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We present a novel approach to morph between two isometric poses of the same non-
rigid object given as triangular meshes. We model the morphs as linear interpolations
in a suitable shape space S. For triangulated 3D polygons, we prove that interpolating
linearly in this shape space corresponds to the most isometric morph in R

3. We then

extend this shape space to arbitrary triangulations in 3D using a heuristic approach and
show the practical use of the approach using experiments. Furthermore, we discuss a

modified shape space that is useful for isometric skeleton morphing. The novelty of the
presented approaches is a solution to the morphing problem that does not need to solve

a minimization problem.
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1. Introduction

Interpolating smoothly between two given poses of the same non-rigid object, known

as morphing, arises in many geometry processing problems. For example, morph-

ing can compute an animation between given poses of a human or an animal.

Two objects are isometric if they have the same intrinsic geometry. We consider

morphs between isometric objects because the motion of humans and many animals

preserves the intrinsic geometry of their bodies. We aim to solve the following prob-

lem. Given two isometric poses of the same non-rigid object modeled as triangular

meshes S(0) and S(1) with known point-to-point correspondences, find a smooth

isometric deformation from one pose to the other.

Recently, Kilian et al. 9 showed that an isometric morph can be computed by

finding a geodesic path in a shape space. A mesh that contains n vertices is usually

represented in shape space as a point in R
3n that contains all the vertex coordinates

of the mesh. 8 The mesh is arranged in a standard position so that it is translation

and rotation invariant. Computing geodesic paths in this space involves solving a

large-scale non-linear optimization problem. Non-linear optimization problems are

usually solved iteratively starting from an initial solution. This is computationally

expensive. It is difficult to find the best solution because convergence problems may

arise if the initial solution is far from the optimum, and finding a good initial solu-

tion is not straight forward. Kilian et al. overcome the inefficiency of the approach

and the difficulty of finding a good initial solution by implementing two multi-

resolution schemes. The number of resolutions that are used have an effect on the

result. These resolutions can be viewed as input parameters that are non-intuitive.

The approach is difficult to implement.

The objective of this paper is to propose an alternative representation of the

shape space that does not require solving large-scale non-linear optimization prob-

lems nor the use of non-intuitive input parameters. Instead of encoding the extrinsic

geometry of the mesh in shape space as in Kilian et al., we encode the intrinsic ge-

ometry of the mesh in shape space. This has the effect that a point on a geodesic

path in shape space linearly interpolates between the endpoints of the geodesic

path. This is how we replace solving a large-scale non-linear optimization problem

with linearly interpolating between two points. This is more efficient, conceptually

simpler, and easier to implement.

A deformation of a shape represented by a triangular mesh is isometric if and

only if all triangle edge lengths are preserved during the deformation. 9 We call a

morph S(t), 0 < t < 1 between two (possibly non-isometric) shapes S(0) and S(1)

most isometric if it minimizes the sum of the absolute values of the differences

between the corresponding edge lengths of two consecutive shapes summed over

all shapes S(t), for t in [0, 1]. Note that in a similar definition, Kilian et al. 9 use

the L2 instead of the L1 metric as we do to measure most isometric morphs. In

this paper, we examine isometric morphs of general triangular manifold meshes in

3D. We start by examining the simpler problem of morphing between isometric
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triangulated 3D polygons, which are triangular meshes with no interior vertices. In

this case, we introduce a new shape space S that has the property that interpolating

linearly in shape space corresponds to the most isometric morph in R
3. For arbitrary

triangular meshes, the existence of interior vertices means that this property is no

longer guaranteed. However, we extend the shape space to arbitrary triangular

manifold meshes using a heuristic approach. While we can compute morphs in this

shape space using linear interpolations, the morphs are no longer guaranteed to

be the most isometric morph. Furthermore, we discuss a modification of the shape

space that is useful for the morphing of isometric skeletons.

2. Related Work

Computing a smooth morph from one pose of a shape in two or three dimensions to

another pose of the same shape has received considerable attention. 11, 3 A survey

on this topic is by Alexa. 2

Early work on morphing focused on the two-dimensional version of the problem.

