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ABSTRACT 
 
When deconvolving data collected in experiments involving axisymmetric flames, small errors 
that contaminate the data are magnified into large errors in the recovered distribution.  Error 
magnification can be suppressed through Tikhonov regularization although a regularization 
parameter must first be identified, usually through a time-consuming trial-and-error procedure.  
This paper presents an algorithm that selects the regularization parameter automatically based on 
an estimate of the error contaminating the dataset.  Solutions obtained using this algorithm are 
more accurate that those found by onion-peeling and Abel three-point deconvolution.  
Furthermore, because this algorithm selects the regularization automatically it is faster and easier 
to implement compared to the traditional trial-and-error regularization approach. 
  

INTRODUCTION  
 
The objective of many experiments involving axisymmetric flames is to deconvolve optical data 
measured along a set of chord lines passing through the flame field, called the projected data, 
P(y), to recover the radial distribution of a field variable, f(r), over the range 0 ≤ r ≤ R, which is 
shown schematically in Fig. 1 (a).  These two variables are related by Abel’s integral equation, 
 

(1) 
 
a type of Volterra integral equation of the first kind.  The simplest was of solving Eq. (1) is by 
onion-peeling.  In this procedure the integral domain is first split into N evenly-spaced segments, 
which is equivalent to discretizing the flame field into N uniformly-spaced annular elements 
having a radial thickness ∆r = R/(N−1/2) as shown in Fig. 1 (b).  By assuming that f(r) is uniform 
over each sub-domain of r, these values can be extracted from the corresponding integrals, which 
then contain only geometric terms.  Carrying out these integrals transforms Eq. (1) into the N × N 
matrix equation AOPx = b, where xi = f(ri) = f(i∆r), bi = P(yi) = P(i∆r), and  
 

 
 

(2) 
 
 
This and other popular deconvolution techniques, including Abel three-point deconvolution, are 
described in greater detail in [1].   
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Fig. 1:  (a) Axisymmetric flame deconvolution and (b) discretization of the problem domain. 

 
Traditional deconvolution techniques provide accurate solutions for f(r) when the exact projected 
data is known.  In an experimental setting, however, small errors that contaminate the projected 
data are magnified by deconvolution into large errors in the recovered field variable distribution.  
Error amplification is a consequence of the ill-posedness of Abel’s integral equation and 
increases with N, severely limiting the deconvolved field variable resolution.  This is 
demonstrated in the test problem shown in Fig. 2.  The field variable was first derived by fitting a 
4th-order piecewise polynomial to normalized soot-volume fraction data from a line-of-sight 
attenuation (LOSA) experiment on a laminar flame [2].  The right-hand side vector b, which 
contains the projected data, was calculated by analytically integrating Eq. (1).  This data was 
contaminated by a perturbation vector δb with elements randomly-sampled from an unbiased 
Gaussian distribution having a standard deviation of 0.01, which is typical of errors encountered 
in LOSA flame experiments [2].  Figure 2 shows that the small errors contained in δb are 
amplified by onion-peeling and Abel three-point deconvolution into large perturbations in the 
solution, δx. 
 

TIKHONOV REGULARIZATION 
  
Error amplification can be suppressed by using regularization to perform the deconvolution.  
Regularization techniques transform the original ill-posed problem into a set of better-posed or 
regularized problems.  Regularized problems that closely resemble the original ill-posed problem 
are themselves ill-posed, having solutions that solve the original problem with a very small 
residual but are also highly sensitive to small errors in the input data.  Using more regularization 
improves the solution stability, but at the expense of solution accuracy.   The degree of 
regularization is controlled by a regularization parameter, which is adjusted until an acceptable 
trade-off between solution accuracy and stability is obtained.  In a recent work [3], we showed 
how Tikhonov regularization [4] can be used to perform axial flame deconvolution.  In this 
approach the matrix equation obtained by onion-peeling is augmented by adding a homogeneous 
system of regularizing equations λL, where λ is a continuously-variable regularization parameter 
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and L is a smoothing matrix, which in this problem is an (N−1×N) matrix that approximates the 
derivative operator in discrete space [5], 
 
 
 
 

(3) 
 
 
 
The regularized solution, xλ, is the value of x that minimizes the residual norm of the augmented 
system of equations, i.e.  
 
