottenger, and B. R. Schatz. Automatic subject indexing using an

associative neural network. In 3rd ACM International Conference on Digital Libraries, pages

59–68, Pittsburgh, Pennsylvania, United States, June 23-26 1998.
9. N. Davey, B. Christianson, and R. Adams. High capacity associative memories and small

world networks. In In Proc. of IEEE IJCNN, Budapest, Hungary, 25-29 July 2004.

14

10. O. Dekhtyarenko. Systematic rewiring in associative neural networks with small-world ar-

chitecture. In International Joint Conference on Neural Networks (IJCNN’05), pages 1178–

1181, Montreal, Quebec, Canada, July 31 - August 4 2005.

11. O. Dekhtyarenko, A. Reznik, and A. Sitchov. Associative cellular neural networks with

adaptive architecture. In The 8th IEEE International Biannual Workshop on Cellular Neural

Networks and their Application (CNNA’04), pages 219–224, Budapest, Hungary, July 22-24

2004.

12. O. Dekhtyarenko, V. Tereshko, and C. Fyfe. Phase transition in sparse associative neural

networks. In European Symposium on Artificial Neural Networks (ESANN’05), Bruges, Bel-

gium, April 27-29 2005.

13. S. Diederich and M. Opper. Learning of correlated patterns in spin-glass networks by local

learning rules. Physical Review Letters, 58(9):949–952, March 2 1987.

14. D. Gorodnichy. Projection learning vs correlation learning: from pavlov dogs to face recog-

nition. In AI’05 Workshop on Correlation learning, Victoria, BC, Canada, NRC 48209,

2005.

15. D. Gorodnichy and A. Reznik. Increasing attraction of pseudo-inverse autoassociative net-

works. In Neural Processing Letters, volume 5, issue 2, pp. 123-127, 1997.

16. D. Gorodnichy and A. Reznik. Static and dynamic attractors of autoassociative neural net-

works. In Proc. Int. Conf. on Image Analysis and Processing (ICIAP’97), Vol. II (LNCS, Vol.

1311), pp. 238-245, Springer, 1997.

17. D. O. Gorodnichy. The optimal value of self-connection or how to attain the best perfor-

mance with limited size memory. In Proc. of IJCNN’99, Washington, DC, USA, 1999.

18. D. O. Gorodnichy. The influence of self-connection on the performance of pseudo-inverse

autoassociative networks. In ”Radio Electronics. Computer Science. Control” journal, Vol.

1, No. 2, pp. 49-57, online at http://zstu.edu.ua/RIC/pdf/01 2 2.pdf, 2001.

19. D. O. Gorodnichy. Associative neural networks as means for low-resolution video-based

recognition. In International Joint Conference on Neural Networks (IJCNN’05), Montreal,

Quebec, Canada, NRC 48217, 2005.

20. A. Heittmann and U. Ruckert. Mixed mode vlsi implementation of a neural associative

memory. Analog Integrated Circuits and Signal Processing, 30(2):159–172, February 2002.

21. J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proc Natl Acad Sci USA, 79(8):2554–2558, 1982.

22. A. Jagota. Approximating maximum clique with hopfield networks. In IEEE Transactions

on Neural networks, Vol.6, No.3, pp.724-735, 1994.

23. I. Kanter and H. Sompolinsky. Associative recall of memory without errors. Physical Review

A, 35:380392, 1987.

24. N. Kirichenko, A. Reznik, and S. Shchetenyuk. Matrix pseudoinversion in the problem of

design of associative memory. Cybernetics and Systems Analysis, 37(3):308–316, May 2001.

25. T. Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 21:353–359,

1972.

26. Y. Liang. Combinatorial optimization by hopfield networks using adjusting neurons. Infor-

mation Sciences: an International Journal, 94(1-4):261–276, October 1996.

27. P. N. McGraw and M. Menzinger. Topology and computational performance of attractor

neural networks. Physical Review E, 68(4 Pt 2), Oct 2003.

28. S. Mohideen and V. Cherkassky. On recursive calculation of the generalized inverse of a

matrix. ACM Transactions on Mathematical Software (TOMS), 17(1):130–147, March 1991.

29. L. G. Morelli, G. Abramson, and M. N. Kuperman. Associative memory on a small-world

neural network. The European Physical Journal B - Condensed Matter, 38(3):495–500,

April 2004. Springer-Verlag Heidelberg.

30. R. A. Neil Davey and S. Hunt. High capacity recurrent associative memories. In Neurocom-

puting, 2004.

15

31. L. Personnaz, I. Guyon, and G. Dreyfus. Collective computational properties of neural net-

works: New learning mechanisms. Physical Review A, 34(5):42174228, November 1986.
32. A. Reznik and O. Dekhtyarenko. Modular neural associative memory capable of storage of

large amounts of data. In International Joint Conference on Neural Networks (IJCNN’03),

Portland, Oregon, US, July 20-24 2003.
33. A. Reznik, A. Galinskaya, O. Dekhtyarenko, and D. Nowicki. Preprocessing of matrix qcm

sensors data for the classification by means of neural network. Sensors and Actuators B,

106:158–163, 2005.
34. A. Reznik, Y. Shirshov, B. Snopok, D. Nowicki, O. Dekhtyarenko, and I. Kruglenko. Asso-

ciative memories for chemical sensing. In 9th International Conference on Neural Informa-

tion Processing (ICONIP’02), pages 205–211, Singapore, November 18-22 2002.
35. I. Silva, L. Arruda, and W. Amaral. Nonlinear optimization using a modified hopfield model.

In IEEE World Congress on Computational Intelligence, pages 1629–1633, Anchorage, AK,

USA, May 4-9 1998.
36. A. Sitchov. Weights selection in neural networks (in russian). Mathematical Machines and

Systems, 2:25–30, 1998.
37. V.-M.-N. Vo and O. Cherkaoui. Traffic switching optimization in optical routing using hop-

field networks. In Recherche Informatique Vietnam & Francophonie (RIVF04), pages 125–

130, Hanoi, Vietnam, February 2-5 2004.
38. D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks. Nature,

393(6684):440–442, Jun 1998.
39. B. Widrow and J. M.E. Hoff. Adaptive switching circuits. IRE Western Electric Show and

Convention Record, 4:96–104, August 23 1960.