We focus on the case where the input is sampled over an irregular domain. The

problem is to interpolate between two simple polygons in the plane. Several authors

make use of intrinsic representations of the polygons. Sederberg et al. 15 proposed to

interpolate an intrinsic representation of two-dimensional polygons, namely the edge

lengths and interior angles of the polygon. Surazhsky and Gotsman 21 morphed by

computing mean value barycentric coordinates based on an intrinsic representation

of triangulated polygons. This method is guaranteed to be intersection free. Iben et

al. 7 morphed planar polygons while guaranteeing that no self-intersections occur

using an approach based on energy minimization. This approach can be constrained

to be as isometric as possible. Our approach can be viewed as a generalization of

these techniques to three dimensions.

More recently, much work has focused on morphing between triangular meshes.

We first review work that does not require energy minimizations. Sun et al. 20 mor-

phed between three-dimensional manifold meshes. They extended the approach by

Sederberg et al. 15 to three dimensions by extending the intrinsic representation

to polyhedra. However, the methods developed are computationally expensive. 2

Another extension of the approach by Sederberg et al. 15 to three dimensions was

presented by Lipman et al. 12 They gave a rotation-invariant mesh representation

that is similar in spirit to the first and second fundamental form in differential

geometry. This representation can be used to find an approximate morph. The

method is again computationally expensive. Our approach is similar to these ap-

proaches in that no energy is minimized. However, it is more efficient in terms of

the computational complexity.

Alexa 1 proposed an approach that can be used to compute local morphs be-

tween two meshes of the same topology. This approach makes use of Laplacian

representation. While the approach is shown to perform well for deforming and

morphing local areas, the approach is not tailored to morph between two whole
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shapes representing two poses of the same non-rigid object. In fact, most of the

examples show local morphs between meshes of drastically different shape.

Next we review approaches that require solving non-linear optimization prob-

lems. When solving non-linear optimization problems, it is often not guaranteed

that a globally optimal solution is found. Kraevoy and Sheffer 10 presented a rep-

resentation that is based on mean-value encodings of vertices. This representation

has the property that similar models have similar encodings and it can be used for

morphing. Morphing requires minimizing a non-linear energy function. Sorkine and

Alexa 18 proposed an algorithm to deform a surface based on a given triangular

surface and updated positions of few feature points. The surface is modeled as a

covering by overlapping cells. The deformation aims to deform each cell as rigidly

as possible. The overlap is necessary to avoid stretching along cell boundaries. The

deformation is based on minimizing a global non-linear energy function. While the

energy is guaranteed to converge, the algorithm is not guaranteed to find the global

minimum. If the global minimum is found, the approach tends to preserve the

edge lengths of the triangular mesh. Zhou et al. 24 proposed a method to deform

triangular meshes based on the Laplacian of a graph representing the volume of

the triangular mesh. The method is shown to prevent volumetric details to change

unnaturally. The work by Kilian et al. 9 was described in Section 1. In their ap-

proach, the geodesic paths in shape space are found using an energy-minimization

approach. Note that Kilian et al.’s approach is more general than our approach in

that it is possible to extrapolate isometric deformations. Eckstein et al. 5 proposed

a generalized gradient descent method similar to the approach by Kilian et al. that

can be applied to deform triangular meshes.

In this paper, we propose a novel shape space representation for morphing that

does not require solving a minimization problem. The representation has the prop-

erty that interpolating linearly in shape space approximates the most isometric

morph in R
3. For triangulated 3D polygons, we prove that the linear interpola-

tion in shape space corresponds exactly to the most isometric morph in R
3. For

arbitrary triangulated manifolds in 3D, we provide a heuristic that extends the

approach developed for 3D polygons. Experimental results compare our algorithm

to the approach by Kilian et al.

