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Strong field tunnel ionization of an atom is considered from the point of view of semiclassical initial
value representation methods which are based on real-valued classical trajectories alone. While the
straightforward application of such propagators fails to give an accurate description of tunnel ionization
in one dimension, incorporating the semiclassical propagator into S-matrix techniques standard in
strong field physics leads to a more accurate method which recovers the tunneling dynamics. From the
point of view of strong field physics, this procedure offers a method of incorporating core effects into
the standard strong field approximation. In two dimensions, both the standard and the new semiclassical
propagators are shown to give equally accurate results at sufficiently short times, but the new method
exhibits much better scaling of the convergence rate with increasing dimensionality.
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The problem of tunneling by real-valued classical tra-
jectories alone has had an interesting history in recent
years. It was suggested [1] that these trajectories were
adequate to describe the tunneling process since any wave
packet incident on a barrier will always contain some
classically allowed real-valued trajectories with above-
barrier energies. However, Ref. [2] demonstrated that
for 1D problems with realistic barrier shapes (i.e., non-
parabolic) the contribution of these classically allowed
trajectories is not enough and the inclusion of classically
forbidden paths is required to recover the correct
tunneling probability. The present Letter outlines a new
approach, built on the semiclassical initial value repre-
sentation (SC-IVR) methodology [3] and the strong field
formalism [4], which attempts to capture tunneling ef-
fects using only classically allowed trajectories. This new
approach reproduces exactly the tunnel ionization de-
scribed within the quantum mechanical strong field ap-
proximation (SFA) [4] when similar assumptions are
applied to the semiclassical propagator. SFA is a standard
and successful approach used to treat tunnel ionization in
laser fields. Furthermore, the new approach also includes
effects of the atomic core, usually neglected in SFA.
Thus, it should indeed give a relatively accurate descrip-
tion of tunneling.

From the point of view of SC-IVR, the present work
complements alternate procedures for incorporating tun-
neling effects into these methods [5,6]. It continues recent
work [7] to extend SC-IVR methods, which have mostly
been restricted to problems of field free and low-field
molecular dynamics [3], to the area of strong field physics.
Furthermore, the results presented below suggest that
even the standard SC-IVR can be adequate to simulate
short-time multidimensional atomic tunneling. However,
the new procedure exhibits favorable scaling of the con-
vergence rate with increasing dimensionality when com-
pared to the standard SC-IVR. From the point of view of
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strong field physics, this Letter offers a new method of
incorporating core effects into the strong field approxi-
mation [4].

SC-IVR methods begin by writing the wave function at
time 7 as an integral over the initial wave function V;

W(x, 1) = fdx’K(x, x, W (x"), €))

where K(x, x', t) is the full quantum propagator
K(x,x', 1) = (xle”™|x'). @)

Atomic units are used throughout. Using the Herman-
Kluk (HK) semiclassical IVR [8,9], the quantum propa-
gator is replaced with the semiclassical approximation
given by

K& (x, X, 1) = (2m)~! fdpqu(p, q, 1)
X eSP e x| p.q v Xpgyalx’),  (3)

where (p, g) represent the initial coordinates of classical
trajectories, (p,, ¢,) are the final coordinates of these
trajectories propagated via Hamilton’s equations to time
t, S(p, g, 1) is the classical action along these trajectories,
and |pqy) are coherent state (CS) wave packets with
average position ¢ and momentum p

(xlpgy) = (%7)1/4%1)[—7()6 —q)P +ipx—q)) 4

The specific form of the prefactor C(p, g, t) as well as the
action and the necessary classical equations of motion are
in [9]. The SC-IVR wave function at time ¢ can then be
written as

WHK(x, 1) = 2m)~! ﬂdpqu(p, g, 1)eiSPan
X xlpiqiviXpaya o). (5)
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This integral is typically evaluated using Monte Carlo
integration with a sampling function [{pqy,|¥;)|.

The HK propagator (3) can be thought of as an expan-
sion in an overcomplete set of CS wave packets whose
centers follow classical trajectories up to time ¢ at which
point the CS wave packets are summed up to reconstruct
the propagator. The original Herman-Kluk propagator
sets y; = y,. Here these Gaussian widths are allowed
to differ to better reflect the characteristic sizes of the
initial and final wave functions which, in some cases,
leads to more accurate results as compared to the original
Herman-Kluk expression. Overlaps for changing from the
|p.q,72) to the |p,q,v,) basis are included in C(p, g, 1).

