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Although the hydration of ordinary Portland cement (OPC) and its main constitutent, 

tricalcium silicate (3CaO.SiO2 or C3S), have been studied for many decades
1
, some aspects of the 

hydration process remain poorly understood.  In particular, there is little consensus on the 

mechanisms related to the dormant or induction period
2,3

.  The induction period is a time of 

minimal hydration activity between the initial hydration reactions upon wetting and the later 

priamry tricalcium silicate reaction with water to form calcium silicate hydrate and calcium 

hydroxide.  This letter examines the mechanisms responsible for a peak in hydration activity at 

the end of the induction period.  Although occasionally seen in the literature
4
, this peak appears 

absent in most reported measurements and has therefore remained unexplained.     

The hydration reactions were studied through conduction calorimetry, a standard method 

of measuring the heat produced during cement hydration and other processes
5-9

.  Here, a new 

approach to the analysis of conduction calorimetry data through the use of derivatives was used.  

The presence of individual reactions can be more easily identified and the effects of changes in 

reaction conditions more easily traced using derivative analysis than by using standard 

conduction calorimetry alone.  Similar advantages have been identified in the use of derivative 

differential thermal analysis
10

, while derivative methods are also used in other forms of thermal 

analysis.   
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Both pure C3S (surface area 0.32 m
2
/g) and OPC samples were hydrated in a 

Thermometric Tam Air Isothermal Calorimeter (model 3114) using Accusolv (Anachemia, Inc.) 

water with a maximum impurity level of 1 ppm at a water/cement (w/c) ratio of 0.5 by mass.  All 

measurements were conducted at a constant temperature of 24
o
C.  Most measurements were 

made at one minute intervals, with one second intervals used for additional tests to confirm the 

primary results.  All data were recorded using a computer based data acquisition system with a 

typical uncertainty of ±0.002 mW/g.  While the C3S and OPC results reported here are each from 

single commercial sources, similar results were observed for all cements that have been examined 

(seven C3S and four OPC to date).  The C3S used in the initial work was also ground to produce 

samples with five different surface areas (determined by BET surface measurement), which were 

hydrated in the conduction calorimeter at the same w/c ratio. 

The high signal to noise ratio of the recorded data allowed it to be smoothed (Sigmaplot 

9.0, Systat Software, Inc.) to reduce the remaining background noise and allow derivatives to be 

taken.  The smoothing was done using a Gaussian weighting function (e
-u^2

, where u is the 

normalized distance of the data used in the smoothing), typically with a third order polynomial 

regression.  Considerable care was taken to ensure that the smoothing process did not affect the 

underlying shape of the hydration curve.  First and second order derivatives of the heat flow data 

with respect to time were then calculated using a standard numerical approach
11

.  No additional 

information was gained from the second order derivatives. 

Samples of as-delivered C3S at the same w/c ratio were also hydrated for times ranging 

from a half hour to four hours under ambient conditions for additional study.  The hydration was 

stopped by washing in excess isopropanol and the samples dried for 24 hours in a vacuum oven.  

This procedure may change the morphology of later hydration products, but has been used 

successfully to prepare early stage hydration samples for transmission electron microscopy
12

.  
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The samples were then analysed using differential scanning calorimetry (DSC) (TA Instruments 

SDT Q-600) under nitrogen gas and cold field emission scanning electron microscopy 

(CFESEM, Hitachi S-4800).  The CFESEM imaging was undertaken at an emission current of 4 

μA and an accelerating voltage of 1kV on uncoated samples, allowing for greater resolution of 

details of the surface than has typically been reported in the cement literature.   

Figures 1a and 1b show typical conduction calorimetry data and the corresponding time 

derivatives for tricalcium silicate and OPC respectively, with Figures 1c and 1d showing the 

corresponding induction period behaviour.  The numbers on the graphs indicate the various 

reaction peaks in the heat flow plots and their corresponding maximum time derivatives.  Peaks 1 

to 3 are common to both materials, while peaks 4 and 5 only occur in OPC and have been 

associated with reactions by constitutents other than C3S
13

.  The initial reactions upon wetting 

(peak 1, both figures) and the main tricalcium silicate reaction (peak 3, both figures) are well 

known
1
.  Although peak 1 occurs in both materials, in OPC it is predominated by the initial 

tricalcium aluminate (3CaO·Al2O3) hydration reactions.  As very early data was subject to 

fluctuations produced as the apparatus establishes thermal equilibrium, only the final stages of 

peak 1 are shown.   

Peak 2, the focus of this letter, is not well studied.  Its presence in both examined 

materials indicates an origin in a C3S reaction, while its temporal position suggests an association 

with the events that cause the end of induction period.  Peak 2 may be difficult to discern in 

commercial cements without high resolution conduction calorimetry measurements.  However,  

grinding cement samples to increase their surface area greatly enhances the heat produced during 

peak 2, producing values that can readily be measured (Figure 2).  In addition, the point marked I 

in Figure 1c became identifiable as a separate hydration peak.  The derivatives in Figure 1c show 
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the shape expected from exothermic cement hydration reactions, with an initial maxima followed 

by a minima. 

