
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 1st ACM International Workshop on PerformanceEvaluation of
Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2004), 2004

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=4ddd9139-ce49-484a-8f58-1afbeadfe4a2

https://publications-cnrc.canada.ca/fra/voir/objet/?id=4ddd9139-ce49-484a-8f58-1afbeadfe4a2

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

State Based Key Hop Protocol: A Lightweight Security Protocol for

Wireless Networks
Mitchell, S.; Srinivasan, K.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

State Based Key Hop Protocol: A Lightweight
Security Protocol for Wireless Networks *

Mitchell, S., and Srinivasan, K.
October 2004

* published in the Proceedings of the 1st ACM International Workshop on Performance
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2004).
Venice, Italy, pp. 112-118. October 4, 2004. NRC 47461.

Copyright 2004 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

State Based Key Hop Protocol: A Lightweight Security
Protocol

For Wireless Networks
Stephen Michell and Kannan Srinivasan

National Research Council
Sydney, Nova Scotia, Canada

Email: {stephen.michell, kannan.srinivasan}@nrc-cnrc.gc.ca

ABSTRACT
Sate Based Key Hop (SBKH) protocol provides a strong,
lightweight encryption scheme for battery operated devices, such
as the sensors in a wireless sensor network, as well as small office
home office (SOHO) users. Although SBKH can be applied to
many underlying protocols, in this paper, we focus on integrating
SBKH with 802.11. Hence we compare SBKH with other 802.11
security protocols and show that SBKH eliminates all the issues
with wired equivalent privacy (WEP) protocol, using the existing
hardware and software as much as possible at a power and
processing cost that is much lower than WiFi Protected Access
(WPA) 1.0 or 2.0, and is cheaper than WEP.

Categories and Subject Descriptors
C.2.1[Network Architecture and Design] Wireless
Communications
C.2.0[Computer Communication Networks] Security.

General Terms
Security, Performance.

Keywords
Computer Network Security, Wireless Security, State Based
Encryption, Low Power Security, Wireless Sensor Network
Security.

1. INTRODUCTION
In this paper, we present State Based Key Hop (SBKH) protocol,
a lightweight security protocol suitable for wireless sensor and
other low power devices. SBKH is also easy to maintain and so is
suitable for small office home office (SOHO) users.
Although SBKH can be applied to other wireless protocols, we
focus our discussions in this paper on integration of SBKH with
IEEE 802.11 as it is the widely used wireless standard. Hence our
comparison of SBKH is carried out against 802.11 security
protocols namely: WEP and WPA. First we present a brief review
of WEP and WPA followed by protocol overview of SBKH.

1.1 Background
1.1.1 Wired Equivalent Privacy (WEP)
[IEEE802.11 1999] defined an encryption scheme called wired
equivalent privacy (WEP), to provide security to the 802.11 users.

WEP is a symmetric encryption scheme in which a WEP key is
known or shared between two communicating nodes. WEP uses
RC4 algorithm to do per packet encryption. RC4 algorithm is a
stream cipher scheme [FM 2001, Mantin 2001] in which the data
is encrypted by XORing data with the cipher stream generated by
RC4 from an RC4 seed. WEP concatenates the WEP key (40 or
104 bits) and the initialization vector (IV) (24 bits), as the RC4
seed. For every new RC4 seed, RC4 reinitializes its states using
key-scheduling algorithm (RC4-KSA). After RC4-KSA, RC4
generates the cipher stream using pseudo random generation
algorithm (RC4-PRGA). Since the IV is sent in every packet,
WEP carries out RC4-KSA and RC4-PRGA for every packet.
WEP is identified as being weak in a number of areas which make
its continued use as a security mechanism for wireless untenable.
These are discussed in more length in [SIR 2000, SM1 2004] and
summarized here. [Walker 2002] identify weak key issues and
shows that the forgery attacks, replay attacks and bit flipping
attacks let active attackers spoof networks, make invalid packets
seem valid and can derive the shared key from such attacks.

1.1.2 Wi-fi Protected Access (WPA)
IEEE 802.11i [Draft802.11 2003]'s first proposal for 802.11
legacy devices (WPA 1.0) encapsulates WEP functionalities by
temporal key integrity protocol (TKIP). It also has an algorithm
(Michael) to provide message integrity to protect data from any
modifications. TKIP and Michael algorithms add significant
processing on every packet. They also add additional overhead of
12 octets in every packet (without fragmentation) which can
contribute to additional power consumption during transmission
and reception.
IEEE 802.11i's second part (WPA 2.0) uses Advanced Encryption
Standard (AES) and requires change in hardware. WPA 2.0
carries out AES twice under two different modes for every packet
to encrypt the packet and to provide message integrity. WPA 2.0
also adds an overhead of 8 octets to every packet. Thus WPA 2.0
can also be very expensive.
Hence there is a need for a simple, robust, lightweight security
protocol that carries out power-efficient encryption and
decryption. SBKH is one such protocol.
[SM1 2004] introduced SBKH but restricted discussion to the
basic protocol. [SM2 2004] evaluated SBKH against other
encryption schemes to measure processing cost and complexity.
This paper extends those to show how SBKH authenticates and
resynchronizes.

