
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Improving the Seismic Performance of Existing Buildings and other Structures, by 
the Applied Technology Council and the Structural Engineering Institute of ASCE 
[Proceedings], pp. 753-764, 2009-12-09

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=4f6321dd-9d02-4786-ab5a-d43ee3d2d7d0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=4f6321dd-9d02-4786-ab5a-d43ee3d2d7d0

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

A simplified axial-shear-flexure interaction approach for load and 

displacement capacity of reinforced concrete columns
Mostafaei, H.; Vecchio, F. J.; Kabeyasawa, T.



 

http://www.nrc-cnrc.gc.ca/irc

 

  

 

 

 

 

 

 

 

 

 

A simplified axial-shear-flexure interact ion approach for load and 

displacement capacity of reinforced concrete columns 

 N R C C - 5 2 6 2 2  

 

M o s t a f a e i ,  H . ;  V e c c h i o ,  F . J . ;  K a b e y a s a w a ,  T .  

 

D e c e m b e r  2 0 0 9  
 

  

 

A version of this document is published in / Une version de ce document se trouve dans: 

Improving the Seismic Performance of Existing Buildings and other Structures, 

by the Applied Technology Council and the Structural Engineering Institute of 

ASCE, San Francisco, December 9-11, 2009,  pp. 12 

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international 
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without 
written permission.  For more information visit  http://laws.justice.gc.ca/en/showtdm/cs/C-42  

 
Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et 
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de 
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42 

 

http://www.nrc-cnrc.gc.ca/irc
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42


 

A Simplified Axial-Shear-Flexure Interaction Approach for Load and 

Displacement Capacity of Reinforced Concrete Columns 

H. Mostafaei
1
, F.J. Vecchio

2
, and T. Kabeyasawa

3
 

1
Research Associate, National Research Council Canada, Institute for Research in 

Construction, M-59, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, 

Hossein.Mostafaei@nrc-cnrc.gc.ca         
2
Professor, Department of Civil Engineering, University of Toronto, Toronto, Canada, 

M5S 1A4, fjv@ecf.utoronto.ca 
3
Professor, Earthquake Research Institute, University of Tokyo, Tokyo, Japan, 

kabe@eri.u-tokyo.ac.jp 
 

ABSTRACT  

A simple performance-based evaluation approach is presented based on 

interactions of axial, shear, and flexure mechanisms to estimate the axial and lateral 

deformation and load capacities of reinforced concrete columns. The developed model 

is based on a simplification of a consistent but relatively more complex approach known 

as the axial-shear-flexure interaction (ASFI) method, which is able to predict the full 

load-deformation response of reinforced concrete columns subjected to axial, flexure 

and shear force. The analytical model was developed by coupling an axial-shear model, 

which is a biaxial shear model, and an axial-flexure model, which is the traditional 

section analysis. Axial deformation interaction is the main compatibility condition taken 

into account in this approach. Equilibrium conditions are satisfied through a simple 

shear and flexure stress relation. A series of reinforced concrete columns subjected to 

axial and lateral loads, tested by various researchers, were evaluated by the simple 

developed approach and the results were compared with the test data; consistent 

correlation and agreement were achieved. This paper describes the formulation, 

implementation and verification of the modified approach. A future attempt is to modify 

the ASFI method for response estimation of reinforced concrete columns in fire under 

axial load and lateral deformation induced by thermal expansion.         

INTRODUCTION 

The performance of reinforced concrete columns under axial, flexural and shear loads 

has been studied for many years. However, a remaining challenge has been the 

development of a reliable methodology for estimating the ultimate deformation capacity 

of columns. Several experimental studies, such as those by Elwood and Moehle (2005) 

and Park et al. (1982), showed that reinforced concrete columns subjected to axial load 

and lateral load with similar ultimate strength may fail in significantly different ultimate 

deformations. Lynn et al. (1996) tested two columns with similar material and 

mechanical properties but with different ratios of longitudinal reinforcement. The 

results showed that although the difference between the ultimate strength of the two 

columns was only 8%, completely different ultimate deformations were obtained for the 

two specimens. Due to increased design code stipulations for performance-based 

design, one of the main performance properties in the design process is the ductility and 



deformability of the structure. The more ductility the structure possesses, the better the 

performance and the more economical the design. Therefore, it is essential to have and 

apply a suitable analytical tool to accurately estimate the ultimate deformation or 

ductility of reinforced concrete column elements.  

Mostafaei and Kabeyasawa (2007) developed a displacement-based analytical method 

for modeling the load-deformation response of reinforced concrete columns under axial 

and lateral loads. The model was developed to include the effects of shear deformations 

in sectional analyses through a method called Axial-Shear-Flexure Interaction (ASFI). 

