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We develop the two-electron attosecond streak camera under realistic conditions using a quasiclassical model.

We assume extreme ultraviolet (XUV) attosecond pulses with a full width at half maximum (FWHM) of

24 attoseconds, centered at 120 eV and a streaking infrared laser field of 1600 nm, and intensity of 1.8 ×

1012 W/cm2. The proposed method is shown to be capable of time resolving two-electron collisions in double

ionization.

DOI: 10.1103/PhysRevA.86.053411 PACS number(s): 32.80.Fb

I. INTRODUCTION

Time-resolving correlated electron processes is one of

the driving forces behind the large-scale effort to push the

frontiers of attosecond science. Attosecond science offers

time resolution through extreme ultraviolet (XUV) pulses.

However, pump-probe experiments using attosecond pulses

are technically very challenging. Hence, the streaking of

photo-electrons with an infrared (IR) laser field has become a

successful technique for bringing time resolution to photoion-

ization. The paradigmatic attosecond streak camera [1,2], and

its development into FROG CRAB (frequency resolved optical

gating for complete reconstruction of attosecond bursts) [3],

which originally aimed to characterize attosecond XUV

pulses, have been the underlying concepts for studies resolving

delayed time emission from atoms [4–8] and solids [9].

To study the electron correlation in single-photon double

ionization we recently formulated the two-electron streak

camera [10]. Specifically, it was shown that the intra-atomic

knock-out process [11] can be associated with a delay, that is,

a time between photoabsorption and ejection of two electrons

in the continuum. The delay is encoded in the interelectronic

angle of escape as a function of the phase of the IR laser field.

In addition, the two-electron streak camera can time resolve

delays corresponding to different energy sharings, between

the two electrons, and to different ionization mechanisms

[12]. However, previous work considered only discrete photon

energies and instantaneous photoabsorption [10,12].

Here, we remove this severe limitation and extend the

two-electron streak camera to realistic attosecond pulses.

By resolving the bandwidth of an XUV pulse in the sum

energy of two emitted electrons, we construct the two-electron

equivalent of FROG to obtain a complete picture of the single-

photon double-ionization process. Specifically, in FROG [13]

one extracts from a two-dimensional data set (FROG trace)

the complete characteristics of an optical pulse. In a similar

manner in FROG CRAB [3] one retrieves the spectral phases

and amplitudes of an attosecond pulse. Here, we assume a

transform-limited XUV attosecond pulse to obtain information

about the delay of two-electron emission after absorption of a

photon from the attosecond pulse. We use the interelectronic

angle of escape as a function of the phase of the IR laser field

as FROG-like trace for double ionization. We devise a simple

algorithm for extracting the two-electron delays for different

excess energies.

II. METHOD

We build on our classical trajectory Monte Carlo [14]

simulation of the classical He∗(1s2s) model system, described

in detail in Refs. [10,12,15–17]. Briefly, we classically

propagate the Coulomb three-body problem using the classical

trajectory Monte Carlo (CTMC) phase space method. CTMC

has often been used to describe breakup processes induced

by particle impact [18] with implementations differing usually

in the way the phase space distribution of the initial state is

constructed. We use a Wigner transform of the initial quantum

wave function for the initial state, and this is why we call our

approach “quasi”-classical. Naturally, the electron-electron

interaction is treated to all orders in the propagation, and any

difficulties with electron correlation in the final state are absent,

since the method is explicitly time dependent.

We choose He∗(1s2s) as a prototype system to clearly

formulate the concept of streaking two-electron dynamics

while avoiding the unnecessary complexity of many-electron

and multicenter systems. However, the scheme is not system

specific and can time resolve two-electron collisions mediated

by the knock-out mechanism. For atoms, knock out and

shake off are the two well-established mechanisms underlying

two-electron escape after a single photon is absorbed; the

former mechanism dominates for small excess energies and the

latter mechanism for large ones [11]. For instance, our scheme

can be used to time resolve the collision between 1s and 2s

electrons in the ground state of Li [15–17]. In addition, it can

be used to time resolve two-electron collisions taking place in

molecular systems such as the He dimer where single-photon

double ionization was shown to be mediated by a knock-out

process [19]. Atomic units (a.u.) are used throughout this work

except where otherwise indicated.