The problem of morphing between shapes is closely related to the problem of

computing point-to-point correspondence between two shapes, since many mor-

phing algorithms, as our does, assume that the point-to-point correspondence is

known. Computing the point-to-point correspondence is an important problem and

constitutes an active research area. For a recent survey on this topic, see van Kaick

et al. 23

3. Theory of Shape Space for Triangulated 3D Polygons

Before considering the problem of morphing between triangulated manifolds in 3D,

we consider the simpler problem of morphing between triangular meshes with no
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interior vertices. We call these meshes triangulated 3D polygons.

We are given two triangulated 3D polygons P (0) and P (1) corresponding to

two near-isometric poses of the same non-rigid object. Poses are considered near-

isometric if the stretching between the poses is small. We assume that the point-

to-point correspondence of the vertices of P (0) and P (1) is known. Furthermore,

we assume that both P (0) and P (1) share the same underlying mesh structure M .

Hence, we know the mesh structure M with two sets of ordered vertex coordinates

V (0) and V (1) in R
3, where M is an outer-planar graph. We will show that we

can represent P (0) and P (1) as points p(0) and p(1) in a shape space S, such that

each point p(t) that is a linear interpolation between p(0) and p(1) corresponds to a

triangular mesh P (t) isometric to P (0) and P (1) in R
3.

Note that the assumption that the point-to-point correspondence of the vertices

is known is a strong assumption in general since the problem of computing the point-

to-point correspondence is difficult. However, it is possible to compute accurate

correspondences based on a template shape of the class of shapes to be considered

and a small set of manually places marker positions. A variety of template-based

techniques are reviewed in van Kaick et al. 23 Since we consider the problem of

computing correspondences between two shapes of the same object in different

poses, these approaches could be applied to obtain accurate correspondences. We

therefore assume that the correspondences are given as part of the input to our

method.

Since we know the point-to-point correspondence of the vertices of P (0) and P (1),

we can find the best rigid alignment of the two shapes by solving an overdetermined

linear system of equations and by modifying the solution to ensure a valid rotation

matrix. To modify the solution to the overdetermined linear system, we compute a

singular value decomposition of the solution matrix and replace the singular value

matrix by the identity matrix. 6 Note that the relative rigid alignment of P (0) and

P (1) in R
3 has an influence on the linear interpolation. The reason is that we aim to

interpolate linearly between the edge lengths and the surface normals of the given

poses.

Let M consist of n vertices. Since M is a triangulation of a 3D polygon with n

vertices, M has 2n− 3 edges and n− 2 triangles. We assign an arbitrary but fixed

order on the vertices, edges, and faces of M . In the following, when referring to the

ordering of vertices, edges, or faces of M , we refer to this fixed order. The shape

space S is defined as follows. The first 3 coordinates of a point p ∈ S correspond

to the coordinates of the first vertex v in M . Coordinates 4 and 5 of p correspond

to the direction of the first edge of M incident to v in spherical coordinates. The

next 2n − 3 coordinates of p are the lengths of the edges in M in order. The

final 4n − 4 coordinates of p describe the outer normal directions of the triangles

in M in spherical coordinates, in order. Hence, the shape space S has dimension

5 + 2n− 3 + 4n− 4 = 4n− 2 = Θ(n).

In the following, we prove that interpolating linearly between P (0) and P (1)

in shape space yields the most isometric morph. To interpolate linearly in shape
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space, we interpolate the edge lengths by a simple linear interpolation. That is,

p
(t)
k

= tp
(0)
k

+ (1 − t)p
(1)
k

, where p
(x)
k

is the kth coordinate of p(x). The normal

vectors are interpolated using geometric spherical linear interpolation (SLERP). 16

That is, p
(t)
k

= sin(1−t)Θ
sinΘ p

(0)
k

+ sin tΘ
sinΘ p

(1)
k

, where Θ is the angle between the two

directions that are interpolated.

To study interpolation in shape space, we make use of the dual graph D(M)

of M . The dual graph D(M) has a node for each triangle of M . We denote the

dual node corresponding to face f of M by D(f). Two nodes of D(M) are joined

by an arc if the two corresponding triangles in M share an edge. We denote the

dual arc corresponding to an edge e of M by D(e). Note that because M meshes

a 3D polygon, it is a triangulated outer-planar graph and so the dual graph of M

is a binary tree. An example of a mesh M with its dual graph D(M) is shown in

Figure 1.