The main deformation component of the interaction was the axial deformation, which 

was extracted from an axial-flexure model and manipulated into an axial-shear model. 

This was done by satisfying compatibility and equilibrium conditions for both the 

flexure and shear mechanisms employed in the ASFI method. In the method, the flexure 

mechanism was modeled by applying traditional section analysis techniques, and the 

shear behavior was modeled based on the Modified Compression Field Theory 

(MCFT), (Vecchio and Collins 1986). The approach was implemented and verified for a 

number of reinforced concrete columns tested with different axial loads, transverse 

reinforcement ratios, longitudinal reinforcement ratios, and scales ranging from one-

third to full-scale specimens. Later, the shear model of the ASFI method was simplified 

and a method called the Uniaxial-Shear-Flexure Model (USFM) was developed 

(Mostafaei and Vecchio 2008). In the USFM method, a compression softening factor is 

employed for degradation of compressive concrete of the stress block, the value of 

which is determined according to a simplification on the Modified Compression Field 

Theory. The USFM method is also capable of producing the load-deformation response 

of the reinforced concrete columns with relatively moderate to high applied shear stress.  

Later, further simplifications were implemented in the ASFI and the USFM models by 

defining three general failure criteria for reinforced concrete columns (Mostafaei et al. 

2009). The three main failures, for typical reinforced concrete columns in buildings, are 

tension-shear failure across cracks, loss of concrete compression strength, and 

compression-shear failure, for both shear- and flexure-dominated members.  

One of the dilemmas for the simplified ASFI methods was its application for columns 

with very low shear stress; columns with high shear strength and substantially low 

flexural capacity. This resulted in overestimating the ultimate deformation for such 

columns by the approach. The suggestion provided for these columns with low shear 

stress was to terminate analysis when compression softening factor reached less than 

0.15, (Mostafaei, et al. 2009). A modification is presented in this study to overcome this 

limitation based on defining a plastic hinge length and calculating a shear crack angle 

for the columns with very low shear stress.  

Further modifications are implemented currently to employ the ASFI method for 

response prediction of reinforced concrete columns in fire and after fire exposure. This 

includes post-fire seismic capacity and thermal lateral deformation capacity of the 

reinforced concrete columns. Studies are suggested on developing a suitable method to 

estimate length of the plastic zone in the axial-flexure model and the shear crack angle 

at the failure stage in the axial-shear model. 

 



CONCEPT OF THE ASFI AND THE USFM METHODS 

The main concept and methodology of both the ASFI and the USFM methods are based 

on the axial deformation interaction between the two models: a flexure model based on 

traditional uniaxial section analysis principles, and a shear model based on a biaxial 

shear element approach. Experimental results of reinforced concrete columns subjected 

to axial and lateral loads typically showed that the first cracks to appear on column were 

flexural cracks and shear cracks were observed afterward (Ousalem et al. 2003). In 

other words, the preliminary behavior of reinforced concrete columns under lateral load 

is flexural; but, they ultimately fail in shear. Columns with low shear capacity may fail 

soon after the initial flexural deformations; however, those with higher amounts of 

lateral reinforcement may fail after large lateral deformation in shear.  

Fig. 1 provides a conceptual illustration of the ASFI approach. The figure shows that 

the flexural deformation/crack interacts with the shear deformation/crack at the centroid 

of the section in the axial direction; the flexure deformation results in an increase in the 

centroidal strain which in turn enlarges the shear crack and deformation. The centroidal 

strain in the flexure mechanism, εcf, of the axial-flexure model, is composed of the pure 

axial strain, εxaf, due to only the applied axial load, and flexural-axial strain, εxf, due to 

the flexure deformation/crack. On the other hand, centroidal strain in shear mechanism, 

εcs, of the axial-shear model, is composed of the pure axial strain, εxas, due to only the 

applied axial load, and shear-axial strain, εxs, due to the shear deformation/crack. The 

compatibility condition requires identical axial deformation due to the applied axial load 

for the two mechanisms; thus, εxa = εxaf = εxas. Therefore, the total column’s axial 

deformation, εx, is defined as. 

xfxsxax εεεε ++=                                                           (1) 

To obtain εx in Eq. (1), εxf must be extracted from εcf and added to εcs. The total lateral 

drift of a column, γ, is defined as the sum of shear strain, γs, and the flexural drift ratio, 

γf, between the two sections.  
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Fig. 1 Conceptual illustration for effect of flexural deformation on shear crack widening 

in a reinforced concrete column 



   fs γγγ +=                                                                        (2) 

Lateral deformation due to pullout of tensile reinforcement is ignored in this study. 