Figure 1(a) illustrates the concept of the two-electron streak

camera. First, the 1s electron (photoelectron) absorbs the XUV

attosecond pulse with energies above the double-ionization

threshold. Then, as the electron leaves the atom it can collide
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FIG. 1. (Color online) (a) Sketch of the intra-atomic knock-out

mechanism to be studied with the two-electron streak camera. The

streaking field causes a decrease in θ∞
12 when the photoelectron is

launched along the + ẑ direction, since adding �pIR to each of the

electron momenta results in θ12 < θ∞
12 . (b) Spectral intensity of the

XUV pulse scaled by (F XUV
0 )2. Dotted curve: Wi→f in the presence of

the XUV and IR field averaged over all φ′s. (c) Observable Estr total

electron energy as a function of φ considering excess energies from 4

to 60 eV in steps of 2 eV and double-ionization events corresponding

to launching of the photoelectron (1s) in the ±ẑ direction for φ ranging

from 0◦ to 180◦. To illustrate the difference between launching of the

photoelectron in the + ẑ versus the −ẑ direction we plot the Estr

corresponding to + ẑ for φ ranging from 0◦ to 180◦ and the Estr

corresponding to −ẑ for φ ranging from 180◦ to 360◦.

with the 2s electron and transfer some of its energy, resulting

in the simultaneous ejection of both electrons. The intra-

atomic collision is typically characterized by the asymptotic

inter-electronic angle of escape, θ∞
12 , that can be observed by

experiment [11]. To time resolve the two-electron collision

dynamics we streak θ∞
12 by adding a weak IR laser field polar-

ized along the z axis, �F IR(t) = F IR
0 f (t) cos(ωIRt + φ)ẑ, where

φ is the phase between the IR field and the XUV pulse and

f (t) is the pulse envelope [10]. We choose ωIR = 0.0285 au

(1600 nm) and F IR
0 = 0.007 a.u. (<1.8 × 1012 W/cm2) so

that the streaking field does not alter the attosecond collision

significantly but still has an observable effect on θ12. Here,

F IR
0 = 0.007 a.u. is chosen to efficiently streak excess energies

from 10 to 60 eV. The IR laser field splits θ12(φ) in two

branches with the lower (upper) branch corresponding to

launching of the photoelectron along the +z (−z) direction; see

Fig. 1(a).

Next, we describe how we model the XUV attosecond pulse

and how its spectral intensity needs to be reflected in the weight

of trajectories corresponding to different excess energies. The

electric field of the XUV pulse is of the form

�F XUV(t) = F XUV
0 e−t2/4σ 2

cos
(

ωXUV
0 t

)

ẑ (1)

with σ the standard deviation of the temporal intensity enve-

lope I (t). For the current calculations, the spectral intensity

Ĩ (ω) of the XUV pulse has a FWHM of 75 eV, centered at

ωXUV
0 = 120 eV; see Fig. 1(b). The temporal intensity envelope

I (t) of the transform limited pulse has a FWHM of 1 a.u.. In

what follows we focus on the effect the large-energy bandwidth

of the XUV pulse has on the streaking process and we neglect

the effect of the finite FWHM of I (t). The uncertainty of the

time of photoabsorption will be taken into account after the

application of the streak camera algorithm as an uncertainty in

the retrieved delay times.

Using first-order perturbation theory we compute the

photoabsorption probability to transition from the initial

ground state of He∗(1s2s) to the final state of double-electron

escape [20]:

Wi→f ∝
1

ω
σ 2+(ω)Ĩ (ω) (2)

with the cross section for double ionization σ 2+(ω) given by

σabs(ω)P 2+(ω). σabs is the cross section for photoabsorption

which we calculate in the single-electron approximation,

assuming that the 1s electron absorbs the photon [21]. P 2+(ω)

is the probability for double ionization obtained through

our classical simulation [10,15,16]. Finally, we weight each

classical trajectory for a given photon energy ω by the factor

σabs(ω)Ĩ (ω)/ω.

