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Abstract - The prioritisation of water mains for renewal requires the consideration of their 

impact on the deterioration of water quality, in addition to their structural integrity and 

hydraulic capacity. The deterioration of water quality can adversely affect consumers’ health 

as well as the aesthetic properties of water (taste, odor, color). To date, little consideration 

has been given to the impact of deteriorating (aging) water mains on water quality as a major 

decision driver for the renewal/ rehabilitation of water mains. 

The main objective of this research was to identify major deterioration mechanisms in 

distribution networks that may contribute to water quality failures (WQF) and develop a 

model to quantify overall potential for WQF as a function of this deterioration. Numerous 

factors affect water quality in the distribution network and interactions amongst them are 

complex and often not well understood. Water quality failures in distribution networks are 

relatively scarce, which make it difficult to establish statistically significant generalizations. 

In such data-sparse circumstances, expert knowledge and judgment can serve as a 

supplement or even as alternative source(s) of information. This paper discusses major 

deterioration mechanisms that may contribute to WQFs in distribution networks, and 

proposes a modelling framework using fuzzy-based methods. The following two papers in 

this series will provide a mathematical formulation of the proposed model and its application 

using two case studies, respectively.   

________________________________________________________________________  

Keywords: Distribution networks, potential for water quality failure, fuzzy-based methods, 

and water quality models 
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1. MECHANISMS FOR WATER QUALITY DETERIORATION  

A typical modern water supply system comprises the water source (aquifer or surface water 

including the catchment basin), treatment plants, transmission mains, and the distribution 

network, which includes distribution pipes, storage tanks and pumping stations. While water 

quality can be compromised at any component, failure at the distribution level can be 

extremely critical because it is closest to the point of delivery and, with the exception of an 

occasional point of use filtering device, there are virtually no safety barriers before 

consumption.  

The management of water quality encompasses a variety of factors, both in the design 

and the operation stages. In the design stage, water source(s) is/are selected and the 

appropriate water treatment facilities are identified. In the operational stage, several measures 

are required to maintain an acceptable level of water quality, including water quality 

monitoring/ sampling protocols, minimization of ‘water age’ in the distribution network, 

administration of effective cross-connection control programs, maintenance of an adequate 

balance between residual chlorine and disinfection by-product (DBP) formation, inspection 

and maintenance of storage tanks, and finally, monitoring and control of the impact of 

deteriorated water mains on the water quality in the network (Leland, 2002). In this research 

project the focus was on the latter aspect of water quality management. 

The causal relationships between factors affecting water quality in the distribution 

network due to deteriorating water mains are quite complex and intertwined. Diagnostic of 

contamination events in water distribution networks is a difficult task because of several 

factors. A water distribution network can comprise (depending on the size of the water 

utility) thousands of kilometers of pipes of different ages and materials. The operational and 

environmental conditions under which these pipes function may vary significantly depending 

on the location of the pipes within the network. Further, field data are not generally available 

since the pipes are not readily accessible and visible, making it relatively difficult and 

expensive to collect data on their performance and deterioration. In addition, some factors 

and processes affecting pipe performance are not completely understood. Finally, it is often 

difficult to determine or validate an exact cause for water contamination or waterborne 
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disease outbreak because such episodes are often investigated long after their occurrence has 

ended (Sadiq et al., 2003). 

The water distribution network can be perceived as a complex chemical reactor in 

which various processes occur simultaneously. The water quality in the distribution network 

is an outcome of these processes, continuously changing both temporally and spatially. The 

Guidance Manual for Maintaining Distribution System Water Quality (Kirmeyer et al., 2000) 

makes the analogy between water and a perishable product, where shelf life, packaging and 

preservatives are analogous to ‘water age’, distribution pipes, and disinfection residuals in 

the distribution network, respectively. Figure 1 provides a simplified conceptual map that 

partially captures this complexity (Sadiq et al., 2003). It illustrates the interactions between 

the bulk water, the pipe and its surrounding environments and operational factors. 

Referring back to the analogy between the water distribution network and a chemical 

reactor, one can envisage the degradation of water quality as a result of two conceptual 

processes, namely, the introduction of ‘quality-effecting factors’ into the reactor and the 

physico-chemical/ microbiological reactions that continuously occur inside the reactor. The 

‘quality-effecting factors’ may be introduced into the reactor in a variety of ways, as 

described below. The reactions inside the reactor are governed by ‘quality-effecting factors’ 

as well as by the physico-chemical and biological characteristics of the main medium in the 

reactor, which in our analogy is bulk water.  

Several mechanisms can compromise water quality within a distribution network. 

These include (Kleiner, 1998): 

 Intrusion of contaminants into the distribution network through system components 

whose integrity is compromised or through misuse or cross-connection or deliberate 

introduction of harmful substances in the water distribution network; 

 Formation of corrosion byproducts and leaching of chemicals from the internal pipe 

surface; 

 Regrowth of microorganisms in the distribution network; 

 Formation of disinfection byproducts (DBPs) and loss of residual disinfectants; and 

 Permeation of organic compounds from the soil through plastic components into the 

distribution network. 
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As water travels through pipes, its quality undergoes various transformations, affected 

by the properties of the finished water, flow velocity, water temperature, pipe material, 

condition of the inner surfaces of the pipes walls, and deposited materials (i.e., sand, iron, 

manganese). The USEPA White Papers (2004) also lists ‘water age’ (or residence time) as a 

major contributory factor to bulk water quality deterioration in distribution networks. 

However, contrary to specific water quality deterioration mechanisms, ‘water age’ affects 

water quality only indirectly, because most of the deterioration processes are time dependent 

and increasing ‘water age’ leads to poor water quality in the distribution network (Committee 

on Public Water Supply Distribution Systems, 2005).  

2. WATER QUALITY FAILURES (WQFS) 

In this as well as in the subsequent papers, the term water quality failure (WQF) means a 

potential hazard/ threat or an actual non-compliance of regulations (or guidelines or self-

imposed limits) of one or more water quality indicators, or customer complaints, or a 

possible failure to meet the water quality objectives set by a water utility (see water quality 

regulations relevant to distribution systems in Table 1). Water quality failures can be 

classified as microbiological (M-WQF), physico-chemical (P-WQF) or aesthetic water 

quality failures (A-WQF).  

Microbiological water quality failure (M-WQF) can occur through several pathways 

and sources and is potentially the single most devastating type of water quality event that can 

occur in the distribution network. Typically, the maintenance of residual disinfectant in the 

distribution network at a target level is used to protect against microbiological failure, and 

therefore loss of residual disinfectant is considered an indicator for a possible water quality 

failure. The Total Coliform Rule (TCR) is promulgated to protect public water supplies from 

adverse health effects associated with disease-causing pathogens, which may enter into the 

distribution network through pathway(s) identified earlier. The TCR requires monitoring of 

total coliforms in water distribution networks, and in the case of positive test results, it 

requires verification through the testing of fecal coliform or E-coli. A positive verification 

infers M-WQF.   
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The Surface Water Treatment Rule (SWTR) covers all water supply systems that use 

surface water or groundwater under the direct influence of surface water. This rule is 

intended to protect against exposure to pathogens such as Giardia lamblia and Legionella 

viruses. The SWTR requires that the disinfectant (residual chlorine) dose be at least 0.2 mg/L 

at the point of entry and disinfectant residual be detectable in all parts of the distribution 

network. Any failure to meet the prescribed residual disinfectant limits is considered a 

M-WQF. Similarly, the Stage 1 D/DBPR (Disinfectants/ Disinfection byproducts rule) 

establishes maximum residual disinfectant levels (MRDL) for chlorine, chloramine and 

chlorine dioxide, and maximum contaminant level (MCL) for DBPs (THMs, HAAs). The 

rule requires the removal of specified percentages of organic materials (precursors), which 

can react with disinfectants to form DBPs. These limits can also be associated with physico-

chemical water quality failures (P-WQF). Details of these regulations can be found on the US 

EPA website (http://www.epa.gov/). 