2. PROTOCOL OVERVIEW
SBKH is a state-based encryption protocol in which two
communicating nodes share a common knowledge of the RC4
state. Whereas WEP and WPA 1.0 reinitialize RC4 state for every
packet and generate cipher stream from the initialized RC4 state,
SBKH does not reinitialize RC4 states, rather it maintains the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PE-WASUN’04, October 7, 2004, Venezia, Italy.
Copyright 2004 ACM 1-58113-959-4/04/0010…$5.00.

same RC4 seed for a duration known to a pair of communicating
nodes. This will require the initialization of the RC4 state
(running RC4-KSA) to be done only when the base key changes.
After this, communicating nodes keep using the same cipher
stream, following the stream together, byte-by-byte to encrypt and
decrypt packets exchanged between them. This is referred to as
the nodes being State Synchronized.
To avoid weak key issue with RC4, SBKH does not begin
decryptions at the start of an encryption stream, rather SBKH
communicating nodes run down the cipher stream by a known,
shared offset after every RC4-KSA, i.e. whenever a base key is
changed and before communication begins. Only after running
down the stream can a node encrypt or decrypt packets
successfully. A second offset is used to determine where the
resynchronization mechanism is initiated to recover from any loss
of synchronization due to active attacks and possible
implementation errors.
SBKH has been designed to operate with existing hardware and
with existing 802.11 protocols as much as possible with minimal
changes to the firmware. This is important to the users of millions
of 802.11 cards shipped, where a change in the hardware will not
solve the security issues with these existing 802.11 cards.

3. PROTOCOL DETAILS
3.1 Notation and Shared Parameters
In SBKH, RC4-KSA is executed only once for any key for any
pair of communicating nodes. We define the term communicating
nodes to indicate two nodes which are exchanging data and
management packets, i.e. a node and an access point in a managed
network, and two nodes in an ad-hoc network that are directly
exchanging packets. We also define the notion of Uplink (U) and
Downlink (D). In a managed network, D is the direction from the
Access Point, and U is the reverse. In an IBSS, U is the direction
from node A which requested authentication with node B. U and
D are appended as subscripts to other parameters to reflect the
direction to which the parameter applies.
Since SBKH is state-based, communicating nodes require the
following shared parameters to successfully maintain state: Base
Key Pair, Key Duration, RC4 states, Offsets, an explicit SBKH
sequence counter (SSC) and a Nonce. Note that nodes never
exchange information to indicate these parameters, to indicate
when key change occurs or to identify the next key pair selected.
Such information was distributed before authentication by some
means outside the scope of the SBKH protocol.

Base Key Pair
A Base Key Pair consists of two full 64 bit or 128 bit keys
(BaseKeyU and BaseKeyD) which are used as RC4 seeds for the
communication between two nodes. These keys may be selected
from a Base Key List, which may be common to all nodes within
the same BSS or common only to a communicating node pair.
The key may also be a per session key that is agreed between the
two communicating nodes. The generation and distribution of the
Base Key Pair and the Base Key List is out of scope of this paper,
although we assume a strong key generation and distribution
algorithm and note that the way that keys are selected or
generated must preserve uniqueness of each base key across the
BSS/IBSS.

Key Duration
Key Duration indicates when a base key pair is changed. SBKH
uses the beacon time stamp and Key Duration to have common
knowledge of key change between a pair of communicating

nodes. Change of base key pair may be just as easy as selecting
the next key pair from the Base Key List, as long the key
uniqueness condition is preserved.

Offsets
Offsets are used to indicate how far down the cipher stream after
running RC4-KSA a node starts encrypting and decrypting
messages for a given Base Key Pair. This is referred to as running
down the cipher stream. Running down the cipher stream for
Offset number of octets happens only when a key rollover takes
place. The purpose is to discard Offset number of encryption
octets from the start of a stream, strengthening RC4. There are
two types of Offsets: Initial Offset (I-offset) and Sync Offset (S-
offset). S-offset is used during resynchronization mechanism to
encrypt and decrypt resynchronization frames. I-offset indicates
the position where encryption and decryption of all other frames
exchanged between A and B begin. Both I-offset and S-offset are
non-zero values, which are distinct from each other. It is strongly
recommended that S-offset < I-offset, to avoid encryption key
reuse during resynchronization. Recommended values for the
offsets are in the range of 300 to a few thousand, since the
purpose is to avoid the RC4 weak key syndrome [FMS 2001] that
occurs for some keys on the initial cipher stream octets.