Consider now a system with Hamiltonian H = H, + V
where H, is the field-free Hamiltonian and V is the
interaction with a strong field. Direct substitution into
the Schrodinger equation shows that the exact solution
can be written as

t A N
Wx, t) = —i[ dt/<x|e*lH([*l)Ve*lHU(l*IO)I(I)0>
)

+ (xle~ | Dy, (6)

where |®;) is the initial state. The S-matrix amplitudes
Sro(t 1) = (D/|¥(r)) which can be derived from
Eq. (6) form the basis of many approximate strong field
theories [4]. Equation (6) is referred to herein as the
strong field S-matrix wave function.

The physical picture offered by this formalism is then
as follows. The wave function propagates field-free until
some time ¢ It then receives a kick V from the field and
propagates the remaining time (r — #') in the field. The
integral indicates that the wave function can be ‘“kicked
into the field” at any time and these contributions must all
be summed.

Semiclassical evaluation of Eq. (6) for some initial
eigenstate simply replaces the field-free propagator with
the phase evolution of the eigenstate energy ¢~ o' 1) =
e iEo=1) and the full propagator e (") with the
semiclassical propagator to get

. ‘ ’
WSF(x, 1) = — L[ dr j]dpqu(p, g, t, t")eSPatt)
27 )4,

X e~ =0 (x| p,g 71 X pg v | VIPy)
+ (x|e"El| D) @)

where the classical paths are calculated using the full
Hamiltonian H, start at time ¢/, and propagate until the
final time 7. The semiclassical prefactor as well as the
action then become formally dependent on 7’ (the “‘kick”
time) and ¢ (the observation time). This equation is re-
ferred to herein as the semiclassical strong field S-matrix
approximation (SSF). The following analysis will be con-
cerned with evaluating Eq. (7) numerically as is standard
for semiclassical IVR methods. Brabec and co-workers
[10], who have independently arrived at Eq. (7), are
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currently approaching the solution by analytical means
more common in the strong field literature.

Tunneling effects, as calculated using the HK expres-
sion Eq. (5), rely on the contribution from classical tra-
jectories with above-barrier energy. However, since these
trajectories are not bound to the core, they will eventually
all propagate away leaving no continuous tunneling am-
plitude. Equation (7), on the other hand, allows for tra-
jectories with above-barrier energy to originate near the
core at any moment of time due to the integral over ¢ and
hence this expression is expected to be better than the HK
expression in that it contains a mechanism to generate a
continuous tunneling amplitude. Furthermore, as will be
shown below, it is Eq. (7) which reduces to the strong field
approximation when similar assumptions are applied to
the semiclassical propagator.

The first system used to test the SSF approximation is a
1D softcore atom in a constant electric field

1 1
H=H0—50x=§p2—m—gox, (8)
with a = 1. The potential —&yx was truncated at x =
40 a.u. to a constant V = —40&, to prevent the wave
function from accelerating rapidly away from the core.
The initial wave function was the ground state (energy
Ey = —0.670 a.u.) approximated with a CS (y=
0.215, g = p = 0). The field strength was &, = 0.075 a.u.

Equation (7) could be evaluated directly using Monte
Carlo integration for both the time and phase space
integrals. However, since V is constant in time, further
simplifications are possible. Specifically, all the classical
dynamics [and hence S(p, g, t, ') and C(p, g, t, t')] which
are in general dependent on both 7 (the observation time)
and ' (the kick time) become dependent on 7 — ¢ only
(the propagation time after the kick). Therefore, for any
initial phase point (g, p), all possible kick times # will
lead to the identical classical dynamics and will vary only
by the particular propagation time ¢ — ' needed to reach
the observation time ¢. The time integral in Eq. (7) can
then be summed up by propagating each initial phase
point for the full time interval and summing up the
contribution at each time point along the trajectories as
opposed to propagating new trajectories for each new ¢ in
the integral. The CS projection onto the initial state
—Eo{pqy2lx|®y) can be evaluated analytically and its
amplitude was used as the sampling function for the
phase space integral. The values of y, =y and 7y, =
v/32 were used for both the HK and the semiclassical
strong field S-matrix approximation in this case.