M

D(M)

Fig. 1. A mesh M with its dual graph D(M).

We call a triangular mesh valid if each triangle satisfies the triangle inequality.

Theorem 3.1. Let M be the underlying mesh structure of the triangulated 3D

polygons P (0) and P (1). The linear interpolation p(t) between p(0) and p(1) in shape

space S for 0 ≤ t ≤ 1 has the following properties:

(1) There exists a unique mesh P (t) ∈ R
3 that corresponds to p(t) ∈ S that has the

underlying mesh structure M . The mesh P (t) is a valid triangular mesh. We

can compute this mesh using a traversal of the binary tree D(M) in Θ(n) time.

(2) If P (0) and P (1) are isometric, then P (t) is isometric to P (0) and P (1). If P (0)

and P (1) are not isometric, then each edge length of P (t) linearly interpolates

between the corresponding edge lengths of P (0) and P (1).

(3) The coordinates of the vertices of P (t) are a continuous function of t.

Proof. Part 1: To prove uniqueness, we note that the first vertex v of P (t) is

uniquely determined by the first three coordinates of p(t). Let e denote the first
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edge of M incident to v. The direction e is uniquely determined by coordinates 4

and 5 of p(t). The length of each edge of P (t) is uniquely determined by the following

2n−3 coordinates. Hence, the edge e is uniquely determined. Furthermore, the outer

normal of each triangle is uniquely determined by the following 4n− 4 coordinates.

For a triangle f containing e, we now know the position of two vertices of f , the

plane containing f , and the three lengths of the edges of f . Assuming that the

normal vectors in shape space represent right-hand rule counterclockwise traversals

of each triangle, this uniquely determines the position of the last vertex of f . We

can now determine the coordinate of each vertex of P (t) uniquely by traversing

D(M).

Since D(M) is a tree, it is cycle-free and the coordinates of each vertex of

P (t) are set exactly once. Because the complexity of D(M) is Θ(n), the algorithm

terminates after Θ(n) steps.

The mesh P (t) is a valid triangular mesh because both input meshes are valid

triangular meshes.

Part 2: The edge lengths of P (t) are linear interpolations between the edge

lengths of P (0) and P (1). Hence, the claim follows.

Part 3: When varying t continuously, the point p(t) ∈ S varies continuously.

Hence, the coordinate of the lengths of all the edges vary continuously. Because a

direction [sin v cosu, sin v sinu, cos v]
T
varies continuously if u and v vary continu-

ously, the normal directions vary continuously. Because all the vertex positions of

the mesh P (t) are uniquely determined by continuous functions of those quantities,

all vertex positions of P (t) vary continuously.

We do not need to solve minimization problems to find the shortest path in shape

space as in Kilian et al. 9 The only computation required to find an intermediate

deformation pose is a graph traversal of D(M).

BecauseD(M) has complexity Θ(n), we can traverseD(M) in Θ(n) time. Hence,

we can compute intermediate deformation poses in Θ(n) time each. We call this the

polygon algorithm. In the following, we show that the polygon algorithm computes

the most isometric morph.

Corollary 3.2. The polygon algorithm computes the most isometric morph between

two triangulated 3D polygons P (0) and P (1) with underlying mesh structure M .

Proof. The following argument shows that Part 2 of Theorem 3.1 implies that the

most isometric morph is found. Consider an edge e of M and let l(e)(t) denote the

length of e in P (t). As all edge lengths are linearly interpolated during the morph,

e is linearly interpolated during the morph. Let the morph consist of k + 1 poses

P (0), P ( 1

k
), . . . , P (1). Recall that a morph is most isometric if it minimizes

Q =
∑

e∈E

k
∑

i=1

∣

∣

∣
l(e)(

i

k
) − l(e)(

i−1

k
)
∣

∣

∣
,
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where E is the edge set of M . We have

Q ≥
∑

e∈E

∑k

i=1 l(e)
( i

k
) − l(e)(

i−1

k
)

≥
∑

e∈E

(

l(e)(
1

k
) − l(e)(0) + l(e)(

2

k
) − l(e)(

1

k
) + . . .+ l(e)(1) − l(e)(

k−1

k
)
)

≥
∑

e∈E
l(e)(1) − l(e)(0).