Craun and Calderon (2001) compiled data about US waterborne disease outbreaks in 

the period 1971-1998. More than 18% of outbreaks reported in public water systems (PWSs) 

were caused by chemical and microbiological contaminants entering the distribution network 

or as a consequence of aggressive water that was corrosive to plumbing systems within 

buildings and homes (M-WQF and P-WQF). Their study concluded that distribution 

networks contributed to a significant number of waterborne disease outbreaks caused illness 

among large populations (i.e., widespread) and also caused illness that results in 

hospitalization and even death (i.e., severe).  

Kirmeyer et al. (2000) identified and ranked important water quality concerns and 

issues with respect to public and utility perception and satisfaction. They also identified 

various studies in Europe and North America, which ranked public expectations regarding 

water quality concerns (Table 2). Utilities representing various jurisdictions in Canada and 

the USA ranked microbial safety as the highest priority, followed by disinfectant residual 

maintenance, taste and odor, corrosion control and DBP formation (two rightmost columns 

in Table 2). Each water quality issue/ concern may be related to a multitude of sources and 

mechanisms of contamination and requires various remedial and mitigative decision actions 

(interventions) to maintain water quality at an acceptable level. Therefore, high uncertainties 

are inherent in any measure of risk that may be assigned to the distribution network.  
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Taste and odor (T&O) as well as appearance (e.g., discolored or red water) problems 

are aesthetic water quality failures (A-WQF), which are a major concern to water utilities due 

to customer complaints and public perception of the water quality (Table 2). Taste and odor 

could point to biological activities, higher disinfectant levels, presence and continuing 

reactions of DBPs, leaching of materials and blending factors (Khiari et al., 2002). Suffet et 

al. (1993) reported that 65% of the T&O problems in 388 water utilities surveyed across the 

USA occurred in the distribution networks. 

3. WATER QUALITY MODELLING IN DISTRIBUTION NETWORKS 

Several factors make water quality modelling in distribution network a very complex and 

challenging task. These factors include the aforementioned interactions between quality of 

the water entering into the network, residence time, material type, size and condition of the 

pipes, external environment and operational conditions. Further, concentrations of 

contaminants may incessantly change over time and space due to simultaneous occurrences 

of physico-chemical, biochemical and biological processes in the network.  

Although research on water quality modelling in distribution networks started 

appearing in the literature in early 1970s, it only gained a significant boost in the last 15-20 

years due to advances in affordable computing power and the development of new 

mathematical computing techniques. For example, water utilities are increasingly relying on 

hydraulic simulators coupled with water quality modules (e.g., EPANET) to predict 

indicators such as residual chlorine and DBPs in the distribution network. The effective use 

of properly calibrated models can help establish monitoring protocols, maintain water quality 

in the distribution network through improved design and operational practices, and ultimately 

lead to a better decision-making process to replace/ renew aging pipes. In addition, water 

quality models can help attain control over operational parameters (e.g., pH and chlorine 

dose), enable the study of the effects of upgrading physico-chemical treatment processes and 

help generate operational and water quality knowledge for epidemiological studies 

(Rodriguez et al., 2000). 

Recently, ASCE Journal of Water Resources Planning and Management has 

published a special issue on ‘Drinking water distribution systems security’, which included 
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13 technical papers encompassing a wide spectrum of techniques to model the deliberate 

injection of chemical or biological contaminant into the distribution networks (Ostfeld, 

2006). These innovative tools can also be useful for modelling water quality deterioration in 

distribution networks. Similarly, Urban Water Journal also published a special issue on 

‘Water quality in distribution systems’, which included six technical papers on this topic 

(Maksimovic and Butler, 2005). Distribution networks modelling can be divided into four 

major areas of application – (1) water quality parameters, (2) hydraulics, (3) pipe failure/ 

deterioration, and (4) risk/ reliability.  

Modelling of water quality parameters in the distribution network generally use 

reaction kinetics of physico-chemical, biochemical or biological processes. Goodrich (1989) 

provided a summary of various kinetic reactions that occur within the distribution network, 

including those associated with decay of disinfectants, DBP formation, and biofilm adhesion, 

growth and detachment. Other kinetics models to predict chlorine decay include power-law 

decay (nth order), first order decay with stable components, power-law decay with stable 

components (nth order) and parallel first order decay models. The effective use of kinetic 

approaches for water quality modeling is very helpful in the initial evaluation of the 

distribution network. These models can determine the locations of critical concentrations of 

residual disinfectants and DBPs as well as predict internal corrosion and biofilm growth and 

detachment processes in the distribution network. A wealth of literature is available on a 

series of experimental studies conducted on biofilm growth kinetics in the laboratory and at 

bench scale levels (LeChevallier, 1991). In addition, empirical models use multivariate 

regression and neural network to relate DBP concentrations to various combinations of 

explanatory variables, including water quality and operational parameters associated with 

disinfection (Sadiq and Rodriguez, 2004a). 

Initial efforts to develop water quality models for contaminant transport and fate in 

distribution networks used a steady state hydraulic modeling approach. Subsequent efforts 

used a dynamic modeling approach, e.g., Dynamic Water Quality Model (DWQM), which 

was used to predict chloroform, THM and hardness in the distribution network (US EPA, 

1999). Subsequent to the development of DWQM, Rossman (1994) and Rossman et al. 

(1994) developed a model based on mass transfer, for the prediction of chlorine decay in the 

distribution network. As mentioned earlier, the model used first order kinetics for the bulk 
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water and at the pipe wall. The EPANET software (a network hydraulics simulation program 

developed by Rossman) was used as platform for this model. EPANET uses extended period 

simulation (quasi-dynamic approach) to solve both the hydraulics and water quality behavior 

at predefined nodes in the network. EPANET has proved useful to predict both total THM 

and disinfection residuals in the network. Recently, Munavalli and Kumar (2004) proposed a 

hybrid method EDMNET based on Langrangian Time-Driven Method (TDM) and 

Langrangian Event-Driven Method (EDM), which appears to have a better prediction power 

than both TDM and EDM methods individually. Most existing commercial software 

applications contain water quality modules, which are coupled with hydraulic simulators. 

There is a large body of literature available on work related to pipe failure/ 

deterioration in a distribution network. Comprehensive reviews of published work on two 

types of models, namely mechanistic (physical-based) and statistical models have been 

reported in Rajani and Kleiner (2001) and Kleiner and Rajani (2001), respectively.  

In above three applications, the modelling efforts focus on a specific aspect of a 

distribution network, whereas in risk-based analysis, all aspects of a distribution network are 

considered simultaneously. The approach discussed in this paper falls within this latter area 

of application.  

3.1 Risk-based analysis 

The attractiveness of risk-based models stems from the fact that risk can be viewed as a 

common denominator that allows to consider non-commensurate properties (effects and 

objectives, such as. pressure, contaminant intrusion, structural reliability) in a single measure, 

defined as a composition of likelihoods and consequences. Risk-based models generally 

include hydraulic simulations with considerations of pipe breakage data, soil conditions, 

contaminant sources, pipe location etc. Table 3 provides a non-exhaustive list of risk-based 

models and their associated attributes. 