However, a suitable pullout model can be applied to include this effect, which typically 

results in a larger ultimate deformation (Mostafaei and Kabeyasawa 2007). Equilibrium 

of the shear and axial stresses from the axial-flexure model, τf and σxf, and from the 

axial-shear model, τs and σxs, respectively, must be satisfied simultaneously through the 

analysis. That is, 

               xxsxf σσσ ==                                                                    (3) 

τττ == sf                                                                      (3) 

where σxf  = axial stress in the axial-flexure mechanism, σxs = axial stress in the axial-

shear mechanism, σx = applied axial stress, τf = shear stress in the axial-flexure 

mechanism, τs = shear stress in the axial-shear mechanism, and τ  = applied shear stress. 

Stresses in axes perpendicular to the longitudinal axis of the column (i.e., the clamping 

stresses σy and σz) are ignored by assuming equilibrium between the confinement 

pressure and the hoops stresses. 

0== zy σσ                                                                       (5) 

Fig. 2 illustrates the ASFI method for a reinforced concrete column with two end 

sections, including the equilibrium and compatibility conditions.  
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 Fig. 2 Axial-shear-flexure interactions in ASFI method 

In the USFM, an assumption is made for the average concrete compression strain. 

Consider a reinforced concrete column of moderate height, fixed against rotation and 

translation at the bottom and free at the top, subjected to in-plane lateral load and axial 

load as shown in Fig. 3. Given its pattern along the column (see Fig. 3-a), the concrete 

principal compression strain for a shear element between the two sections, ε2, may be 

determined based on average values of the concrete uniaxial compression strains 

corresponding to the resultant forces of the concrete stress blocks. 

    )(5.0 12 ++= cici εεε                                                          (6)  

This is the main hypothesis of the USFM; this assumption simplifies the shear model 

significantly from a biaxial to a uniaxial mechanism. For the column in Fig. 3, the 

compression strain obtained from the above equation is set equal to the average 

principal compression strain of the element between the two sections i and i+1. 



The shear mechanism in the ASFI and the USFM methods is modeled according to the 

Modified Compression Field Theory (MCFT), (Vecchio and Collins 1986). It is a 

suitable displacement-based evaluation approach for predicting the load-deformation 

response of reinforced concrete membrane elements subjected to shear and normal 

stresses. The MCFT is essentially a smeared rotating crack model. It includes 

compression softening effects, tension stiffening effects, and consideration of local 

conditions at cracks. The MCFT is based on orientations of the principal average strains 

in an element leading to the calculation of principal average stresses in concrete through 

concrete constitutive relationships. Transforming the average concrete principal stresses 

to the global coordinate axes and adding them to the average stresses in the 

reinforcement gives the total average stresses in the element. There are two checks in 

the calculation process relating to the crack zones. The first is to ensure that tension in 

the concrete can be transferred across the crack. The second is to ensure that the shear 

stress on the surface of the crack dose not exceed the maximum shear resistance 

provided by aggregate interlock. 

 

Fig. 3 A reinforced concrete column subjected to shear and axial Loads; a) Concrete 

principal compression stress pattern, b) Cross section, and c) Stress blocks and strains at 

two adjacent sections 

ANALYTICAL MODEL 

Details of the ASFI and the USFM are described by Mostafaei and Kabeyasawa (2007), 

Mostafaei and Vecchio (2008), and Mostafaei et al. (2009). Here, a summary of the 

analytical model and the process are provided.  

Three shear failure conditions are defined for a reinforced concrete column under axial 

and shear load: shear failure at a crack (Mode 1 Failure); failure due to loss of 

compression strength (Mode 2 Failure); and shear-compression failure (Mode 3 

Failure). In the simplified ASFI method, these three failure modes are described for a 
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column, similar to the one shown in Fig. 1, with a flexure section at one end, a section 

at the inflection point and a shear model between the two sections.   

Shear failure at a crack, or Mode 1 Failure, which is typically the governing case for 

columns with low transverse reinforcement ratios, occurs when: 

              csysyyi

in

f f
bdL

M θρττ cot+≥=                                            (7) 

where τf is shear stress due to flexure mechanism, M is the end-moment of the column, 

d is the effective depth of the section, b is the width of the section, Lin is the length of 

the column from the inflection point to the end section, cθ  is the crack angle, syyf  is the 

yield stress of transverse reinforcement, syρ  is the reinforcement ratio in the y 

(transverse) direction, and τi is the shear stress transferred by aggregate interlock across 

the crack surface, determined by Walraven’s equation, Eq. (8). 
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= , where, cf ′ is the concrete compressive strength, 

w is the average crack width, 1ε  is the concrete tensile strain in shear element,  xs  and 

ys  are the average crack spacings in the x- and y-directions, respectively and ag is the 

maximum aggregate size. In this study xs  and ys  are the same as the maximum 

reinforcement spacing in the x- and y-directions, respectively.  