The linear interpolation achieves exactly Q =
∑

e∈E
l(e)(1) − l(e)(0), for it simply

sums up the total difference l(e)(1) − l(e)(0) in e’s lengths from start to finish in

k+1 little pieces. As linear interpolation achieves the lower bound on Q, the most

isometric morph is found by the polygon algorithm.

Figure 2 shows an example of an isometric morph of a simple polygon. The

start polygon is a 3D polygon obtained by discretizing the curve y = sin(x) and by

adding thickness to the curve along the z-direction. The end polygon is obtained

similarly from y = −sin(x).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2. Isometric morph of a simple polygon from pose (a) to pose (i). Intermediate poses obtained
using the polygon algorithm are given from left to right.

4. Theory of Shape Space for Skeleton Morphing

A similar shape space to the one presented in Section 3 can be used to isometrically

morph between two topologically equivalent skeletons. Let a skeleton in R
3 be a set

of joints connected by links arranged in a tree-structure. That is, we can consider

a skeleton to be a tree a in R
3 consisting of n vertices and n− 1 undirected edges.

The shape space presented in Section 3 can be simplified to a shape space

for skeletons in R
3 with the property that interpolating linearly in shape space

corresponds to the most isometric morph in R
3. The dimensionality of the shape

space is linear in the number of links of the skeleton.

We start with two skeletons S(0) and S(1) corresponding to two near-isometric

poses. We assume that the point-to-point correspondence of S(0) and S(1) is known.

Hence, we know the tree structure T with two sets of ordered vertex coordinates

V (0) for S(0) and V (1) for S(1) in R
3. As before, we first find the best rigid alignment

of the two skeletons.

The skeleton shape space SS is defined in a similar way as S. We assign an

arbitrary but fixed root to T and traverse the edges of T in a depth-first order.

We assign an arbitrary order to the edges incident on each vertex of T . Note that

aIn this context, a tree is an acyclic graph.
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while the order is not unique, it is fixed. That is, the order we choose remains static

throughout the algorithm. In the following, when referring to edges in depth-first

order, we refer to this static order.

The first 3 coordinates of s correspond to the coordinates of the root in T . The

next n−1 coordinates of s are the lengths of the edges in T in depth-first order. The

final 2(n− 1) coordinates of s describe the unit directions of the edges in spherical

coordinates in depth-first order. All edges are oriented such that they point away

from the root. Note that the shape space S has dimension Θ(n).

Interpolating linearly between points in SS is performed the same way as inter-

polating linearly between points in S. Namely, edge lengths are interpolated linearly

and unit directions are interpolated via SLERP. With a technique similar to the

proof of Theorem 3.1, we can prove the following theorem. In the proof, we do not

need to consider a dual graph, but we can simply traverse the tree T in depth-first

order to propagate the information.

Theorem 4.1. Let T be the underlying tree structure of the skeletons S(0) and S(1).

The linear interpolation s(t) between s(0) and s(1) in shape space SS for 0 ≤ t ≤ 1

has the following properties:

(1) The skeleton S(t) ∈ R
3 that corresponds to s(t) ∈ SS is uniquely defined and has

the underlying tree structure T . We can compute this tree using a depth-first

traversal of the tree in Θ(n) time.

(2) If S(0) and S(1) are isometric, then S(t) is isometric to S(0) and S(1). If S(0)

and S(1) are not perfectly isometric, then each edge length of S(t) linearly in-

terpolates between the corresponding edge lengths of S(0) and S(1).

(3) The coordinates of the vertices of S(t) are a continuous function of t.

This theorem allows us to morph isometrically between the skeletons of two

shapes corresponding to two postures of the same articulated object in Θ(n) time.

Figure 3 shows an example of such a morph for synthetic data.

(a) (b) (c)

Fig. 3. Example of most isometric morph between two skeleton poses. Input poses are shown in
(a) and (c) and morph for t = 0.5 is shown in (b).