RC4 States
RC4 state is a state array with 256 state elements and two indices.
Each state element and each index is of 8 bits in length, making
the overall RC4 state to be of 258 octets in length. For a
successful communication between two nodes A and B, the RC4
state corresponding to A and B must be the same for a message to
be encrypted and decrypted successfully, i.e. A and B are
encryption state synchronized. A and B stay state synchronized
by always encrypting and decrypting exactly same number of
bytes (since each message successfully decrypted was also
successfully encrypted). Since A and B operate asynchronously,
SBKH maintains two sets of RC4 states, one for each
communication direction: uplink and downlink. SBKH defines
five pairs of RC4 states: Initial RC4 States (IRC4U, IRC4D),
Previous RC4 States (PRC4U, PRC4D), Current RC4 States
(CRC4U, CRC4D), Next RC4 States (NRC4U, NRC4D) and Sync
RC4 States (SRC4U, SRC4D). The notation may be extended, so
that CRC4U,j,B corresponds to the state in the receiver for CRC4U
for packet j as maintained by node B and SSCU = j mod(224-1).
• IRC4 are (collectively) the RC4 states after performing RC4-

KSA and RC4-PRGA for I-Offset number of bytes for every
Base Key. A node may start encrypting data packets with a
new Base Key only after calculating the RC4 states IRC4U
and IRC4D corresponding to BaseKeyU and BaseKeyD
respectively.PRC4 are the RC4 states corresponding to
previously successfully transmitted or received and
acknowledged SBKH encrypted packet. PRC4U and
PRC4DCRC4 are the RC4 states with which encryption and
decryption of the subsequent packet takes place for a given
Base Key. CRC4U and CRC4D are updated independently.

• NRC4 are the RC4 states corresponding to I-Offset for the
next Base Key Pair. NRC4U and NRC4D are updated
independently.

• SRC4U and SRC4D are the RC4 states corresponding to S-
offset for a given Base Key Pair and are used in the
resynchronization protocol. These can be calculated the same
way IRC4 states are calculated.

PRC4 and CRC4 states are continuously maintained for a pair of
nodes: IRC4; NRC4 and SRC4 states are logical states and may be

generated as needed or maintained continuously, an option of
interest to resource-limited devices.

SBKH Sequence Counter (SSC)
SBKH uses the 24-bit IV field with MAC frames of 802.11 as
SBKH sequence counters (SSC) that are maintained for each
direction (SSCU and SSCD) for a pair of directly communicating
nodes. SSC is different from 802.11 MAC’s sequence number,
which is maintained for the whole network and not for a pair of
nodes. The ability to maintain a pair-wise sequence counter helps
decision making while trying to decrypt an incoming SBKH-
encrypted packets.

Nonce
Each pair of communicating nodes maintain a shared nonce to
permit verification of authentication, deauthentication, association
and disassociation messages. This nonce is created during
authentication and changed during resynchronization. The nonce
is 128 bits (16 bytes) in length.

3.2 Basic Protocol Operation
Communication begins after authentication (see 4.4) for a pair of
communicating nodes with SSCU and SSCD initialized to zero,
 PRC4U = CRC4U = IRC4U and
 PRC4D = CRC4D = IRC4D.
Note that there is no connection between IRC4U and IRC4D since
they reside on different cipher streams.
In Fig. 2, two nodes A and B are exchanging packets encrypted
based on a Base Key shared between A and B. A sends packet j in
its uplink encrypted at CRC4U,j,A to B. After receiving packet j, B
compares SSCU,j with its SSCU,j-1 which according to B was the
last successfully acknowledged packet's SSCU. If SSCU,j-SSCU,j-

1=1, then B decrypts packet j at CRC4U,j,B. After successful
decryption (CRC4U,j,B = CRC4U,j,A) B acknowledges the packet to
A and also updates its SSCU to SSCU,j. B then updates its
PRC4U,j+1,B = CRC4U,j,B and its CRC4U = CRC4U,j+1,B , the state
where decryption of the packet corresponding to SSCU,j+1 will
begin. After the receipt of B's acknowledgment, A updates its
PRC4U,j+1,A = CRC4U,j,A and its CRC4U = CRC4U,j+1,A, the state
where encryption of the packet with SSCU = j+1 will begin . A
also updates SSCU = SSCU,j+1 which will be used in packet with
SSCU = j+1. The same discussion applies for packets sent by B to
A on its downlink.