The DSC results during the calcium hydroxide decomposition of the as-delivered C3S 

paste (Figure 3a) showed that a change in the rate of growth of the calcium hydroxide in the 

samples occurs at the onset of peak 2 (Figures 3b and 3c), with slower growth rates occurring 

immediately after the peak than before it.  Moreover, the CFESEM examination showed distinct 

morphological changes associated with the peak 2 reaction.   Unhydrated grains showed no 

reaction products (Figure 4a).  While individual cement grains varied due to local reaction 

conditions, almost all C3S grains observed at 2.5 hours of hydration had smooth surfaces with 

minimal porosity (arrows, Figure 4b) and hydration products.   Immediately before peak 2, 

shallow, 10-30 nanometer wide pores and increased hydration products were more widespread 

(Figure 4c), but many regions remained pore free.  During the peak 2 reaction, the pores 

deepened and became more common, while the hydration products increased in size and grew 

away from the surface (Figure 4d).  Further increases in size of the pores and the hydration 

products were seen after peak 2 (Figure 4e).  The same pattern of behaviour was observed in both 

the finely ground C3S and the OPC samples.  Similar, although much larger, porosity has been 

reported previously during the hydration of C3S pellets
14

, while the calcium silicate hydrate 

structures appear to correspond to those observed by transmission electron microscopy
12

.   

The conduction calorimetry results in Figure 2, the change in the rate of formation of 

calcium hydroxide at Peak 2 (Figure 3) and the CFESEM images all suggest that peak 2 is related 

to behaviour at the surface of the cement grains.  Previous work
14,15 

has suggested that a 

protective layer forms on the surface of the C3S during peak 1, which inhibits further hydration 

reactions.  For the C3S used here, hydration products formed in small quantities on the grain 

surface towards the end of the induction period, producing a slight increase in heat flow (Figure 
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1c, Point I).  The rate of change in the heat flow then dropped (Point II), suggesting a reduced 

availability of reaction precursors.  This effect was increased in the high surface area examples in 

Figure 2.  The protective layer then appears to have been penetrated and pores formed in the 

surface of the grain.  The renewed availability of reaction precursors allowed the grain surface to 

be covered with hydration products, producing peak 2 and the rapid increase in calcium 

hydroxide formation in Figure 3.  Peak 2 increased with increasing surface area as more sites 

were available for pores and surface hydration products to form.   Peak 2 then ended as the 

available sites for pore formation and hydration product nucleation on the surface of the grain 

were consumed.  After this point, nucleation and growth processes on the existing hydration 

products dominated the hydration reaction, producing peak 3 and a slower rate of increase in 

calcium hydroxide formation.    It is worth noting that while all the hydration reactions are 

exothermic, the pore formation process might possibly be endothermic in nature, as its thermal 

behaviour is masked by the simultaneous hydration product formation.      

As peak 2 represents a surface effect, increasing grain size or the contamination of the 

surface of unhydrated OPC or C3S through carbonation or partial hydration would be expected to 

reduce its extent.   Further work is needed to understand the implications of the process that 

creates peak 2 on the operation of chemical admixtures such as superplasticizers, which are 

believed to function at the surface of hydrating cement grains
16

.     Work is also needed to 

incorporate the existence of peak 2 into the existing models
2-3

 for the early stages of cement 

hydration, which do not include the processes described here.    
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Figure 1: Measured conduction calorimetry data (solid and dotted solid lines) and time 

derivatives (dashed lines) for tricalcium silicate and OPC.  A: Tricalcium silicate hydration.  B: 

OPC hydration.  C and D:  Close-ups at the time of peak 2 of A and B respectively, with the dots 

indicating individual experimental data points.   
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Figure 1A 
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Figure 1B 
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Figure 1C   
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Figure 1D 
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Figure 2: Effect of C3S grain surface area on the size of peak 2.   
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Figure 3: Derivative Differential Scanning Calorimetry results for the tricalcium silicate in Figure 

1.  A: Response during decomposition of calcium hydroxide.  Blue lines are before the onset of 

Peak 2, green during peak 2 and red after peak 2.  Results for ½, 1, 2, and 4 hours are not shown 

for clarity. B: Peak to peak width for calcium hydroxide decomposition curves, measured as the 

temperature difference between the maximum and minima derivative DSC values in A.  The 

measurements are ±0.5 
o
C.  C: Peak to peak value for calcium hydroxide decomposition, 

measured as the difference in derivative DSC values between the maximum and minima points 

for each curve in A.  Peak to peak measurements are ±2e-5 
o
C. 
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Figure 3A  
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Figure 3B 
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Figure 3C 
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Figure 4:  Cold Field Emission SEM images of unhydrated tricalcium silicate (A) and tricalcium 

silicate hydrated for 2.5 (B), 2.75 (C), 2.92 (D) and 4 (E) hours.   
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Figure 4C   
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Figure 4E  
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