In the remainder of this paper, we focus our attention on morphing between

triangular meshes.
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5. Generalization to Triangular Meshes

This section extends the shape space S from Section 3 to arbitrary connected

triangular manifold meshes. b However, we can no longer guarantee the properties

of Theorem 3.1, because the dual graph of the triangular mesh M is no longer a

tree.

Given two triangular meshes S(0) and S(1) corresponding to two near-isometric

poses of the same non-rigid object with known point-to-point correspondences, we

have one mesh structure M with two sets of ordered vertex coordinates V (0) and

V (1) in R
3.

As in Sections 3 and 4, we can use this information to find the best rigid align-

ment in R
3. We do this before representing the shapes in a shape space. As outlined

above, this alignment has a major influence on the result of the morph.

We can represent S(0) and S(1) as points s(0) and s(1) in a shape space S using

the same shape space points as in Section 3. Let s(t) be the linear interpolation

of s(0) and s(1) in S, where the linear interpolation is computed as outlined in

Section 3. The existence of a mesh S(t) ∈ R
3 that has the underlying mesh structure

M and that corresponds to s(t) is no longer guaranteed. This can be seen using the

example shown in Figure 4. Figure 4(a) and 4(b) show two isometric meshes S(0)

and S(1). The dual graphD(M) of the mesh structureM is a simple cycle. Note that

although the start and the end poses are isometric, we cannot find an intermediate

pose that satisfies all of the interpolated normal vectors with SLERP and that is

isometric to S(0) and S(1). This yields the following observation.

Observation. Given a triangular mesh S(t) with underlying mesh structure M , point

s(t) in S is uniquely determined. However, the inverse operation, that is computing

a triangular mesh S(t) given a point s(t) ∈ S, is ill-defined.

(a) (b)

Fig. 4. Example of isometric triangular meshes where intermediate poses interpolating all normals
and edge lengths do not exist.

To compute a unique triangular mesh S(t) given a point s(t) ∈ S that linearly

bA triangular manifold mesh represents a shape S by a triangular mesh that has the properties
that each edge of S is adjacent to at most two triangles and that the triangles incident on an
arbitrary vertex of S can be ordered locally around the vertex. A triangular manifold mesh is
connected if its dual graph is connected.
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interpolates between s(0) and s(1), such that S(t) approximates the information

given in s(t) well, we use the dual graph D(M) of M . Unlike in Section 3, D(M)

is not necessarily a tree. Our algorithm therefore operates on a minimum spanning

tree T (M) of D(M). The tree T (M) is computed by assigning a weight to each

arc e of D(M). The weight of e is equal to the difference in dihedral angle of the

supporting planes of the two triangles of M corresponding to the two endpoints of

e. That is, we compute the dihedral angle between the two supporting planes of the

two triangles of M corresponding to the two endpoints of e for the start pose S(0)

and for the end pose S(1), respectively. The weight of e is then set as the difference

between those two dihedral angles, which corresponds to the change in dihedral

angle during the deformation. The weight can therefore be seen as a measure of

rigidity. The smaller the change in dihedral angle between the two triangles during

the deformation, the smaller the weight, and the more rigidly the two triangles

move with respect to each other. As T (M) is a minimum spanning tree, T (M)

contains the arcs corresponding to the most rigid components of M , in some sense

the skeleton of the surface.

As in Section 3, we compute S(t) by traversing T (M). However, unlike in Sec-

tion 3, setting the vertex coordinates of a vertex v of S(t) using two paths from the

root of T (M) to two triangles containing v can yield two different coordinates for

v. An example of this situation is given in Figure 5, where the coordinates of v can

be set by starting at root(T (M)), and traversing the arcs e2 and e3 of T (M) or by

traversing the arcs e1, e4, and e5 of M . The different coordinates computed for v in

T (M) are candidate coordinates of v. Our algorithm computes the coordinates of

each vertex v ∈ S(t) as the average of all the candidate coordinates of v.