Retransmissions and Packet Drops
For retries, there is no update of PRC4, CRC4 and SSC at A or B.
If a packet or fragment times out and is dropped, the subsequent
packet or fragment has the same SSC as the dropped packet or
fragment and the transmitter does not update PRC4 and CRC4.
Hence, encryption of the subsequent packet begins from the same
place as that of the dropped packet.
If the transmission wasn't a retry and if the previously
acknowledged SSC (SSCU,j) and the received SSC from A

(SSCU,k) differ by more than 1 (i.e. k>j+1), then B may drop the
packet without acknowledgment or may initiate resynchronization
(see section 4.4). If the transmission of packet j is a retry (retry
field in MAC frame set to 1), and if B previously acknowledged
packet j and updated CRC4U to CRC4U,j+1,B, and PRC4U to
PRC4U,j+1,B (= CRC4U,j,B), then B decrypts the packet from
PRC4U,j+1,B or could optimize by sending an acknowledgment
without re-decrypting.
If the transmission was not a retry and if the previously
acknowledged SSC (SSCU) and the transmitted SSC (SSCU,j) are
the same, then B identifies that acknowledgment of the previously
transmitted packet was not received by A and the packet was
dropped after retries. B decrypts the new packet using RC4 state
PRC4U,j+1,B since A encrypted the packet at CRC4U,j,A =
PRC4U,j+1,B. After decrypting the packet and acknowledging it, B
updates CRC4U to CRC4U,j+1,B, the state immediately following
the last byte decrypted and leaves PRC4U,j+1,B unchanged.

3.3 Key Hopping
Two nodes communicating with each other remain State
Synchronized as mentioned in section [4.2] if the Base Key pair
has not changed. If the Key Duration parameter indicates time to
change the Base Key pair, the transmitter starts decrypting
packets and fragments using the new Base Key following the key
change.
For the following discussion refer to Fig. 2 and assume that A
identified a need for key change before encrypting packet j. This
discussion only considers A and B updating BaseKeyU,; the same
protocol is used to update BaseKeyD for B sending to A on
Downlink, with B and A interchanged.

A calculates IRC4U based on the new BaseKeyU, and updates
PRC4U,j,A and CRC4U,j,A to IRC4U after receipt of the
acknowledgment of packet j-1. A then continues encryption of
packet j based on the new BaseKeyU. When B identifies time to
change Base Key, it calculates NRC4D and NRC4U, based on the
new BaseKeyU, but does not immediately update PRC4U,j,B and
CRC4U,j,B. B keeps decrypting subsequent packets using the
cipher stream based on the OldBaseKeyU until the decryption fails
once, and then tries the decryption with NRC4U (note that for
some circumstances B can optimize and try NRC4U first or
decrypt both in parallel). The decryption succeeds, and B updates
its PRC4U as PRC4U,j+1,B = NRC4U and its CRC4U,j+1,B as the state
where the decryption of the subsequent packet (j+1) will begin
based on the new Base Key. B then clears NRC4U. Following this,
encryption and decryption of subsequent packets exchanged
follow the discussion in section [4.2] until the next key change.

3.4 Initial Synchronization and
Resynchronization
Initial state synchronization set up, termination and
resynchronization take place through the use of authentication,
deauthentication, association, disassociation and reassociation
messages. Each of these management packets contains an
encrypted payload portion for verification.
Each pair of communicating nodes establish and maintain a
shared nonce to permit verification of authentication,
deauthentication, association and disassociation messages. This
nonce is created at Authentication and changed at
Resynchronization.
Initial state synchronization is established during authentication
process using authentication messages with reason field within
authentication messages set to INIT.

MAC
header

SBKH
Field(4)

PDU ICV(4)

Figure 1: SBKH Data Packet

FCS(4)

SBKH encrypted

SSC(3)
Future
use(1)

Authentication
Since authentication messages are directed management
messages, acknowledgment is assumed unless otherwise stated.
Also, some contain nonces encrypted at CRC4 and SSC to help
synchronize SSC.
When node A wishes to communicate with node B, where B is the
access point in a managed network or another node in an ad hoc
network, A finds BaseKeyU and BaseKeyD and I-offset either
from the key list or by some means not specified here, generates
the state IRC4U and IRC4D and generates and sends to B the
following:

Auth(SBKH,Reason=INIT,1,(nonce,ICV)@IRC4

U
)

where "@IRC4U" means encrypted using the state designated by
IRC4 on BaseKeyU,, nonce is any nonce generated by node A.