III. RESULTS

Our goal is to retrieve the delay between photoabsorption

and ionization of both electrons. Since the delay depends on

the sharing of the final energy among the two electrons [10],

we consider in the following only symmetric energy sharing

of ǫ < 0.14. The delay times for the most symmetric energy

sharing correspond roughly to the time of minimum approach

of the two electrons, that is, to the collision time. Here, we

have defined the energy sharing, ǫ = (ǫ1 − ǫ2)/(ǫ1 + ǫ2), as

the dimensionless asymmetry parameter between the (final)

kinetic energies ǫ1 and ǫ2 of the two electrons. In what follows,

we consider the symmetric sharing with respect to the streaked

or the “modified” electron energy—both energies are defined

in what follows. The analysis of different energy sharings as

described in Ref. [12] can be applied to the following analysis

without any restrictions. In Fig. 1(c) we plot a FROG-like trace

for two-electron ejection, the observable total electron energy

in the presence of the XUV plus IR laser field, Estr (streaked

energy), as a function of φ for excess energies ranging from 4 to

60 eV in steps of 2 eV. Figure 1(c) is plotted for symmetric Estr

energy sharing. In what follows, we describe how we extract

from Fig. 1(c) the delay times of the intra-atomic two-electron

collisions for different triggering excess energies. The excess

energy is given by Exs = ω − Ip, where Ip is the ionization

potential of the model He∗(1s2s) system.

We first study the effect of the large energy bandwidth of the

XUV pulse on streaking the two-electron collision dynamics.

In Fig. 2(a) we plot the correlation map of the excess energy

of the XUV photon and the observable sum energy Estr of

both electrons. We see that a large range of excess energies

maps to the same streaked total electron energy. Hence, the

final electronic state does not correspond unambiguously
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FIG. 2. (Color online) Correlation map of the excess energy

Exs (a) with the observable electron energy Estr and (b) with the

“modified” electron energy Emod. The color scale in panels (a) and (b)

is such that the sum of Exs contributing to a certain Estr is normalized

to 100. (c) Streaked electron energy and (d) “modified” electron

energy as a function of φ for Exs = 10 eV excess energy. Panels (a)

and (c) are plotted for symmetric Estr energy sharing while panels (b)

and (d) are plottedfor symmetric Emod energy sharing.

to the triggering excess energy. For instance, the 20 eV

streaked energy maps to excess energies ranging from 12

to 26 eV. The reason for the weak correlation between the

streaked and the excess energy becomes clear in Fig. 2(c) for

10 eV excess energy: the streaked energy changes significantly

with φ.

To retrieve the excess energy from the final electronic

state with improved accuracy, we introduce a “modified”

total electron energy, where the effect of the streaking IR

field is reduced. Therefore, we define a “modified” electron

momentum pmod
i by subtracting the momentum change �pIR

due to the streaking IR field, that is,

pmod
i = pstr

i − �pIRẑ, (3)

where the index i = 1,2 labels the two electrons. The change in

momentum due to the streaking field (neglecting the Coulomb

potential) is given by

�pIR ≈
F IR

0

ωIR

sin(�φ + φ). (4)

Here, the shift �φ = ωIRtdelay with respect to the maximum of

the vector potential of the IR field, AIR(φ), is due to the delayed

electron emission; see Ref. [10] for more details. Since we want

to retrieve tdelay we set �φ = 0 when computing the “mod-

ified” electron momentum pmod
i . Hence, �pIR ≈

F IR
0

ωIR
sin φ.

Thus, the “modified” energy Emod corresponding to a certain

triggering photon excess energy is given by

∑

i=1,2

[(

pstr
x,i

)2
+

(

pstr
y,i

)2]

2
+

∑

i=1,2

(

pmod
z,i

)2

2
= Emod. (5)

Figure 2(d) shows that the “modified” electron energy varies

significantly less with φ compared to the unmodified, observ-

able energy Estr [Fig. 2(c)]. Consequently, Emod is strongly

correlated with the excess energy; see Fig. 2(b). The improved

correlation at higher excess energies is likely due to the faster

collision; that is, the approximation �φ ≈ 0 is better at higher

excess energies.