Besner et al. (2001) developed a framework, which integrates a hydraulic model with 

a database representing water quality indicators and pipe condition (breakage rate data) at 

various locations in the network. One of the objectives of this research was to include 

structural, operational, and water quality indicators to predict the microbial quality of the 
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water. Lindley (2001) superimposed the likelihood of failure events (intrusion) with 

‘population at risk’ to prioritize the rehabilitation of water mains. 

Vairavamoorthy et al. (2004) adopted fuzzy composite programming to prioritize 

water mains for renewal in the distribution network, based on risk for contaminant intrusion. 

Mamlook and Al-Jayyousi (2003) proposed a fuzzy synthetic evaluation technique to detect 

leakages in the distribution network.  Sadiq et al. (2004, 2007, 2008) proposed a framework 

to determine ‘aggregative’ risk associated with water quality failure in the distribution 

network. Each risk item was defined using a product of the likelihood of a failure event and 

its consequence. Both likelihood and consequences of a failure event were defined using 

fuzzy numbers. Makrouplos and Butler (2004, 2006) proposed a novel approach to develop a 

prioritization strategy for distribution network rehabilitation using multi-criteria spatial 

decision-making. The proposed approach included a fuzzy rule-based model and OWA 

(ordered weighted averaging) operators, which were coupled with a GIS (geographical 

information system). The main feature of this approach was the incorporation of ‘risk 

attitude’ as one of the spatial variables in the GIS layer, in which OWA operators were used 

to assign consequences to various locations in the distribution networks based on their 

perceived importance.  

Table 4 provides a summary of techniques/ methods used directly or indirectly for 

water quality modelling in distribution networks. This summary has two tiers; the first tier 

lists the major application areas (hydraulics, pipe failure, water quality and risk/ reliability) 

and provides the relative usage frequency (i.e., low, medium, high) of each method/ technique 

in each major application area; and second tier identifies common responses that are 

generally used as indicators in each application area. This table is meant to be only 

illustrative and not complete. 
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3.2 Limitations 

The two major limitations of the existing techniques/ methods are: a) interactions among 

various factors are generally not taken into account (i.e., factors are assumed to impact water 

quality independently), and b) the contributions of the various factors towards the estimation 

of total risk are assumed to be additive (linear). These two assumptions reflect a general 

effort in the modelling literature to reduce complexity. In addition, existing approaches 

handle uncertainties associated with data and models cursorily. The methodology developed 

in this research endeavours to transcend these limitations. 

4. MODELLING COMPLEX SYSTEMS 

The level of uncertainty associated with a system is proportional to its complexity, which 

arises as a result of vaguely known relationships among various entities, and randomness in 

the mechanisms governing the domain. Ross (2004) described complex systems such as 

environmental, socio-political, engineering, or economic systems, which involve human 

interventions, and where vast arrays of inputs and outputs could not all possibly be captured 

analytically or controlled in any conventional sense. Moreover, relationships between causes 

and effects in these systems are often not well understood but can be expressed empirically. 

Typical complex systems consist of numerous interacting ‘factors’ or ‘concepts’. Complex 

systems are highly non-linear in behavior and the combined effects of contributing factors 

are often sub-additive or super-additive. The modelling of complex dynamic systems requires 

methods that combine human knowledge and experience as well as expert judgment. When 

significant historical data exist, model-free methods such as artificial neural networks (ANN) 

can provide insights into cause-effect relationships and uncertainties through learning from 

data (Ross, 2004). But, if historical data are scarce and/or available information is ambiguous 

and imprecise, soft computing techniques can provide an appropriate framework to handle 

such relationships and uncertainties. Such techniques include probabilistic and evidential 

reasoning (Dempster-Shafer theory), fuzzy logic and evolutionary algorithms (Makropoulos 

and Butler, 2004). 
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Most water distribution systems have only a limited number of water quality failures 

(WQF) each year, making statistically significant generalizations difficult. The rarity of 

WQF belies their seriousness, as each failure indicates the potential for harmful public health 

effects and increased public mistrust and complaints. In such data-sparse circumstances, 

expert knowledge and belief can serve as an alternative representation of a domain. Various 

computational techniques may be appropriate to predict potential WQFs in aging water 

mains. Table 5 provides a qualitative comparison between five soft computing techniques 

including artificial neural networks (ANN), decision trees (DT), fuzzy rule-based models 

(FRBM), Bayesian networks (BN) and cognitive maps/ fuzzy cognitive maps (CM/ FCM). 

Central to this comparison is an assessment of how each technique treats inherent 

uncertainties and its ability to handle interacting factors that encompass issues specific to 

water distribution networks. In this research FCMs was adopted as the method of choice, and 

its application is described in detail in the following sections.  

4.1 Fuzzy cognitive maps (FCMs) 

A FCM is a cyclical graph comprising nodes and arcs (edges) (Figure 2). A FCM illustrates a 

cause/effect representation between interacting entities within a system. These cause/effect 

relationships determine the behavior of the system. The nodes in FCM represent factors (or 

concepts) of the system, which may be inputs, outputs or intermediate products. The arcs 

represent causal relationships between nodes. In FCM each node (factor) can interact with 

any number of nodes (factors). Typically, a FCM is constructed to represent the best 

available knowledge and judgment of the complex system under consideration.  

Figure 2 illustrates a simple FCM that consists of six factors Ci (i = 1, 2… 6). Weight 

wij ∈ [-1, 1] represents the nature and strength of the relationship between ‘causal factor’ i 

and ‘effect factor’ j and the sign represents the type of causation. This scheme may give rise 

to following three types of interactions between the i
th

 (cause) and the j
th

 (effect) factors: 

wij > 0 a positive causality, where an increase in the value of i causes an increase in the value 

of j and vice versa; 

wij < 0 a negative causality, where an increase in the value of the i causes a decrease in the 

value of the j and vice versa; and 

wij = 0 no causal relationship between the i and j. 
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 The value of factor Ci is denoted A’i. The actual calculations in FCM are performed using Ai, 

which is a normalized value of A’i, i.e., mapped over a continuous interval [0, 1]. The 

transformation of A’i to Ai can be linear or non-linear, depending on the nature of the factor. 

Ai can also be expressed directly either by a crisp or a fuzzy (linguistic) value (such as high 

or medium, etc.) but that should range over a unit interval [0, 1]. 

Kosko (1986) proposed a method to calculate the value of each (receiving) factor in 

an FCM based on the total influence of the interconnected (causal) factors, where the value 

of the following function is normalized in the interval of  [-1, 1]  
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where is the value of factor Cj at time step t,  is the value of factor Ci at time step t-1, 

wij is the weight (strength) of the causal impact exerted by factors i (i = 1, 2, …, n) on factor 

j, and f (°) is a threshold function. The expression in the brackets (Equation 1) represents the 

total impact that is exerted on Cj by all other factors in the FCM. Theoretically, every node in 

the network can connect to every other node, however, for practical reasons, graphical 

representations normally show only non-zero wij and we say that nodes i and j are 

interconnected only when wij ≠ 0. Moreover, the influence coefficient  provides an 

additional weight for the combined impact of interconnected factors in the configuration of 

the new value of factor Aj. The coefficient  will be close to a value of unity when the 

impact of interconnected factors is high and close to zero, when the impact is low. 