On receipt of the message, B uses a similar process to select the
same key pair, decrypts nonce and ICV at IRC4U and validates
nonce using ICV. If Auth part 1 fails to decrypt or validate, B
ignores the message and sends no response; otherwise, B
generates a new nonce, encrypts nonce, new_nonce and ICV at
IRC4D and sends

Auth(SBKH,Reason=INIT,2,(nonce,new_nonce,
ICV)@IRC4

D
).

A decrypts (nonce, new_nonce ICV)@IRC4D, re-encrypts
(new_nonce, ICV)@IRC4U+20 and sends

Auth(SBKH,INIT,3,(new_nonce,ICV)@IRC4

U+20
)

B decrypts and CRC's this message, and either acknowledges it or
sen

ds no response (because deauthentication relies upon a common
shared nonce, which A and B failed to establish).
Using this 3-way authentication, B guarantees that A has a new
nonce and can successfully communicate from IRC4U and IRC4D.
B prevents replay attacks by selecting the new nonce, while A
avoids replay attacks by the generation and inclusion of a unique
initial nonce which B must return.

Deauthentication
B may send deauthenticate messages to A if B has authentication
for node A and needs to terminate direct communication with A.
These messages could be used to release resources associated
with the communication between B and A. B terminates
communication with A by sending

Node A

Node B

CipherStreamDCRC4U,j,A
PRC4U,j+1,A

size(packet(j))=M
SSCU=jmod(224-1)

size(packet(k))=N
SSCD=kmod(224-1)

...

Figure 2: SBKH State Synchronization

CRC4U,j,B
PRC4U,j+1,B

CRC4U,j+1,A
PRC4U,j+2,B

CRC4D,k,A
PRC4D,k+1,A

CRC4D,k,B
PRC4D,k+1,B

CRC4D,k+1,A
PRC4D,k+2,A

CRC4D,k+1,B
PRC4D,k+2,B

CRC4U,j+1,B
PRC4U,j+2,B

CipherStreamD

CipherStreamU

CipherStreamU ...

...

...

...

...

...

...

Note: CipherStreamU/D are generated by unique keys

Node A

Node B

CipherStreamAD

CipherStreamBD

SRC4D

Figure 3: SBKH Resynchronization

3 6

CRC4D,k,A

CRC4U,jb,B

AUTH1 AUTH3

Resynchronization Message Details
1. PDU before sync lost 3. AUTH pt1 B -> A 5. B syncs forward 7. AUTH pt4 A -> B
2. PDU out of sync 4. AUTH pt2 A -> B 6. AUTH pt3 B -> A 8. PDU after resync

SRC4D CRC4D,k,B

. . .

. . .

CipherStreamAU

CipherStreamBU

1 7 8

5

CRC4U,i,A CRC4U,j+1,A

CRC4U,j+1,B

PDU PDU PDU AUTH2 AUTH4
2 4

CRC4U,i,B

CRC4U,j,A CRC4U,j+2,A

CRC4U,j+2,B

. . .

. . .

. . .

. . .

Node A

Node B

Deauth(SBKH,Reason,1,SSC

U
,(nonce,ICV)@CRC4

U
))

A decrypts the packet and responds by sending

Deauth(SBKH,Reason,2,SSC

D
,(nonce,ICV)@CRC4

D
))

Neither B nor A release resources until the deauthenticate
messages are exchanged. Deauthentication can also occur
implicitly when B has been silent for an implementation
dependent amount of time (possibly infinite) and B did not notify
A that it would be asleep, or when a resynchronization is
attempted and fails after an implementation dependent number of
attempts.

Association
Association happens as defined in [IEEE802.11 1999], except that
associate, disassociate, and reassociate packets contain SSCU/D
and an encrypted field (nonce, ICV)@CRC4(U or D) as the final
field. Associate, disassociate and reassociate messages that fail
decryption are ignored, protecting the network against attacks
using rogue associate or disassociate messages.

Resynchronization
Situations may occur in SBKH where the encryption state may be
lost between two nodes in one communication direction (Uplink
or Downlink). This may occur if an active attack has fooled the
transmitter in that direction with fake acknowledgments, if a node
fails to update its state in nonvolatile storage before power-down,
or if implementation errors permit state to be lost between a pair
of nodes. The resynchronization portion of the protocol corrects
such synchronization errors.
Resynchronization is implemented by a 4-way handshake using a
four-part authentication message set with reason field within
authentication message set to SYNC. Either party in the
communicating pair can initiate a resynchronization if it discovers
a loss of synchronization in the direction where it is the receiver.
A resynchronization is capable of resynchronizing a single
direction or both directions as needed, as explained below. Figure
3 shows two communicating nodes, A and B, resynchronizing,
where A->B is uplink. B is expecting to receive PDUi, shown as
action 2 in figure 3 but instead receives PDUj, j>i and B cannot
successfully decrypt this message. B declares CRC4U,j,B invalid
and sends message at 3 at the dedicated resynchronization offset
SRC4D,

Auth(SBKH,Reason=SYNC,1,(nonce,ICV)@SRC4

D
).