We next explain why at φ = 0◦(180◦) the streaked electron

energy and as a consequence the “modified” electron energy

is smaller (larger) than the corresponding excess energy for

photoelectrons ejected in the + ẑ direction (it is the other way

around for photoelectrons ejected in the −ẑ direction). At

φ = 0◦ each electron experiences a force from the IR field in

the direction opposite to the electron’s direction of escape. As

a result, each electron slows down and escapes with a streaked

energy, Estr, smaller than the electron’s final energy in the

absence of the IR field. In contrast, at φ = 180◦ each electron

experiences a force from the IR field in the same direction as

the electron’s direction of escape. As a result, each electron

escapes with a streaked energy larger than the electron’s final

energy in the absence of the IR field. To verify that the overall

change of the “modified” total electron energy with φ is a one-

electron effect, we run our simulation in the presence of the

XUV plus IR field only for the photoelectron (the 2s electron

is absent). Since for the two-electron case we only consider

symmetric energy sharing, we compare the two-electron case

for a certain excess energy with the one-electron case for half

that excess energy. Indeed, multiplying by two the distribution

of the one-electron “modified” energy as a function of φ for

an excess energy of, for example, 5 eV [Fig. 3(a)] and taking

the average we find that there is excellent agreement with the

two-electron “modified” energy at 10 eV excess energy as a

function of φ; see Fig. 3(b). Note that in Fig. 3 and in what

follows [Figs. 4(b) and 4(d) and Fig. 5] we focus on double

ionization events where the photoelectron is ejected in the

+ ẑ direction.

For a certain excess energy, we have shown that the

“modified” electron energy increases with φ; see Fig. 3(b).

This forms the basis for the simple algorithm we develop

to determine, for the case when many excess energies are

considered (XUV attosecond pulse), the range of “modified”

electron energies that pertain to a certain excess energy Exs.

Our goal is to select that range of “modified” electron energies

that includes all double ionizing events that are triggered by a

narrow set of excess energies centered around Exs. The reason

is that it is the double-ionization events triggered by a single

Exs whose collision time we aim to streak. We label the set of

double-ionization events thus selected by Emod.

If our algorithm is dictated mainly by experimentally acces-

sible observables, we compute the collision time correspond-

ing to Exs by selecting the doubly ionizing events whose “mod-

ified” electron energy changes from [Exs − �E/2,Exs] eV

for φ = 0◦ to [Exs + �E/2,Exs] for φ = 180◦. We choose

�E to be roughly 8 eV for all excess energies (method 1).

With this selection criterion, the double-ionization events with

Emod = 10 eV, enclosed by the white dashed lines in Fig. 3(c),

are the events triggered by excess energies ranging from 7

to 13 eV [see Fig. 4 (b)]; these excess energies are indeed

roughly centered around Exs = 10 eV for all φ’s. Similarly,

the double-ionization events we label by Emod = 20 eV are

triggered by excess energies ranging from 17 to 23 eV [see

Fig. 4(d)]; these excess energies are roughly centered around

Exs = 20 eV for all φ’s.
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FIG. 3. (Color online) (a) Emod for one-electron as a function of

φ for 5 eV excess energy. (b) Emod for two electrons as a function

of φ for 10 eV excess energy; white solid line shows the average of

the distribution Emod in (a) times two. (c) Emod for two electrons as

a function of φ for excess energies between 4 and 14 eV. The white

dashed lines enclose the doubly ionizing events with Emod = 10 eV.

Panels (b) and (c) are plotted for symmetric Emod energy sharing.

To then determine the two-electron collision time cor-

responding to a certain excess energy, for instance, Exs =

10 (20) eV, the best we can do, according to method 1, is

to compute the two-electron collision time of the double-

ionization events corresponding to Emod = 10 (20) eV. We

do so and determine the collision time for Emod = 10 (20) eV

in Figs. 4(a) and 4(c) by extracting �φ from the lower branch

of the interelectronic angle of escape θ12(φ); this procedure is

described in detail in Refs. [10,12]. We find that �φ is 4.1◦

(1.9◦), corresponding to a collision time of 2.5 (1.2) a.u. for

Emod = 10 (20) eV, respectively. We note that the variation in

collision time with excess energy suggests that the accuracy

of �φ depends critically on the resolution in θ12. In order to

increase the robustness of the retrieval algorithm we determine

�φ for a range of bin sizes dθ12 = 4–9◦. We define the average

of �φ(dθ12) as the collision phase or collision time at a given

excess energy or Emod.