Figure 1(a) shows |W(z)| at r = 150 a.u. calculated us-
ing a fully quantum simulation, the HK method with 10°
trajectories, and the SSF approximation with 10° trajec-
tories. The quantum wave function (thick line) exhibits a
long tunneling portion which is leaking from the core
continuously (steady-state tunneling). The hump at the
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FIG. 1. Results for 1D simulations. (a) Wave function ampli-

tude |¥| calculated at = 150 a.u. for the case of a = 1:
quantum (thick), HK (dashed), and SSF (thin). (b) Wave
function at ¢ = 200 a.u. for the case of a = 1.59: quantum
(thick), SSF for parameters {y, = vy, v, = y} (dashed) and
for {y, = y/32, y, = ¥} (thin). (c) As (c) using full quantum
(thick), SSF with strong field assumption (thin), quantum
strong field approximation (open circles).

leading edge of the escaping wave function is due to the
above-barrier energy content of the initial state which
immediately propagates away from the core.

As anticipated, the results for the HK method (dashed
line) show no amplitude in the steady-state tunneling
regime. The lack of a long-time steady-state tunneling
regime arises because the HK expression has no mecha-
nism of “tunneling out” initially trapped trajectories.
The SSF wave function (thin line), however, shows ex-
cellent agreement with the steady-state tunneling regime
as well as good agreement with the above-barrier regime.
As previously mentioned, the tunneling mechanism in the
SSF equation is contained in the time integral which
allows a classical trajectory to originate near the core
with above-barrier energy at any time throughout the
entire time range and hence a continuous “leakage” of
the wave function is possible.

Figure 1(b) shows results corresponding to an alternate
combination of softcore and field parameters (a = 1.59
and £, = 0.04). This system approximates a one-electron
1D model of Xe with ground state £y, = —0.452 a.u. (y =
0.125). The plot shows the full quantum solution along
with the SSF results for the two sets of CS parameters
{yi =7 v2= v} and {y; = y/32, v, = y} both using
10° trajectories. It can be seen from these two SSF cal-
culations that allowing y; and v, to differ can lead to
more accurate results: there is an x dependent “hump” in
the tunneling portion of the wave function when CS
parameters y; = vy, are used which is not present in the
case where y; # v,. The agreement seen here between
the quantum and SSF results is not as good as in the
previous case, however, this last method again does a
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much better job than the HK method at simulating the
tunnel dynamics which again failed to reproduce the
steady-state tunneling portion of the wave function.
The cases presented in Figs. 1(a) and 1(b) are character-
istic of the level of accuracy achieved with the SSF
method when other a and &, were used.

An approximation commonly used in strong field
physics [4] is to replace the full propagator in Eq. (6) by
the Volkov propagator. The Volkov propagator completely
ignores the field-free potential and propagates the wave
function in the strong field alone e~ #(=") — =iHy(t=1)
where A, = K + V and K is the kinetic energy operator.
This approximation, called the strong field approximation
(SFA), treats the strong field exactly and the atomic po-
tential enters the calculation only during the field-free
propagation of the wave function. After ionization the
atomic potential is considered a negligible perturbation to
the continuum dynamics which is dominated by the
strong field.

The full quantum solution, the quantum SFA wave
function, and the SSF wave function using the Volkov
Hamiltonian (10° trajectories), for the same case as
Fig. 1(a), are plotted in Fig. 1(c). The quantum strong
field and semiclassical wave functions are essentially
indistinguishable. This is because the SC-IVR propaga-
tors are based on an approximation to the full Feynman
path integral which is exact for potentials up to second
order. The Volkov propagator includes only the field po-
tential which is a linear function and therefore the semi-
classical IVR evaluation of the Volkov propagator is exact.
The only deviations are near the discontinuity at x =
40 a.u. (i.e., where the potential deviates from a linear
function) and even these are quite small.

The steady-state tunneling regime seen in the solution
using the Volkov propagator, however, is largely under-
estimated as compared to the full quantum solution as
well as to the results of the (SSF) approximation. The SSF
method can then be seen as a means of including core
effects semiclassically to the Volkov propagator and
thereby greatly improving the accuracy of the standard
strong field approximation.