A decrypts the Auth message at SRC4D and uses nonce and ICV
to validate the authenticate message (invalid messages are
ignored). A then selects a new encryption state CRC4U, which is
either CRC4U,j,A or a state which can be reached from CRC4U,j,A
by executing RC4-PRGA for an implementation-dependent
number of octets and sends the message at 4,

Auth(SBKH,Reason=SYNC,2,SSC

U
,(nonce,ICV)@CRC

4
U
)

B acknowledges this message, though it may not yet decrypt the
payload. This is acceptable because there are two more message
parts to complete and confirm the resynchronization. B begins
running forward on CipherStreamU (action 5), decrypting
successive bytes of the payload until a successful decryption of
(nonce, ICV) occurs or an implementation dependent limit has

been reached. If the limit is reached without a successful
decryption, B retries the resynchronization and may eventually
declare itself implicitly deauthenticated. Upon successful
decryption and verification of (nonce, ICV), B updates CRC4U,j,B,
selects a new nonce and sends the message at 6

Auth(SBKH,SYNC,3,SSC

D
,(nonce,new_nonce,ICV)@

CRC4
D,k,B

).

A decrypts nonce, new_nonce and verifies using ICV, generates a
new ICV based only on new_nonce, encrypts (new_nonce,ICV) at
CRC4U,j+1,A and sends the message at 7,

Auth(SBKH,SYNC,4,SSC

U
,(new_nonce,ICV)

@CRC4
U,j+1,A

).

B receives and decrypts this message. Both nodes update nonce to
new nonce and start communicating, shown as message 8.
Note that the process of decrypting forward (running down the
cipher stream) is a secure process. The likelihood that two distinct
places of length 20 octets in the encryption stream have the same
encryption sequence is approximately 10-48. Also, since
synchronization failures always result in the transmitter being
ahead of the receiver, B runs forward to resynchronize. If B does
not need to move CRC4U, B can detect active attacks such as false
data messages and take countermeasures.

Two-way Resynchronization:
If A had also lost synchronization on CRC4D and discovers this as
the resynchronization of CRC4U is in progress, the protocol
executes as described above except that, upon receipt of
Authenticate part 3, A cannot immediately decrypt the message.
A sends ACK anyway and begins running down the encryption
stream from CRC4D, decrypting successive bytes of (nonce,
new_nonce, ICV) payload until successful decryption occurs.
Once A successfully decrypts nonce, new_nonce and ICV, A
updates CRC4D to that new position and sends

Auth(SBKH,SYNC,4,SSC

U
,(new_nonce,ICV)@CRC4

U
)

A protocol failure causes B to become implicitly deauthenticated
and B must attempt to reauthenticate with A in the BSS or IBSS.

Support for Broadcasting and Multicasting
The lack of acknowledgment for broadcast and multicast
messages makes maintenance of state synchronization between
nodes hard. Our future papers will investigate this issue in detail.

4. ANALYSIS OF SBKH PROTOCOL
We evaluate SBKH according to the following criteria, which are
problematic in other protocols such as WEP or WPA: use of RC4,
denial of service attacks, replay/modified packet attacks, key
change knowledge, verification, implementation complexity, and
power/processing costs or time costs.

4.1 Use of RC4
SBKH uses RC4 in a way which makes effective use of RC4's
strengths and avoids most of its weaknesses. Instead of the
problematic stateless approach, a single RC4 encryption stream is
followed for multiple packets for each communication direction
of each pair of communicating nodes, starting at IRC4U and
IRC4D, and without exchanging key-specific or state-specific
knowledge. SBKH communicating nodes maintain state and

follow specific protocols to ensure the states remain
synchronized.
Pair wise independence of communication encryption creates a
strong encryption protocol, even if the listener is an insider, while
maintaining synchronization between communicating pairs. We
have shown through model checking of the protocol that senders
and receivers stay synchronized, except for situations involving
hard shutdown where state may become lost or an active
interloper forcing loss of synchronizations. For such situations the
resynchronization protocol lets communication nodes re-establish
direct communication.

4.2 Denial of Service (DoS) Attacks
SBKH is much less susceptible to denial service attacks than are
either WEP or WPA, since more of the security protocol is private
to the parties, as follows:
Fake (dis)associations: Disassociations and associations must
contain nonce encrypted at CRC4U/D using the same strong
scheme as data messages; hence any such in-the-clear messages
or improperly encrypted messages will be ignored or recorded as
an active attack.
Fake authentications: Authentications contain a nonce encrypted
at IRC4 or SRC4 to avoid spoofing of such messages in SBKH.