Coefficient  expresses the influence of the value of Aj at time t-1 (using past history 

similar to Markov process). Influence coefficients  and  may have different values for 

each receiving concept j. The selection of coefficients  and  depends on the nature and 

type of each factor. Initially, Kosko (1986, 1997) assumed that the value of the receiving 

factor j at the previous time step (t - 1) did not participate in the calculation of the value of j 

at timestamp t, therefore implying  = 0. It is common practice to assume that the influence 

of the interconnected concepts is high, and therefore coefficient  = 1. 
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Two types of non-linear threshold functions f (°) are commonly used in FCMs (Figure 

3); incidentally, these functions are also used in ANN. The first is the uni-polar sigmoid 

function, where λ > 0 determines the steepness of the continuous function f (°), whose value 

is constrained to the interval [0, 1]. 

xe
)x(f λ−+

=
1

1

 
(2) 

 

The other common non-linear threshold function is the tangent hyperbolic function, 

which transforms the value of the function to the interval [-1, 1].  

Inferencing in FCMs is performed using matrix operations instead of explicit if-then 

rules found in traditional expert systems. The inference process is numerical or semi-

numerical; therefore FCMs offer much greater flexibility than other causal frameworks. The 

FCM is a process model, which can use knowledge of expert opinion and belief (qualitative 

and soft) and/ or existing (quantitative and hard) data. Knowledge extracted from these 

sources may contradict or differ in terms of describing factors and expressing their causal 

relationships. Various FCMs can be combined into one, which means that opinions from 

different experts can act synergistically in the system. Several FCMs can be combined to 

obtain an aggregated FCM by merging adjacency matrices, which may contain different 

causal values of the same relationship and additional concepts usually representing different 

beliefs of experts.  

Conventional FCMs have three major limitations. The following discussion describes 

these limitations and the ways to overcome them. 

1) Constant relationship: Traditional FCMs do not allow causal relationships between two 

factors (represented by wij) to vary dynamically, as is often the case in real life. This 

limitation can be overcome by using the dynamic causal weight, wij = wij(A’i), which is a 

weight, whose value depends on the state value of its ‘causal factor’. Khan and Khor (2004) 

proposed fuzzy rules to describe causal relationships, in which the state value of its ‘causal 

factor’ depends on the value of ‘effect factors’. For example, the negative causality 

(monotonically decreasing) can be represented by fuzzy rules such as: “If Ci is high then Cj is 

low” (equivalent to wij < 0 in traditional FCM). Conversely, positive causality (monotonically 

increasing) can be represented by fuzzy rules such as: “If Ci is low (high, medium) then Cj is 

low (high, medium)” (equivalent to wij > 0 in traditional FCM). Non-monotonic causal 
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relationships can also be dealt with efficiently through fuzzy rules, such as: “If Ci is low 

(high, medium) then Cj is low (low, medium or high)”.  

2) Lack of a temporal dimension: As different causal relationships may have different levels 

of time delay (response time can vary from minutes to weeks or even longer), traditional 

FCMs cannot effectively describe the dynamics of processes. This limitation can be 

addressed by the usage of dynamic cognitive networks (DCNs), which are an extension of 

FCM. Miao et al. (2001) proposed DCNs based on time delayed functions. In this 

framework, the dynamic weights are functions of the state value of the cause concept Ci and 

of time, which is akin to order kinetics in stoichiometry (accounting or math used in 

chemistry, e.g., zero order, first order, second order kinetics and so on).    

3) Co-occurrence of multiple causes: Traditional FCMs cannot deal with a process in which 

the co-occurrence of multiple causes (such as expressed by “AND” conditions) is required to 

trigger a single ‘effect factor’, for example, If Ci is low and Ck is high then Cj is low. If 

“AND” conditions are required inferencing can be done using fuzzy rule-based model 

(FRBM) and/ or the fuzzy measures theory (FMT). The inferencing mechanism in traditional 

FCMs is a simple weighted sum, which is a linear function that is subsequently normalized 

using non-linear threshold function as described earlier (Equation 2). Multiple causal inputs 

to an effect factor can inflict insensitivity in the FCM model, whereby a change in any 

important causal link does not significantly impact the effect factor. This insensitivity is 

exacerbated in networks with feedback loops (Carvalho and Tome, 2002). The following 

approach is proposed in this research to avoid this issue: 

If the FCM model is not to have feedback loops (i.e., if factor i is affected, directly or 

indirectly, by factor j, then factor j cannot be affected, directly or indirectly, by concept i), 

the cognitive map reduces to a directed acyclic graph (DAG), in which no iterations are 

required to reach equilibrium. Therefore, the iteration activation value A
t
 can be replaced by 

A in Equation (1). The need for a non-linear threshold function f (°) can also be eliminated if 

the causality (wij) is defined by rules or any other function, e.g. wij(A’i) (Khan and Khor, 

2004).  

As stated earlier, fuzzy rule-based models (FRBM) and fuzzy measures theory (FMT) 

are two possible ways to inference in the case of multiple causal nodes (“AND” action). A 

fuzzy rule-based model has to be the ‘multi input single output’ (MISO) kind to capture the 
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“AND” action. However, dummy nodes have to be introduced into the network in order to 

handle effectively possible dimensionality problems, as will be described in subsequent 

sections. 

In the case of fuzzy measures theory, inferencing can be performed using either 

Choquet or Sugeno integrals (Sugeno, 1974). Fuzzy measures theory is a plausible choice to 

handle redundancy present in various causal nodes. The use of fuzzy MISO model and FMT 

using Choquet integral is discussed in the following sections. 

4.2 Fuzzy rule-based models (FRBM) 

In FRBM, relationships between variables are represented by means of fuzzy if-then rules of 

the form “If antecedent proposition then consequent proposition”. The antecedent proposition 

is always a fuzzy proposition of the type “X is A” where X is a linguistic variable and A is a 

linguistic constant term. The proposition’s truth-value (or membership value), which is a real 

number between zero and 1, depends on the degree of similarity between X and A. This 

linguistic model (Mamdani, 1977) has the capacity to capture qualitative and 

imprecise/uncertain knowledge in the form of if-then rules such as 

Ri: If X is Ai then Y is Bj i = 1, 2, …, L;  j = 1, 2, …, N (3) 
 

where Ri is the rule number i, X is the input (antecedent) linguistic (fuzzy) variable and Ai is a 

fuzzy subset, which corresponds to an antecedent linguistic constant (one of L in set A). 

Similarly, Y is the output (consequent) linguistic (fuzzy) variable and Bj is a fuzzy subset, 

which corresponds to a consequent linguistic constant (one of N in set B). A fuzzy rule can be 

regarded as a fuzzy relation, i.e., simultaneous occurrence of values X and Y. For example, 

Equation (3) can be applied as follows:  

“If HPCs level is medium then microbiological water quality failure potential is low” 

where X denotes levels of HPCs, A denotes a fuzzy linguistic constant (a fuzzy subset) 

medium over the universe of discourse of HPC levels (e.g., low, medium, high), Y denotes 

microbiological water quality failure potential, B denotes a fuzzy linguistic constant (or a 

fuzzy subset) low in the universe of discourse of microbiological water quality failure, and 

rules R defines their fuzzy relationship:  
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This type of fuzzy relationship becomes a little more involved when X is not exactly 

equal to medium but rather has a membership of, say, μA2
(x) = 0.5 to low and μA3

(x) = 0.5 to 

medium. It is clear that since the HPC concentration is less than medium the microbiological 

water quality failure will likely be less than low. A detailed description of the Mamdani 

inference process is shown in Figure 4 and the formulation is provided in Appendix A.  

4.3 Fuzzy measures theory (FMT) 

A significant aspect of aggregation in a multi-criteria decision analysis is the assignment of 

weights to the different factors. Until recently, the most common aggregation methods have 

been based on averaging operators, such as weighted arithmetic means or quasi-linear means, 

however, these methods have limitations. None of these operators is able to address 

interaction between causal factors, which makes them unsuitable when such interactions are 

important.  It is now widely accepted that additivity, which is inherent in these operators is 

actually absent in many real situations, and therefore is often not a suitable proposition (Ross, 

2004).  