 

(4) 
 
which can be found efficiently by solving 
 

(5) 
 
In our previous paper [3] we showed that λ can be adjusted with high fidelity until a near-
optimum trade-off between accuracy and solution stability is found for a given field distribution, 
level of discretization, and degree of error contamination.  Strategies for selecting λ are 
presented in the next section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2:  Example LOSA deconvolution problem showing error amplification by deconvolution.  
(Based on experimental data from [2].)  
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SELECTING THE REGULARIZATION PARAMETER 
 
When selecting the regularization parameter, the goal is to minimize the overall solution error, 
which is due to both the contamination of the projected data and to the regularization process.  
Formally, the total error is written as [6] 
 

(5) 
 
where x denotes the exact, unperturbed solution, bpert = b+δb, xλ

pert = (x+δx)λ is the regularized 
solution of the perturbed matrix equation, and AOP

−1 and Aλ
−1 are the pseudoinverses of the 

onion-peeling and augmented matrices, respectively.  The total error is more easily quantified by 
taking the l2-norm of the vectors in Eq. (5), 
 

(6) 
 
where εreg(λ) is the regularization error and εpert(λ) is the perturbation error.  As described above, 
increasing λ suppresses the magnification of δb and decreases εpert(λ), but this also increases the 
εreg(λ) since λL obscures AOP in the augmented matrix Aλ as λ becomes large.  Thus, a value of 
λ must be chosen that is an acceptable trade-off between εpert(λ) and εreg(λ). 
 
Most often, λ is selected heuristically with the aid of an L-curve [3, 6], a plot of the smoothed 
solution norm against the residual norm for solutions obtained using different values of λ.  This 
curve is shown in Fig. 3 for the problem described above with N = 50.    Although solutions on 
the far-left side of the curve have a small residual, ||AOPxλ

pert−bpert||2, they are under-regularized 
since their large solution norm, ||Lxλ

pert||2, shows that they are contaminated with large 
perturbations.  Solutions become smoother as λ increases, but those on the far-right side of the 
curve are over-regularized because they no longer satisfy the original ill-posed problem as 
indicated by their large residual.  The best trade-off between smoothness and accuracy is usually 
found by visually inspecting the solutions that lie near the corner of the L-curve, a time-
consuming process that demands specialized knowledge of regularization on the part of the 
analyst.   
 
A more sophisticated way of choosing λ is based on the observation that, since εreg(λ) and 
εpert(λ) increase and decrease in a monotonic way with increasing λ, these errors can be balanced 
by using the value of λ that satisfies εreg(λ*) = εpert(λ*).  Unfortunately, λ* cannot normally be 
found using Eq. (6) directly, since bpert is known rather than b and δb individually.  An estimate 
of ||δb||2 is often available, however, usually from the variance of independently-measured sets of 
projected data.  If this is the case λ† can be approximated using the discrepancy principle [6, 7], 
which states that λ should be chosen so that  
 

(7) 
 
where δe is most often set equal to ||δb||2.  The left- and right-hand sides of Eq. (16) are estimates 
of the regularization and perturbations error, respectively, projected into the vector space of b.  
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Fig. 3:  L-curve for the LOSA deconvolution problem shown in Fig. 2, with N = 50. 
 

DEMONSTRATION OF METHOD 
 
The performance of the Tikhonov auto-regularization method described above is compared to 
that of onion-peeling and Abel three-point deconvolution by solving the LOSA problem shown 
in Fig. 2.  In order to simulate an experimental environment, the projected data is contaminated 
with error randomly-sampled from an unbiased Gaussian distribution having a standard deviation 
of 2001.0 .  Each element of the perturbed dataset, bpert, is set equal to the average of 20 
independent samples, and the corresponding standard deviation of the mean, σm, is given by 

20σ , where σ is the standard deviation of the sampled data.  The expected value of σm is 
0.01, which is typical for LOSA experiments carried out on laminar flames [2].   
 
The performance of the deconvolution algorithms is measured using the root-mean-squared error 
of the recovered field distributions,  
 

(8) 
 
obtained using different numbers of projections, N.  At each value of N, 20 independent sets of 
projected data are supplied to the deconvolution algorithms.  The Tikhonov regularization 
parameter is calculated automatically for each dataset by substituting an estimate of ||δb||2,  
 

(9) 
 
into Eq. (7), which in turn is solved for λ using a safeguarded secant root-finding algorithm [5].  
The averages of the resulting εRMS values are plotted in Fig. 4, which shows that the solutions 
found using Tikhonov auto-regularization are superior to those found with onion-peeling and 
Abel three-point deconvolution over the whole range of N.  In fact, the root-mean-squared errors 
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of the Tikhonov solutions actually decrease with increasing N, because the perturbation error is 
suppressed to the extent that the dominant error in the Tikhonov solutions is caused by assuming 
a uniform f(r) over each element, which in turn diminishes with increasing N. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4:  Accuracy of field distributions obtained using different deconvolution techniques. 
 

CONCLUSIONS 
 
Tikhonov regularization is an effective way of solving flame deconvolution problems in which 
the projected data is contaminated with error.  Implementation of this technique is complicated, 
however, by the fact that a regularization parameter must first be specified.  This paper presented 
an algorithm for automatically selecting this value using the discrepancy principle.  Tikhonov 
auto-regularization provides more accurate solutions than onion-peeling and Abel three-point 
deconvolution, and furthermore, because the regularization parameter is selected automatically, 
this technique is easier to implement than is the case when this value is found manually. 
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