4.2.1 DoS Attack through Resynchronization
SBKH has introduced a new portion of the protocol called
resynchronization, which might be triggered due to
acknowledgement spoofing. One might think that by triggering
the resynchronization quite often between a communicating pair
there is a potential DoS attack within SBKH. It should be noted
that this spoofing will successfully trigger resynchronization only
if the receiver node did not receive the original packet or if the
receiver received the original packet with channel errors.
To desynchronize two communicating nodes, an intruder must
force the receiver to fail reception of the message, and then must
generate false ACK packets for the transmitter using the receiver's
MAC address and the correct SSC, all without detection by the
receiving node or the transmitting node. It is not enough to do
only ACK spoofing: either the intruder will only be replacing the
receiver's ACK with his own and doing no damage, or the
receiver will detect the attack and can notify the transmitter to
take countermeasures.
Therefore, we believe that such an active attack is unlikely, and
that resynchronization protocol usage will be rare. Further
investigation such as countermeasures in the case of such DoS
attacks will be presented in future articles.

4.3 Replay and Modified Packet Attacks
 Replay attacks of encrypted packets assume that the decryption
stream is still valid. Under SBKH, the encryption point within the
cipher stream changes as soon as a packet is acknowledged, and
any replayed packets will fail encryption validity checks (ICV)
and will be noted as an active attack, making replay attacks
useless. Similarly, modified packet attacks will fail and be
ignored or logged as active attacks. Note that these attacks were
successful and unidentifiable in WEP.

4.4 No Key-change Knowledge in SBKH
With SBKH, almost all knowledge of key indices, initializations
and authorizations, and key changes are implicit in the protocol
and cannot be determined by an analysis of in-the-clear messages.
Specifically,

(i) The first few bytes are discarded and encryption begins at
some later position in each encryption stream

(ii) Encryption and Decryption for different packets are at
different points within a cipher stream

(iii) Key-hopping depends only upon a private Key Duration
parameter known only to the communicating pair

(iv) Data, either from higher protocols or that form part of
SBKH, is never presented in the clear and also encrypted,
leaving less clues for eavesdroppers.

By using this approach, it is computationally hard for an
interloper to find the decryption location, even if they had the
same BaseKey.

4.5 Verification of SBKH
Since SBKH is a pair-wise state-based protocol, the
communicating node pair must maintain an exact copy of the RC4
state so that the next set of encryption octets can be matched. If a
node gets out of synchronization by even a single octet, then
encryption synchronization is lost and recovery requires the
resynchronization protocol.
The challenge, therefore, is to verify that SBKH nodes keep the
same place in the encryption chain even when corrupted packets,
timeouts, retransmits, and key rolling occur.
To verify the correct operation of SBKH, we subjected significant
portions of the protocol to formal verification using the Promela
formal specification language and the SPIN model checker [SPIN
2003]. This approach performs static analysis of all of the
interleavings of the two nodes encrypting messages via a state-
based encryption and exchanging those messages via a medium.
We modeled message corruption due to channel errors and
retransmission as well as behavior at key rolling and confirmed
that the protocol is robust over these domains. Through this
analysis we confirmed that encryption states must be maintained
by each node in each direction and that a pairwise message
counter (SSC) improves efficiency and eliminates retransmissions
due to wrong state selection for decryption. We also determined
through this process that an active attacker could send false
acknowledgments for corrupted packets to one node and force it
to lose encryption synchronization. We therefore developed a
resynchronization protocol, discussed in subsection [3.3]. We
have not yet formally verified the resynchronization.

4.6 Implementation Complexity
SBKH is both simpler and more complex than existing protocols,
such as WEP or WPA. It is simpler in that the key initialization
step is not required on the creation or reception of each packet.
This translates directly to some simplification and likely power
saving (for battery-operated systems) for systems that use SBKH,
as well as improved performance over other protocols. It is more
complex in that more state is required to be maintained for
decryption, specifically each non-access point node must maintain
4 encryption RC4 states for each node with which it is
communicating, consisting of 258 bytes plus possible ancillary
information. This additional storage should amount to a very few
extra kilobytes for every other actively communicating node. We
do acknowledge the need for encrypted management message
such as a Deauthentication message to indicate release of
resources tied to a node that is leaving the network.
Considering likely hardware support for RC4, we believe that it
should be easy to selectively generate RC4 state from a Base Key
or use a pre-generated RC4 state. Hence, SBKH should be
compatible with existing hardware.

All things considered, we believe that SBKH is competitive with
existing and proposed encryption technologies.