Complex interactions between factors (i.e., sub- and super-additivity) can be expressed 

using a non-additive set function that permits to define weights for a ‘subset of factors’ rather 

than for an individual ‘factor’. Sugeno (1974) proposed to replace the additivity property by a 

weaker one – monotonicity. He developed a set of non-additive monotonic operators and 

called them fuzzy measures. It is important to note that fuzzy measures are not related to 

fuzzy sets (Sugeno, 1974). A description of fuzzy measures and its inference using Choquet 

integral is shown in Figure 4 and the formulation is provided in Appendix B.  

5. DEVELOPMENT OF THE PROPOSED FRAMEWORK 

Presently, several decision models exist for water main renewal. Most models 

consider pipe structural integrity and/or hydraulic performance as the key decision criteria for 

rehabilitation and renewal of water mains. As mentioned earlier, water quality and pipe 

deterioration mechanisms are intertwined, where aging pipes may affect the quality of the 

water, and aggressive water can deteriorate pipe inner surfaces. Therefore, it is very difficult 

to isolate the impacts of aging water mains on the water quality in distribution network. This 
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research explores the role of water quality considerations as a decision driver for the 

rehabilitation and renewal of water mains. The results of this study will help to gain better 

understanding of the impact of ‘aging’ water mains on the potential for water quality failure. 

The term ‘potential’ for water quality deterioration mechanisms or water quality 

failures may refer to the possibility or likelihood of occurrence of these events. The scale for 

this potential is defined over a continuous interval [0, 1] similar to probability. The terms 

‘risk’ and ‘probability’ are intentionally not used in order to avoid confusion. The difference 

between possibility (likelihood) and probability is that possibility refers to what can happen 

whereas probability refers to what will happen. We have also avoided using the terms 

‘likelihood’ and ‘possibility’ as they have specific meanings in Bayesian theory and 

Possibility theory, respectively. But, the essence of term ‘potential’ used in this research is 

very similar to possibility or likelihood. 

A two-tiered framework is proposed for the prediction of ‘potential for water quality 

failures’ in a given pipe segment (Figure 6). Note that a pipe segment is any pipe length or an 

alternative unit of acceptable measure where pipe conditions are assumed homogenous. Tier 

I of the framework comprises six FCMs, corresponding to the seven WQ deterioration 

mechanisms described earlier, namely contaminant intrusion, internal corrosion, leaching, 

biofilm formation, disinfectant loss and THM formation, and permeation. These lower (Tier 

I) level FCMs are also called “modular FCMs”. Input factors are divided into five major 

categories that include pipe attributes, site-specific conditions (environs), operational and 

hydraulic factors, water quality indicators, and mitigative decision actions (interventions). 

Various input factors from each of these categories can contribute to any of the modular 

FCM (e.g., a disinfection practice can contribute simultaneously to biofilm formation, 

disinfectant loss and THM formation modules).  Outputs from the modular FCMs are fed as 

inputs to a ‘supervisory FCM’ (Tier II), which in turn predicts the potential for WQ failure in 

each of three domains, namely, aesthetic, physico-chemical and microbiological. The 

potentials in the three domains are in turn aggregated to provide the overall potential for 

water quality failure in the distribution pipe segment (Figure 6).  

The second paper in this three-part series describes in detail the mathematical 

formulation of the proposed model and the third paper uses case studies to provide the details 
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for model applications. Figure 7 illustrates schematically the 5-steps involved in the 

development of the framework, which are described in detail below.  

5.1 Knowledge acquisition 

Knowledge acquisition consisted of four distinct activities: preliminary analyses; literature 

review; surveys/ interviews and solicitations of expert opinions. The preliminary analyses 

broke down items along categorical lines, which helped identify contributing factors. In-

depth literature review followed the preliminary analyses. The result of these analyses 

provided a more comprehensive understanding of the items associated with water quality. 

Use of too many input factors in any model deteriorates the accuracy due to noise and/or 

conflict in the data, therefore the selection of a sufficient subset of input data was a major 

challenge. With this understanding, expert judgment was used to organize available 

information as well as identify knowledge gaps. More than fifty key factors were identified, 

which play key roles in explaining water quality deterioration in aging water mains. 

5.2 Knowledge aggregation  

Basic input factors, transformation functions, and rule sets were identified and the structure 

of the proposed model was developed such that it takes into account the entire body of the 

acquired knowledge. Causal relationships were established using fuzzy rules (at Tier I level) 

or fuzzy measures (at Tier II level). The main reason for using two different inferencing 

methods was that at the supervisory level, the causal relations are mainly governed by 

redundant factors, which can be more efficiently explained through fuzzy measures theory. 

5.3 Fine-tuning of the model 

Numerous simulations were conducted for known scenarios and the causal relationships 

revised to avoid discrepancies or counter-intuitive outcomes. Once the structure of the model 

was finalized and ‘reasonably’ trained, then the model became ready to explore hidden 

patterns nascent or embodied in the model. 

 18



  

  

 

 

5.4 Sensitivity analyses 

Sensitivity analyses were conducted to determine the contributions, and to rank input factors 

that affect a specific water quality deterioration mechanism. A new sensitivity analyses 

technique was developed in this research, details for which are provided in the second paper.   

5.5 Case studies 

Two case studies including City of Philadelphia (USA) and the City of Ottawa (Canada) 

were carried out. Analyses helped to verify the historical occurrences of water quality 

failures in those networks. 

6. SUMMARY AND CONCLUSIONS 

Deterioration of water quality in distribution network causes health-related as well aesthetic 

concerns. To date, little consideration has been given to the impacts of deteriorating water 

mains on the quality of distributed water, as a decision driver for the rehabilitation of water 

mains. The main objectives of this research were, firstly, to identify deterioration 

mechanisms in water mains that may cause water quality failures in distribution networks 

and secondly, to integrate the effects of these mechanisms in a proof-of-concept model 

capable of quantifying the resulting overall potential for water quality failure.  

Water quality failures that compromise either the safety or the aesthetics of water 

within distribution networks can be caused directly or indirectly by the following 

mechanisms: 

 intrusion of contaminants through deteriorated system components, misuse or cross-

connection, or deliberate introduction of harmful substances; 

 internal corrosion due to an oxidation-reduction reaction that releases byproducts; 

 leaching of chemicals from pipe or lining due to the dissolution of the exposed 

material; 

 biofilm formation and regrowth of microorganisms on the internal surface; 

 loss of disinfectant and formation of disinfection byproducts (DBPs), and 
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 permeation of hydrocarbon compounds through the walls of plastic pipes and 

appurtenances. 

Many mechanisms affecting water quality in the distribution network are partially or 

only intuitively understood. Furthermore, existing modelling approaches do not consider 

interdependencies among contributing factors. These interdependencies can significantly 

affect the results of any modelling effort. Finally, aleatory (natural heterogeneity, variability) 

and epistemic (ignorance or lack of knowledge) uncertainties associated with data and 

models (respectively) are not dealt with in a rigorous way. Fuzzy cognitive maps (FCMs) are 

illustrative causative representations of complex systems. FCMs draw causal representations 

among all identified factors of any specific system. A complex system represented by FCM 

can incorporate human experience, judgment, understanding and knowledge of the system, 

and has the capability to effectively deal with issues of complexity and uncertainty. 