Consider now a 2D softcore atom in a static field. The
Hamiltonian is

1
VX2 +yr + a?

The softcore parameter used, a = 0.93, again models Xe
with ground state energy E, = —0.452 a.u. The ground
state wave function was approximated with a Gaussian
v =0.15. The field strength was £, = 0.045. The results
for this system calculated using quantum, HK, and SSF
methods are shown in Fig. 2 which plots [¥(x, y = 0)| at
t = 200 a.u. Both HK and SSF used y; = y, = v. The
HK result used 6 X 10° trajectories while the SSF result
used 10° trajectories.

1
H=3(py+pj) - —&x. )
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FIG. 2. Results for 2D simulations showing full quantum
(QM), Herman-Kluk (HK), and semiclassical strong field
S-matrix (SSF) calculations.

Two key points have to be stressed. First, unlike in the
1D case, the HK and the SSF approximate the correct
quantum wave function equally well. The fact that the HK
method alone reproduces the steady-state tunneling re-
gime is unexpected. In the 1D case, if a particular tra-
jectory has enough energy to make it over the barrier,
then it will do so in short time with at most one reflection
@if the trajectory had initially negative momentum). All
above-barrier trajectories escape at more or less the same
time. This leads to the relatively narrow initial burst in the
escaping HK wave function as seen in Fig. 1(a). In the 2D
case, however, trajectories with above-barrier energy may
experience multiple reflections before finally “lining-up”
with the suppressed barrier and escaping. Hence, unlike
in the 1D case, it is possible in multiple dimensions to
have a slow leak of the above-barrier classical trajectories
where this gradual leakage is absent in the equivalent 1D
system. For larger times, however, the continuous tunnel-
ing amplitude will presumably truncate prematurely us-
ing the HK method once all the above-barrier trajectories
have escaped the core. In this case, the SSF expression
would be expected to recover the lost tunneling amplutide
again by allowing for new above-barrier trajectories to
originate near the core at any moment of time just as in
the 1D case.

Second, there is a significant difference in the relative
convergence rates of the HK and SSF methods. In 1D,
both the HK and SSF calculations were well converged
using 10% trajectories to perform the Monte Carlo inte-
gral. In 2D, the SSF result, which used the same number
of trajectories as in 1D (10%), is reasonably well converged
while the HK result, which used 6 times more trajectories,
is still far from converging (see Fig. 2).

A rigorous comparison of the relative convergence rates
was performed by calculating the fractional statistical

error
o e —awy
ao\ N (10)

where I(x) is the semiclassical integrand at point x [or
point X = (x, y) in 2D] and N is the number of trajectories.
For large N, e(x) becomes simply e(x) ~ oo(x)//N
where the constant o,(x) completely characterizes the
asymptotic convergence rate. Table I presents the calcu-

233005-4

TABLE L. Convergence properties of the HK and the SSF
approach for 1D and 2D.
Dim. oy (HK) oy (SSF)
1 6.4 15
150 74

lated o [which are averages of g,(x) over many points
along the wave functions, i.e., oy = > ;0(x;)] for the
various calculations presented herein. Going from 1D to
2D for the HK method increases o by a factor of 20
which leads to a factor of 20 - 20 = 400 increase in the
number of required trajectories to achieve a comparable
level of convergence. For the SSF method, moving from
1D to 2D leads to only a factor of 5 increase in o which
means a factor of 25 increase in the number of trajecto-
ries. Thus, the SSF method exhibits favorable scaling of
the convergence rate with increasing dimensionality.

The SSF method has been shown to give good results
for the problem of atomic tunnel ionization in a static
field and it would certainly be of interest to apply this
method to other tunneling problems. However, the SSF
method needs to have the full Hamiltonian split into a
field-free part H, and a strong perturbing field V.
Although this distinction is obvious in the case of an
atomic core in the presence of a strong field, some inter-
esting tunneling problems may not have such a conven-
iently partitioned Hamiltonian. Double well systems [6],
for example, offer interesting tunneling dynamics but
have ill-suited Hamiltonians for the formalism presented
here. The SSF method in the present form would then be
more suitable for studying strong field dynamics, for
example, an atom/molecule interacting with a laser field
or laser-assisted atom-electron collisions.
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