4.7 Implementation Experience
We have implemented the encryption scheme using standard RC4
libraries on worstation-class processors, and have modeled the
encryption, transmission, reception, decryption, and key-hopping
parts of the protocol using a model checker. Some issues that we
uncovered led us to propose a formal association / disassociation
and a resynchronization phase. The issues uncovered were not
with the basic protocol, but with a consideration of
implementation errors or some possible active attacks.

4.8 Power/processing Costs or Time Costs
SBKH is less expensive in terms of power and CPU resources of
the transmitter/receiver than is WEP, and is significantly cheaper
than WPA. Our comparisons [SM2 2004] of WEP-based RC4
encryptions, WPA-like encryptions and SBKH on standard
desktop and workstation computers predicts a 45% efficiency
compared to WEP, 57% efficiency compared to WPA 1.0 and
60% efficiency compared to WPA 2.0 at packet size of about 200
bytes. Since the average packet size for most networks is less than
200 bytes [PK 2003], SBKH should show significant reductions
for most 802.11 networks, but especially for small-packet
networks where the data exchanged is in the tens of bytes as in
wireless sensor networks.
The basic protocol as described herein, we believe is robust,
internally consistent, and efficient.

5. CONCLUSION
SBKH implements encryption in a novel state based way so as to
provide cheap and robust security without additional overheads of
encryption. SBKH saves significant processing power especially
for packet sizes smaller than 200 bytes as would be seen in
wireless networks by avoiding state initialization on every packet.
Hence we recommend SBKH for battery-operated devices such as
wireless sensor nodes where processing power savings directly
translates to longer battery life which implies longevity of the
nodes. SBKH also provides ease of maintenance: a simple
implementation may choose to maintain the same key forever
(Key Duration = ∞). Due to its ease of maintenance, we also
recommend SBKH for SOHO users.

6. Future Work
There are a few areas associated with SBKH which need further
investigation:

(i) The formal model using the model checker has
served us well, but is near its limits in
computability. An alternative approach is to use a
theorem proving approach to validate the protocol.

(ii) Implement SBKH on real hardware.
(iii) A strong key generation and distribution

recommendation would be very useful.

(iv) Further investigation of countermeasures to protect
against active attacks is also necessary.

7. Bibliography
[Draft 2003] Draft Amendment to STANDARD FOR
Telecommunications and Information Exchange Between
Systems – LAN/MAN Specific Requirements – Part 11: Wireless
Medium Access Control (MAC) and physical layer (PHY)
specifications: MAC Security Enhancements, IEEE Std.
802.11i/D7.0, Oct. 2003.

[IEEE802.11 1999]Telecommunications and Information
Exchange Between Systems – Local and Metropolitan Networks –
MAC and PHY Control, IEEE Press 1999.

[IEEE802.11 2001] IEEE Standard for Local and metropolitan
area networks – Port-Based Network Access Control, Oct. 2001.

[FM 2000] Fluhrer S. and McGrew D. Statistical Analysis of the
Alleged RC4 Keystream Generator, FSE: Fast Software
Encryption, FSE2000, Springer-Verlag, 2000.

[FMS 2001] Fluhrer S., Mantin I., Shamir I., Weaknesses in the
key scheduling algorithm of RC4, SAC’2001, 2001.

[Mantin 2001] Mantin I., Analysis of the Stream Cipher RC4.
Weizmann Institute of Science, Nov. 2001.

[Moskowitz 2003] Moskowitz R., Simple Secrets/Simple
Security, ICSA Labs, 2003.

[PK 2003] Prasithsangaree P., Krishnamurthi P., Analysis of
Energy Consumption of RC4 and AES Algorithms in Wireless
LANs, Global Telecommns. Conf., Globecom ’03, Dec. 2003.

[SM1 2004] Srinivasan K., Michell S., State Based Key Hop
(SBKH) Protocol, Wireless 2004 Conference, Jul. 2004.

[SM2 2004] Srinivasan K., Michell S., Performance of State
Based Key Hop (SBKH) Protocol for Security on Wireless
Networks, IEEE Vehicular Technology Conference 2004 Fall,
Sep. 2004.

[SIR 2001] Stubblefield A., Ioannidis J., and Rubin A. D., Using
the Fluhrer, Mantin, and Shamir Attack to Break WEP, AT&T
Labs Technical Report TD-4ZCPZZ, Aug. 2001.

[SPIN 2003] The SPIN Model Checker: Primer and Reference
Manual, Addison Wesley, 2003.

[Walker 2002] Walker J., 802.11 Security Series – Part II: The
Temporal Key Integrity Protocol (TKIP), Intel Corporation, 2002.