The objectives of this research were achieved in a 5 step process that included: 

knowledge acquisition, knowledge aggregation and development of model, fine-tuning, 

sensitivity and scenarios analyses and finally performing two case studies. The proposed 

two-tiered framework can be used to predict the potential for water quality failures in a given 

pipe segment. At the lower or modular (Tier I) level, input factors were used to predict 

potential for various mechanisms causing water quality deterioration, which includes 

contaminant intrusion, internal corrosion, leaching, biofilm formation, disinfectant loss and 

THM formation, and permeation. In the supervisory (Tier II) level, these water quality 

deterioration mechanisms were used for the assessment of potential for aesthetic, physico-

chemical, microbiological and overall water quality failures. The second paper in this series 

will provide the details of the steps used for the development of the models.  
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Figure 1. Conceptual map for water quality failures in water mains (Sadiq et al., 2003) 
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Figure 2. An example of a fuzzy cognitive map (FCM) 
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Figure 3. Common non-linear threshold functions  
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Figure 4. Fuzzy rule-based model: making inference using two ‘causal factors’ 
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Rule 5 R3,1 : If  A3 and C1 then B3 

Rule 6 R3,2 : If  A3 and C2 then B4 

 

β2,2 β2,1 

β1,2 β1,1 

B4 B1 B3 B2 

Y 

and Then: If 

Step 1: Fuzzification 

 

B’ 

C1 A3 A2 A1 
C2 

x1 x2 

  

A’ = 0.4 C’ = 0.6 

0.3 

0.7 

0.4 

0.6 

Y 

y 

Defuzzified value 

yo y
o
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Fuzzy measures μi Lattice representation for the power set B 

μ (φ) 0.0  

μ ({A}) 0.6 

μ ({C}) 0.5 

μ (B)= μ ({A, C}) 1.0 

  

  

  

The values for factors A and C are 0.4 and 0.6, respectively, i.e., 

A({A})= A’ = A1 = 0.4  A({C}) = C’ = A2 = 0.6 

Re-ordering is required to use Choquet integral. The activation values in descending orders are 

A(1) = 0.6                             A(2) = 0.4 (where parenthesis shows the ordinal position) 

Using Equation (15), the value for B can be determined as follows 

A{B} = B’ = [A({C}) - A({A})] × μ ({C}) + [A({A}) ] × μ ({C, A})  

B’ = [0.6 – 0.4] × 0.5 + [0.4] × 1 = 0.1 + 0.4 = 0.50 

 

{A} 

B = {A, C} 

{C}

φ 

Figure 5. Fuzzy measures theory: making inference using two ‘causal factors’ 
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Figure 6. Assessing the potential for water quality failures in aging water mains - framework 
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Figure 7. Steps involved in the proposed research 
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• Preliminary analysis 

• Text analysis (literature search) 

• Elicit expert knowledge 

• Identify concepts 

• Develop structure of the model 

• Develop causal relationships using 
fuzzy rules (for modular FCM) and 
fuzzy measures (for supervisory 
FCM) 

Modular FCMs 
(Fuzzy rule-based 

modelling) 

Potential occurrence of 
various mechanisms for 
water quality deterioration  

Supervisory FCM 
(Fuzzy measures theory) 

Fine-tuning of 
model 

• Perform fine-tuning with respect to 
known scenarios and finalize the 
model 

Potential for water quality 
failures (aesthetic, physico-
chemical, microbiological and 
overall) 

Proposed decision 
support model (Q-WARP) 

Sensitivity analysis Case studies 
 

• Sensitivity analyses – identify 
important concepts contributing 
to potential for water quality 
failures 

• Perform analyses for two case 
studies and estimate potential for 
water quality failures 
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Table 1. Water quality parameters and associated regulations for water distribution network
Υ
 

(modified after Kirmeyer et al., 2000) 

WQI Sampling location Regulatory limit Regulation 

Disinfectant 

residual 

At the entering point in 

the distribution network 

> 0.2 mg/L on continuous basis SWTR 

Turbidity After direct and 

conventional filtration 
≤ 0.3 NTU (95% of the time) 

≤ 1 NTU (maximum) 

*IESWTR 

Disinfectant 

residual 
Distribution network MRDL chlorine 4.0 mg/L, MRDL 

chloramine 4.0 mg/L, annual average 

Stage 1 

D/DBPR  

Disinfectant 

residual or HPC 

bacteria count 

Distribution network Detectable level of disinfectant residual 

or HPC bacteria ≤ 500 cfu/mL in 95% of 

the samples collected each month for 

any 2 consecutive months 

SWTR 

TTHM 

(Total THMs) 

Distribution network 80 μg/L, running annual average based 

on quarterly samples 

80 μg/L, LRAA based on quarterly 

samples 

Stage 1 

D/DBPR 

Stage 2 

D/DBPR 

HAA5 Distribution network 60 μg/L, running annual average based 

on quarterly samples 

60 μg/L, LRAA based on quarterly 

samples 

Stage 1 

D/DBPR 

Stage 2 

D/DBPR 

Total coliform  Distribution network <5% positive (large systems) TCR 

Lead and 

Copper 

Customer’s tap Pb: 0.015 mg/L at 90%  

Cu: 1.3 mg/L at 90% 

LCR 

pH Representative points in 

the distribution network 

Each system determines optimized 

corrosion control 

LCR 

HAA5: Haloacetic acids; HPC: Heterotrophic plate counts; RAA: LRAA: Running annual average; Locational running annual average; 

MRDL: Maximum residual disinfectant rule; TTHM: Total trihalomethanes; D/DBP: Disinfectant/disinfection byproduct rule; LCR: Lead 

and copper rule; SWTR: Surface water treatment rule; TCR: Total coliform rule; IESWTR: Interim enhanced surface water treatment rule 

Υ
In addition, US EPA has established National Secondary Drinking Water Regulations that set non-mandatory water quality standards for 

15 contaminants. The US EPA does not enforce these secondary maximum contaminant levels (SMCLs). They are established only as 

guidelines to assist public water systems manage their drinking water for aesthetic considerations, such as taste, color and odor. These 

contaminants are not considered to present a risk to human health at the SMCL. 

* Interim Enhanced Surface Water Treatment Rule (IESWTR) is designed to improve control of microbial pathogens and prevent 

inadvertent reductions in microbial safety as a result of DBP control efforts. The IESWTR is promulgated to improve the public health by 

increasing the level of protection from exposure to Cryptosporidium and other pathogens in drinking water supplies through improvements 

in the filtration at water systems. 
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Table 2. Ranking of major water quality concerns in distribution networks 

Water quality issues 

and concerns 

*Primary 

concerns 

Stanford 

(1996)
δ
 

Smith 

(1997) 

Osborn 

(1997) 

Kirmeyer et al. (2001) 

Customer Utilities 

Microbial safety  M-WQF X 3 1 1 1 

Free of excess 

chlorine residual 
P-WQF    2  

Taste and odor 

(T&O) 
A-WQF X 1 2 3 3 

Good appearance A-WQF X 2  4  

Uniform water 

quality 
A-WQF 

 
  5  

Disinfectant residual  M-WQF     2 

Corrosion control P-WQF; 

A-WQF 

 
   4 

DBPs formation P-WQF     5 

Others   4    

*P-WQF: Physico-chemical WQF; M-WQF: Microbiological; A-WQF: Aesthetic WQF 

 δ No ranking was provided 
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Table 3. Recent applications of risk-based water quality modelling for distribution networks 

Reference Model type Model output Parameters/ inputs/ data Risk type 

Besner et al. 

(2001) 

Hydraulic 

simulator, GIS, 

pipe breakage 

rate data base 

Overlaying layers of 

different indicators 

(pressure), residual 

chlorine etc. 