In Figs. 4(a) and 4(b) we have shown how to obtain

the two-electron collision time for Emod equal to 10 and

20 eV respectively. By repeating the process for excess

∆φ

∆φ

E
x
s
(e
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E
x
s
(e

V
)

θ∞
12

θ∞
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FIG. 4. (Color online) θ12 as a function of φ for “modified” ener-

gies around 10 eV (a) and 20 eV (c) in the presence of the XUV and IR

field. �φ is the shift of the maximum of the vector potential of the IR

field, corresponding to a maximum of the split of θ12 as a function of φ.

(b) Excess energies as a function of φ that contribute to the “modified”

energy around 10 eV enclosed by the white dashed lines in Fig. 3(c)

and similarly (not shown) for the “modified” energy centered around

20 eV. Figure 4 is plotted for symmetric Emod energy sharing.

energies ranging from 10 to 56 eV we obtain the collision

time for the same range of Emod energies in Fig. 5(a). We

find that the collision time decreases with increasing excess

energy, that is, increasing Emod. Since in our computation

(but not experimentally) we can identify the double-ionization

events in the presence of the XUV and IR fields, which

are triggered by only a single excess energy, Exs, we also

compute the collision time corresponding to this excess

energy; see Fig. 5(a). Figure 5(a) shows that the retrieval

algorithm for the collision time based on Emod works better

at lower excess energies. The reason is that we compute the

delay times corresponding to a certain Emod using �E ≈ 8 eV

independent of the excess energy. This choice of �E describes

best the rate of increase of the “modified” electron energy with

φ for smaller excess energies. However, �E decreases with

E
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FIG. 5. � indicates the collision times for “modified” electron

energies Emod from 10 to 56 eV; • indicates the collision times for

pure excess energies Exs ranging from 10 to 56 eV. Collision time was

retrieved by (a) method 1 and (b) method 2. The error bars show the

uncertainty in the delay times of 0.6 a.u. since we change φ every 1◦.
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FIG. 6. (Color online) Correlation map of the excess energy with

the “modified” energy sharing for the doubly ionizing events with

equal energy sharing in the absence of the IR field. The color scale

is such that the sum of Emod energy sharings contributing to the

equal energy sharing double-ionization events for a certain Exs is

normalized to 100.

increasing excess energy. As a result, the agreement is worse

for higher excess energies.

Accounting for the fact that �E changes with excess energy

(method 2); we obtain a much better agreement between the

two sets of collision time; see Fig. 5(b). One way to do

so is by labeling as Emod the doubly ionizing trajectories

with Emod within ±1 eV of twice the average Emod for the

one-electron problem; see Figs. 3(a) and 3(b). Therefore, in this

algorithm we use the calculated Emod as input for each excess

energy whereas the previously described algorithm uses only

experimentally accessible data. In both algorithms the collision

times are computed for symmetric “modified” energy sharing.

The reason we choose the symmetric energy sharing in terms of

the “modified” energy is that the symmetric “modified” energy

sharing is strongly correlated to the symmetric energy sharing

in the absence of the IR field (Fig. 6); it is the collision time cor-

responding to this latter energy sharing that we aim to streak.

Finally, we note that the algorithms described above for

obtaining the two-electron collision time, including Eq. (4) and

Eq. (5), are applicable to atoms with higher nuclear charge as

well. The only difference is that the change of the “modified”

FIG. 7. Average of Emod as a function of φ for the one-electron

case for Exs = 5 eV for charges Z = 2,5,10.

electron energy with φ gets larger with increasing charge. This

is illustrated in Fig. 7 for the one-electron case. For higher

charges, in method 2 one would follow the exact same steps

as for the case of charge equal to 2 described above. However,

for method 1 one would need to consider a larger interval �E

to correctly account for Emod being steeper as a function of φ

for larger nuclear charges.

IV. CONCLUSION

In conclusion, we have demonstrated that the two-electron

streak camera can be experimentally realized. We obtain

a complete picture of the single-photon double-ionization

process by computing the two-electron collision times for

different excess energies. While our study has been performed

in the context of two-electron escape in atoms, it opens the way

for time-resolving collision dynamics during multielectron

escape in atomic and molecular systems.
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Muller, M. Büttiker, and U. Keller, Science 322, 1525 (2008).

[8] M. Schultze et al., Science 328, 1658 (2010).

[9] A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev,

A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth,
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