M

T (M)

v

e1

e5

e2

e3
e4

root(T (M))

Fig. 5. A mesh M with its dual minimum spanning tree T (M).

Let us analyze the maximum number of candidate coordinates that can occur

for a vertex in S(t). Let e denote an edge of M such that D(e) is in T (M). Let v

denote the vertex of S(t) opposite e in the triangle corresponding to an endpoint
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of D(e), such that the coordinates of v are computed when traversing D(e). This

situation is illustrated in Figure 6. Let d1 and d2 denote the total number of can-

didate coordinates of the two endpoints of e. By traversing D(e), we compute d1d2

candidate coordinates for v. We can therefore bound the number of candidate coor-

dinates of v computed using the path through D(e) by d1d2. Note that the number

of candidate coordinates for the two endpoints of the first edge is one. Furthermore,

each vertex v can be reached by at most deg(v) paths in T (M), where deg(v) de-

notes the degree of vertex v in M . As each path in T (M) has length at most m−1,

where m = O(n) is the number of triangles of M , we can bound the total number

of candidate coordinates in S(t) by
∑

v∈V
2m−1deg(v) = 2n2m−1, where V is the

vertex set of M .

e

D(e)
v

Fig. 6. Illustration of how to bound the number of candidate coordinates of v computed using the
path through D(e).

The use of an exponential number of candidate coordinates is computationally

expensive. We use the following heuristic to reduce the total number of candidate

coordinates considered at each vertex down to O(n). We traverse each edge of

T (M) at most once. We traverse T (M) in depth-first order. When an edge D(e)

is traversed, we add candidate coordinates to one vertex v as shown in Figure 6.

However, we only add at most a linear number of candidate coordinates to v as

described below. Denote the vertices of e by v0(e) and v1(e), denote the number

of candidate coordinates that were added to v0(e) and v1(e), respectively, dur-

ing the traversal of T (M) before traversing the edge D(e) by d1 and d2, and let

v0(e) be the vertex of e that was updated more recently in the traversal of T (M).

Let the candidate coordinates of v0(e) (v1(e), respectively) be given by c11, . . . , c
d1

1

(c12, . . . , c
d2

2 , respectively) ordered from the least recently to the most recently added

candidate coordinate. When traversing D(e), we add d2 candidate coordinates to v

by computing coordinates of v based on the candidate pairs (cd1

1 , c12), . . . , (c
d1

1 , cd2

2 ).

This strategy computes O(n) candidates per vertex of S(t), and hence a total

of O(n2) candidates, thereby avoiding the computation of an exponential number

of candidate coordinates. To find the final coordinates of a vertex v, we average all

of the candidate coordinates of v.

Our algorithm finds a triangular mesh S(t) corresponding to s(t) that is isometric

to S(0) and S(1) if such a mesh exists, because all of the candidate coordinates are

equal in this case and taking their average yields the desired result. If there is
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no isometric mesh corresponding to s(t), our algorithm finds a unique mesh. By

choosing T (M) as a minimum spanning tree based on weights representing rigidity,

we allocate rigid parts of the model more emphasis than non-rigid parts. The reason

for this is that in most near-isometric morphs, triangles close to non-rigid joints are

deformed more than triangles in mainly rigid parts of the model. We conclude with

the following.

Proposition 1. Let S(0) and S(1) denote two connected triangular meshes that are

isometric to each other and let s(0) and s(1) denote the corresponding shape space

points, respectively. We can compute a unique triangular mesh S(t) representing

the information given in the linear interpolation s(t), 0 ≤ t ≤ 1 of s(0) and s(1),

in exponential time. We find a triangular mesh S(t) corresponding to s(t) that is

isometric to S(0) and S(1) if such a mesh exists.

6. Experiments

The experiments were conducted using an implementation in C++ on an Intel (R)

Pentium (R) D with 3.5 GB of RAM. OpenMP was used to improve the efficiency

of the algorithms. To compute the minimum spanning tree T (M), the boost graph

library 17 was used.

We use the following data sets in our experiments. The armadillo models are

chosen from the AIM@SHAPE repository. c The models contain 331904 triangles.