Pipe age, diameter, C-factor, 

length, pipe break data, 

material, velocity, pressure, 

Reynolds number, residence 

time 

Health / 

public safety  

Lindley  (2001) Hydraulic 

simulator, 

probabilistic 

methods 

Intrusion 

susceptibility 

Pressure, pathway, and 

contaminant source 

Reliability-

based; Health 

/ public safety 

Mamlook and 

Al-Jayyousi 

(2003) 

Fuzzy logic Leakage detection Pipe age, pipe material, 

operational aspects and 

demand patterns 

Reliability-

based 

Howard et al. 

(2004) 

Point scoring 

method, GIS 

Risk maps Pipe age, diameter, length, 

material, pressure & soil 

corrosion, source of 

contaminants, population at 

risk 

Health / 

public safety  

Vairavamoorthy 

et al. (2004, 

2007) 

GIS, fuzzy logic Intrusion 

susceptibility 

Potential pollution areas, 

contaminant concentration, 

pipe condition state 

Reliability-

based 

Sadiq et al. 

(2004, 2007, 

2008) 

Fuzzy logic Aggregative risk Various water quality failure 

mechanisms in distribution 

system 

Reliability-

based 

Makrouplos and 

Butler (2004, 

2005, 2006); 

Makrouplos et 

al. (2003) 

GIS, fuzzy logic Risk maps (based on 

risk attitude) 

Soil corrosivity, pipe attributes 

(age, material, diameter), 

pressure, location sensitivity  

Reliability-

based; Health 

/ public safety 
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Table 4. Summary of methods used in water quality modelling arena (Sadiq et al. 2009) 

Modelling techniques / 

methods / approaches 

Usage frequency in major application areas and categories 

Hydraulics Pipe failure Water quality Risk / reliability 

Analytical M H  L 

Numerical H   L 

Kinetics-based   H  

Regression-based  M H  

*Statistical  L M L 

**Soft computing  L L L 

Probabilistic  M L H 

Mechanistic/physical  H   

     

Response/ indicators Hydraulics Pipe failure Water quality Risk / reliability 

Water age X    

Pressure X   X 

DBPs   X X 

Total coliform   X X 

HPCs   X  

Residual chlorine   X  

Organics   X  

Internal corrosion   X  

Health risk  X X  

External corrosion  X  X 

Pipe breaks  X  X 

Leakage X X  X 

Biofilm   X  

     

*other than regression; ** ANN, fuzzy logic, evidential reasoning etc.; L = low; M = medium; H = high 
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Table 5. Comparison of various techniques to model complex systems (Sadiq et al. 2009) 

Attributes 
Soft computing techniques 

DT FRBM ANN BN CM/ FCM 

Network capability N
1 

L
2 

N H
3
 VH

4
 

Ability to express causality H M N H VH 

Formulation transparency H H N
5
 H VH 

Ease in model development H M M M VH 

Ability to model complex systems M H VH H VH 

Ability to handle qualitative inputs H H N H VH 

Scalability and modularity VL L VL
6
 H VH

7
 

Data requirements H L VH M L
8
 

Difficulty in modification VH H M L N 

Interpretability of results VH VH VH VH H 

Learning/training capability H M
9
 VH

10
 H

11
 H

12
 

Time required for simulation L L H L L 

Maturity of science VH H H VH M 

Ability to handle dynamic data L H H H M 

Examples of hybrid models (ability 

to combine with other approaches 

H VH
13

 VH
13

 H H
14

 

      

Ratings: N = No or Negligible; VL = very low; L = low; M = medium; H = high; VH = very high 

Soft computing techniques: ANN = artificial neural networks; DT = decision tree; FRBM = fuzzy rule-based models;  

BN = Bayesian networks; CM/FCM = cognitive maps/fuzzy cognitive maps  

1 Structure is hierarchical  

2 Dimensionality is a major problem and formulation becomes complicated for network systems  

3 Can manage networks but cannot handle feedback loops, therefore referred to as directed acyclic graphs (DAG) 

4 Can handle feedback loops 

5 Generally referred to as black box models 

6 ANN needs to be retrained for new set of conditions  

7 Very easy to expand, because algorithm is in the form of matrix algebra 

8 Minimal data requirement, because causal relationships are generally soft in nature 

9 Clustering techniques, e.g., Fuzzy C-means 

10 Algorithms, e.g., Hebbian learning 

11 Algorithms, e.g., evolutionary algorithms and Markov chain Monte Carlo 

12 Training algorithms are available which have been successful in training ANNs  

13 Examples are available in the literature to develop models using hybrid techniques, e.g., neuro-fuzzy models 

14 Has a potential to be used with other soft techniques 
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Appendix A: Formulation for fuzzy rule-based model 

The full relationship between X and Y according to rule i can be computed in one of two 

basic ways using fuzzy implications or fuzzy conjunctions (Mamdani, 1977). In the proposed 

approach, the Mamdani method is used, in which conjunction A ∧ B is computed by a 

minimum (and type t-norm or conjunctive) operator. The interpretation of conjunction A ∧ B 

is “it is true that A and B simultaneously hold”. The relationship is symmetric and can be 

inverted: Each rule is regarded as a fuzzy relation denoted by Ri (X × Y) → [0, 1]. 

Ri = Ai × Bj,  i.e., μRi (x, y) = μAi (x) ∧ μBj (y) (A1) 

The minimum operator is applied to the Cartesian product space of X and Y, i.e., for 

all possible pairs of X and Y. The union of all fuzzy relations Ri comprises the entire 

relationship between X and Y and is given by the disjunction A ∨ B (union, maximum, or 

type, s-norm) operator of the L individual relations (rules) Ri (i = 1, …, L): 

[ ])()(max),(.,.,
,...,2,11

yxyxeiRR
ji BA

Li
R

L

i

i μμμ ∧==
==

U  (A2) 
 

Remembering that each relationship Ri is symmetric and can be inverted, the entire 

rule-set is now encoded in the fuzzy relation (rule) set R. Equation (5) can be restated as  

y = x o R (A3) 
 

where the output of the linguistic model is computed by applying the max-min composition 

(denoted by the operator “o”) to the input or antecedent proposition.  

Suppose that A’ is an input fuzzy number (or a singleton), which is mapped on set A, 

and B’ is an output fuzzy number which is mapped on a set B, such that: 

[ ]),()(max)( ' yxxy RA
X

B μμμ ∧=
 

(A4) 
 

Substituting μR (x, y) from Equation (A2), the above expression can be rearranged as 

[ ]( ))()()(maxmax)( '
,...,2,1

yxxy
ji BAA

XLi
B μμμμ ∧∧=

=
 (A5) 

 

Defining  as the degree of fulfillment of the antecedent 

of the i-th rule, the output fuzzy set of the linguistic model becomes  

[ )x()x(max
iA'A

X
i μμβ ∧= ]

[ ])(max)(
,...,2,1

yy
jBi

Li
B μβμ ∧=

=
 (A6) 
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The above algorithm is SISO Mamdani inference (Equations A1 through A6) and can 

be extended to MISO model. For example, for two causal concepts: 

                                                                          i = 1, 2, …, L 

Ri,j:  If  x1  is  Ai and x2 is Cj  then  y  is  Bk;                   j = 1, 2, …, M 

                                                                         k = 1, 2, …, N 

(A7) 
 

This is a special case of SISO model, where the antecedent proposition is obtained as 

the Cartesian product of fuzzy sets A and C, therefore the degree of fulfillment is given by: 

( ) ( )[ ] ( ) ( )[ ]
⎭⎬
⎫

⎩⎨
⎧ ∧∧∧= 2'21'1,

21

maxmax xxxx CC
X

AA
X

ji ji
μμμμβ

 
(A8) 

 

Consider an effect concept B, which is connected by two causal concepts A and C. 