Columns under high shear force, such as short columns, if not failing via Mode 1, will 

lose compression strength, f2, due to shear deformation and fail before the concrete peak 

strain is achieved, cεε ′≤2 . This failure condition, Mode 2, takes place when: 

)tan/1(tan

)( 21

cc

cc

in

f

ff

bdL

M

θθ
τ

+
−

≥=                                                 (9) 

Where,  fc1 and fc2 are the tensile stress and compression stress in the concrete according 

to the shear model.    

Columns and beams with a ductile flexure performance, when having sufficient 

transverse reinforcement and relatively low shear stress, will fail in shear when cεε ′=2   

via Mode 3. 

in

f
bdL

M
=τ                                                         (10) 

After Mode 3, a column likely sustains larger lateral deformation before the complete 

shear failure, Mode 1 or 2; however, the lateral load may drop depending on the level of 

the column’s confinement and the level of the damage caused to the confinement as the 

result of a cycling loading.  



In this approach, the concrete compression softening factor was employed only within 

the MCFT-based shear model. This is because at the compression block of the flexure 

section, crack angle is nearly zero.   

ANALYTICAL STEPS 

Based on the shear failure criteria described in the previous section, an analytical 

procedure can be constructed to estimate the ultimate deformation of a reinforced 

concrete column subjected to both axial and lateral loads.  

In step-by-step fashion, the procedure is as follows: 

1. Assume an initial value for the concrete compression strain of the flexure section, cε ; 

for example, cc εε ′= 5.0 .  

2. Employ a section analysis for the end section of the column and determine the 

centroidal strain of the section, cfε , in Fig. 2 (Mostafaei et al. 2009). 

3. Determine the axial strain at the inflection point with zero moment, xaε , in Fig. 2. 

This is the axial deformation of the column when it is subjected only to axial load.  

4. Compute the average concrete principal compression strain, 2ε , and average axial 

strain, xε , for the shear model. 

2
2

xac εεε +
=                                                         (11) 

2

xacf

x

εε
ε

+
=                                                        (12) 

5. Determine 1ε  and yε . If the transverse bars are yielded before the longitudinal bars, 

Eq. (13) can be employed to determine 1ε .  

x
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where, ])/([ 11

2 ffffF cxcfcycy −−=−= τ ; cxf  and cyf
 
are concrete stresses in the x-and 

y-direction, respectively; xsxsxxcx Ef ερσ −= ; Esx is the modulus of elasticity of the main 

reinforcement steel, and ρsx is the reinforcement ratio in the x-direction (main bars). An 

average initial value of tc ff ′= 44.01  can be assumed for Eq. (13) (Mostafaei et al. 

2009). If an iteration process is implemented, the value of 1cf  can be determined 

according to the concrete tensile strain, 1ε , obtained from the previous iteration. On the 

other hand, if sysyycy fF ρ≤  then, 21 / εεε −+= sysyyx Ef ; this is a failure condition when 

transverse bars yield after yielding the longitudinal bars. Esy is the modulus of elasticity 

of the transverse bars.  

 

6. Calculate cθtan
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where, xy εεεε −+= 21 . 

7. Using Eqs. (7) (9), and (10), check for shear failure. If no failure has occurred, then 

increase cε  and repeat the above steps. If, on the other hand, Eq. (7) shows a shear 

failure occurring at the crack, then cε  must be reduced until all three equations provide 

greater or equal values. 

8. Determine the ultimate deformation using Eq. (2), when: 

∫==
Lin

inin

f dxx
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1 φδγ , and 
c
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s θ

εεγ
tan

)(2 2−
=  

10. Finally, the ultimate lateral load capacity is obtained by 

)]/()[/( dLLdhbV ininfu
′−= τ                                         (15) 

where, h is the depth of the section, and d
’
 is the cover concrete. Shear force in Eq. (15) 

has been increased for consideration of the support confinement effect. Plastic hinge is 

determined by Eq. (16). 

incp LhL ≤= )tan2/( θ                                                    (16) 

Furthermore, other possible failure modes such as buckling of the compression bars, 

bond failure, failure of the cover concrete and rupture of tensile bars must be checked 

for the columns.  