The horse, elephant, and flamingo models were created and used by Sumner et al. 19

The horse models contain 16843 triangles, the cat models contain 14410 triangles,

the elephant models contain 84638 triangles, and the flamingo models contain 52895

triangles. The head models are from the CAESAR database. 14 The correspondence

between the two head models was found using the approach by Xi et al. 22 The

models contain 22091 triangles.

chttp://shapes.aimatshape.net/releases.php
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Fig. 7. The rows show start and end poses on the left and right, respectively. The intermediate
poses shown in the middle columns are interpolations for t = 0.5.
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6.1. Results

Figure 7 shows a number of morphs. Note that the intermediate poses are visually

pleasing and that most details are preserved during the morph.

Many data sets stem from the digitalization of real world objects using laser

range scanners or image-based reconstruction. This type of data is often noisy. We

show that our approach is robust to noise. Figure 8 shows the effect of adding

noise to the meshes. The top row shows the morph between two meshes of an

elephant. The bottom row shows the morph after adding random Gaussian noise

to the models. The noise has mean 0.005r, where r is the resolution of the mesh.

Note that while the morph of the noisy models is a noisy mesh, the overall shape

of the elephant is preserved.

Fig. 8. Effect of adding Gaussian noise to the models. The rows show start and end poses on the

left and right, respectively. The intermediate poses shown in the middle columns are interpolations
for t = 0.5.

For all of the experiments conducted, we measured the time efficiency to com-

pute one intermediate pose at t = 0.5. The running times range from a few seconds

for the smaller models to about 30 minutes for the armadillo models. Note that the

implementation is non-optimized and experimental.

6.2. Comparison

We compare the morphs obtained using our approach to the morphs obtained using

the approach by Kilian et al. 9 Recall that Kilian et al.’s approach is more powerful

than our approach in that it is possible to extrapolate isometric deformations. In

our implementation of Kilian et al.’s approach, we use the limited-memory Broyden-

Fletcher-Goldfarb-Shanno scheme, 13 which is a quasi-Newton method, to minimize
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the energy. We halve the number of vertices in the mesh repeatedly as outlined by

Kilian et al. until about 2000 vertices are left. Since we only compute the morph

for t = 0.5, we do not use multiple resolutions on the shape path.

Figure 9 shows the morphs obtained by our method in column (b) and the

morphs obtained by Kilian et al.’s method in column (c). For all of the shown mod-

els, the morphs obtained by Kilian et al.’s approach are noisy although the energy

term that is minimized contains a small regularization term. The regularization

term does not ensure that surface normals are varied smoothly between poses. The

noise occurs at extremities of the mesh that are simplified significantly in lower

resolutions. We emphasize that the results in column (c) were obtained using our

implementation and that better results may be obtained by adjusting both the mesh

resolutions and the shape path resolutions. However, the choice of the resolutions

is not straightforward.

Our approach explicitly interpolates between surface normals without the need

to solve an energy minimization problem. As a result, for all of the examples shown

in column (b), the morphs preserve geometric details.

(a) (b) (c) (d)

Fig. 9. Comparison to approach by Kilian et al. (a): Start pose. (b): Interpolation for t = 0.5
using our approach. (c): Interpolation for t = 0.5 using our implementation of Kilian et al.’s
approach. (d): End pose.
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7. Conclusion

We presented an approach to morph efficiently between near-isometric poses of

triangular meshes in a novel shape space. The main advantage of this morphing

method is that the most isometric morph is always found in linear time when trian-

gulated 3D polygons are considered. For general triangular meshes, the approach

cannot be proven to find the optimal solution. However, we present an efficient

heuristic approach to find a morph for general triangular meshes that does not

depend on solving a non-linear optimization problem.

The presented experimental results demonstrate that the heuristic approach

yields visually pleasing results. The running time of the approach can be improved

by employing a multi-resolution scheme.

An interesting direction for future work is to find an efficient way of morphing

triangular meshes while guaranteeing that no self-intersections occur. For polygons

in two dimensions, this problem was solved using an approach based on energy

minimization. 7
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