The “AND” sign represents that both A and C are simultaneously required for B to occur. 

The details of the inferencing are graphically shown in Figure 4. The process is shown in 

three distinct steps, namely, fuzzification, inference (a rule base and an inference engine) and 

defuzzification. Assume that causal concepts A and C are activated at levels of A’ = 0.4 and 

C’ = 0.6, respectively. The rule set consists of 6 rules (3 × 2) and input activation values (A’) 

and (C’) fire the first 4 rules to determine output B’ which is defined over the universe of 

discourse Y. 

The defuzzification provides a discrete (crisp) value of an effect B, i.e., B’. The crisp 

value approximates the deterministic characteristics of the fuzzy reasoning process based on 

the output fuzzy set μBk
(y), which helps convert the uncertainty into an applicable action 

when solving real-world problems. The defuzzification step described in Figure 4, uses 

quality ordered weights (qk) for every subset Bk (Sadiq and Rodriguez, 2004b). These weights 

are simply multiplied to corresponding output fuzzy set μBk
(y), and a weighted score is the 

defuzzified value B’.  
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Appendix B: Formulation for fuzzy measure theory 

For a discrete universal set X = {x1, x2… xn}, a fuzzy measure on X is a set function, such that 

µ: (2
n 
– 2) → [0, 1] satisfying the following conditions (where n is the cardinality of a 

discrete set): 

Condition 1: µ(φ) = 0, µ(X) = 1 (where φ is a null subset) 

Condition 2: S ⊆ T ⇒ µ(S) ≤ µ(T) (monotonicity condition) 

For example, let set X = {x1, x2, x3}. The cardinality of X is 3. In addition to null set φ 

and universal set X, there are total 2
3
-2 = 6 subsets to X, these include, {x1}, {x2}, {x3}, {x1, 

x2}, {x1, x3}, {x2, x3}. For any subset S ⊆ X, µ(S) can be viewed as the weight or strength of 

the subset S for the particular decision problem under consideration. Thus, in addition to the 

usual weights on criteria taken separately, e.g., {x1}, {x2}, {x3}, weights on any combination 

of criteria, e.g., {x1, x2}, {x1, x3}, {x2, x3} can also be defined. Monotonicity means that 

adding a new element to a subset cannot decrease its importance (Marichal, 1999). For 

example, if S ={x1}, and µ({x1})  = 0.5, and if T = {x1, x2} then µ({x1, x2}) ≥ 0.5 to fulfill the 

monotonicity condition. The fuzzy measure µ({x1, x2, x3}) of a universal discrete set X (or 

sample space) is always unity (this is similar to probability theory, in which the probability 

sum of all outcomes for an event is 1). 

The assessment of fuzzy measures by human experts is a daunting task, since the non-

additivity property of a fuzzy measure requires the consideration of (2
n
 −2) subsets. Sugeno 

(1974) proposed a so-called λ-fuzzy measure, which identifies the fuzzy measure of 

combined attributes from single attributes, expressed as 

μ (A ∪B) = μ (A) + μ (B) + λ μ (A) μ (B); (λ > −1) (B1) 
 

The parameter λ is used to describe an interaction between factors that are combined. 

According to the value of λ, the above equation can be interpreted as 

If λ > 0, then μ (A ∪ B) > μ (A) + μ (B) (super-additive), 

if λ = 0, then μ (A ∪ B) = μ (A) + μ (B) (additive), and 

if λ < 0, then μ (A ∪ B) < μ (A) + μ (B) (sub- additive). 

Super-additive relationship implies a synergy effect or strengthening dependency 

between factors, meaning that the combined contribution of factors A and B is greater than 
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the sum of their contributions. Sub-additive relationship implies a redundancy condition or 

weakening dependency between factors, meaning that the combined contribution of factors A 

and B is lower than the sum of their contributions. Additive relationship, imply independence 

between factors. Sugeno’s λ-fuzzy measure can be generalized for X = {x1, x2… xn} as 

follows: 

{ }( ) { }( )( ) 0;11
1

,,
1

21 ≠⎥⎦
⎤

⎢⎣
⎡∏ −+=

=
λμλ

λ
μ

n

i
in xxxx L  (B2) 

 

The value of λ is obtained through the boundary condition, μ (X) = 1, which yields a 

polynomial equation with respect to λ, given by 

{ }( )( )∏ +=+
=

n

i
ix

1

11 μλλ  (B3) 
 

As Sugeno (1974) has shown, there exists a unique λ, which is greater than “-1” and 

not equal to zero, satisfying Equation (B3). The fuzzy measure of a given set S ⊂ X is 

computed as 

( ) { }( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+= ∏

∈∀ Sx

i

i

xS 11
1 μλ
λ

μ  (B4) 
 

Sugeno (1974, 1977) also introduced the idea of fuzzy integrals to develop tools 

capable of integrating all values of a function in terms of the underlying fuzzy measure (μ). 

An integral for fuzzy measures in a sense represents an aggregation operator, which contrary 

to the weighted arithmetic means, describes interactions between factors ranging from 

redundancy (negative interaction, i.e., sub-additive) to synergy (positive interaction, i.e., 

super-additive). Several classes of fuzzy integrals exist, among which the most 

representatives are those suggested by Choquet and Sugeno (Marichal, 1999). 

The Choquet integral Cμ(X), first proposed by Schmeidler (1986), is based on an idea 

introduced in capacity theory by Choquet (1953). Cμ(X) is an aggregation operator, where the 

integrand is a set of n values x = {x1, x2… xn}. The Choquet integral of a function X with 

respect to µ is defined by 

( ) [ ] ( ))()2()1(
1

)1()( ,{ i

n

i
ii xxxxxXC Lμμ •∑ −=

=
+  (B5) 

 

where x(1) ≥  x(2)  ≥ 
…  ≥  x(n) represent the order of xi in set X in descending order. The values 

for x1,…, xn in our case can be replaced by activation values of causal nodes. Therefore, for a 
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set of causal factors {A1, A2…An} impacting on factor Cj, the Choquet integral will determine 

activation value Aj as following:  

[ ] ( )},{ )()2()1(

1

)1()( i

n

i

iij AAAAAA Lμ•−= ∑
=

+  (B6) 
 

where ( ))()2()1( ,{ iAAA Lμ  are fuzzy measures similar to causal weights (wij). Interested 

readers should refer to Grabisch (1996) for details. 

We use the same example for describing the inference procedure in FMT as was used 

for FRBM. Figure 5 shows how the activation values from A (i.e. A’ = A1) and C (i.e. C’ = 

A2) feed into an effect concept B. Therefore, the sample space for B = {A, C}. The power set 

2
⏐B⏐

requires defining 4 fuzzy measures as given in Figure 5, where ⏐B⏐ is the cardinality of 

sample space, which is 2. The fuzzy measures here are derived arbitrarily based on semantics 

(expert judgment). However, alternative objective methods based on data, λ-fuzzy measure 

and heuristics can be used to derive these measures (Grabisch, 1996). 

Lattice representation of the power set of B is shown in Figure 5. It can be noticed in 

our example that the fuzzy measures are sub-additive, because μ ({C}) + μ ({A}) ≥ μ ({A, 

C}). It shows that causal nodes A and C are not independent in the impact they deliver to 

node, i.e., there is some redundancy between them. As μ ({C}) and μ ({A}) ≤ μ ({A, C}) that 

represents the monotonicity of the fuzzy measures. Therefore, under these conditions, the 

‘effect factor’ B will have a value of 0.5 (using Equation B6). 