Using the above process, ultimate deformations were estimated for several reinforced 

concrete column specimens, previously tested by different authors as listed in Table 1. 

Comparisons between the experimental and analysis are plotted in Fig. 4, indicating 

consistently accurate correlations. Since the shear capacity, obtained from the analysis, 

is based on the section moment capacity without consideration of geometrical 

nonlinearity, the P-∆ effect due to drift is determined and employed for the flexural 

columns, which reduces the calculated shear capacity. Failure modes are determined 

and given in Table 1 for all the reinforced concrete column specimens.       

CONCLUSIONS 

An analytical approach was presented to estimate the ultimate deformation and load 

capacity of reinforced concrete columns based on a simplified axial-shear-flexure 

interaction approach. Shear failure was the main failure criteria for both flexure- and 

shear-dominant specimens. In this approach, the concrete compression softening factor 

was employed only within the MCFT-based shear model. Axial strain and concrete 

compression strain of the shear model were determined according to centroidal and 

average concrete strains in the flexure model. Three failure modes were defined as the 

main ultimate state conditions; shear failure at the cracks, loss of concrete compression 

strength before the peak, and finally shear-compression failure when cεε ′=2 . A 

modification is implemented and provided for the USFM method on defining the plastic 

hinge length and determining the concrete tensile strain and crack angle at failure. The 



ultimate deformation and load capacity results obtained by the modified approach were 

verified against experimental data, and consistent correlations between the analytical 

and experimental results for a series of reinforced concrete columns were obtained.  
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Table 1 Material property of the test specimens 

Specime

n 
Type 

b 

mm 

h 

mm 

2Lin 

mm 

Sh 

mm 

ρg 

% 

ρw 

% 

fsyx 

MPa 

fsyy 

MPa 

f′c 

MPa 

P 

kN 

Failure 

mode 

No.121 DC 300 300 900 150 2.26 0.14 415 410 28 540 1 

No.151 DC 300 300 900 50 2.26 0.85 415 410 26 540 1 

No.161 DC 300 300 600 50 1.8 0.43 450 410 27 540 2 

2CLH182 DC 457 457 2946 457 2 0.1 330 400 33 500 3 

3CLH182 DC 457 457 2946 457 3 0.1 330 400 25.6 500 1 

No.23 DC 457 457 2946 305 2.5 0.17 434 476 21.1 2650 3 

N18M4 DC 300 300 900 100 2.7 0.19 380 375 26.5 429 1 

No.15 DC 200 400 1000 128 2.53 1 360 345 45 0 1 

No.46 DC 400 400 3200 80 1.57 1.1 474 333 25.6 819 3 

No.76 SC 550 550 3300 90 1.25 1 511 325 32.1 2913 3 

B27 DC 250 250 1000 40 2.43 0.4 379 774 99.5 2176 3 

TP-308 SC 242 242 1250 40 2.43 0.8 461 486 37.6 705 3
 

D1N39 SC 242 242 1250 40 2.43 0.8 461 486 37.6 705 3 

D1N69 SC 242 242 1250 40 2.43 0.8 461 486 37.6 1410 3 

Footnotes: DC= double curvature, or with two fixed ends, SC=single curvature, or cantilever, b=width of the 

section, h= Depth of the section, Lin= length of the column from the inflection point to the end section, Sh= hoop 

spacing, ρg=longitudinal reinforcement ratio, ρw= transverse reinforcement ratio, fsyx= longitudinal reinforcement 

yield stress, fsyy= transverse reinforcement yield stress, f′
c= concrete compression strength , P=axial load, Failure 

mode 1: shear failure at crack ε2 < ε’c , Failure mode 2: loss of compression strength ε2 < ε’c , and Failure mode 3: 

shear-compression failure ε2 = ε’c, Test results by: 1Ousalem et al. (2003), 2Lynn (1996), 3Sezen (2000), 
4Nakamura and Yoshimura (2002), 5Umemura et al. (1977), 6Tanaka and Park (1990), 7Sakai et al. (1990), 8

 

Nagaya and Kawashima (2001), and 9Kono and Watanabe (2000). 
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Specimen No.16 Specimen N18M 
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Specimen 2CLH18 Specimen 3CLH18 
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Specimen No.1 Specimen B2 

Fig. 4 Comparison of experimental and analytical results 
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Specimen No 2 Specimen No.TP-30 
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Specimen No.4  Specimen No.7 
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Specimen D1N3 Specimen D1N6 

Fig. 4 Continued  

 


