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ABSTRACT: Density functional theory (DFT) calculations of molecular hyperfine tensors were implemented as a second
derivative property within the two-component relativistic zeroth-order regular approximation (ZORA). Hyperfine coupling
constants were computed for systems ranging from light atomic radicals to molecules with heavy d and f block elements. For
comparison, computations were also performed with a ZORA first-order derivative approach. In each set of computations, Slater-
type basis sets have been used. The implementation allows for nonhybrid and hybrid DFT calculations and incorporates a Gaussian
finite nucleus model. A comparison of results calculated with the PBE nonhybrid and the PBE0 hybrid functional is provided.
Comparisons with differing basis sets and incorporation of finite-nucleus corrections are discussed. The second derivative method is
applied to calculations of paramagneticNMR ligand chemical shifts of three Ru(III) complexes. The results are consistent with those
calculated using a first-order derivative method, and the results are consistent for different functionals used. A comparison of two
different methods of calculating pseudo-contact shifts, one using the full hyperfine tensor and one assuming a point-charge
paramagnetic center, is made for the Ru(III) complexes.

1. INTRODUCTION

Given a molecule with unpaired electrons in an external
magnetic field B, the interaction between the electrons, nuclei,
and the external magnetic field can be described through the
electron paramagnetic resonance (EPR) spin Hamiltonian:1�4

Hspin ¼ � gβeB 3 S� gNβNB 3 IN � S 3AIN ð1Þ

Here, g is the g-tensor (or ge for a free electron) and gN is the nuclear
g-factor; S is the effective spin of the electronic system, and IN is the
nuclear spin operator. The first two terms in eq 1 are the electronic
and nuclear Zeeman terms, describing the interaction between the
electron and the external field, and between a nucleus and the external
field, respectively. The final term is of interest to this work and
describes the magnetic hyperfine interaction between the magnetic
moments of the electron and the nuclei. The tensorA is the hyperfine
coupling tensor. In order to compute the hyperfine tensor, it is
necessary to consider three contributions: the “first-order” Fermi
contactþ spin�dipole (FCþSD) terms, and, in relativistic theories,
a spin�orbit (SO) coupling cross termwith thenuclear paramagnetic
spin�orbital (PSO) operator (with the latter also being responsible
for the paramagnetic NMR shielding in Ramsey’s theory5). Details
regarding the theory are provided in section 2, “Theoretical
Methods”. In nonrelativistic theory, the isotropic Fermi-contact
term can be related to the excess (unpaired) spin density at a
nucleus (FR�β(0))1,2,6 (assuming point nuclear charges, in atomic
units where βe = 1/2 and μ0/(4π) = c�2):

Anrel
iso ¼

4π

6c2

� �

gegNβNÆSzæ
�1FR � βð0Þ ð2Þ

Here, FR�β(0) is the excess spin density at the nucleus in
question (the “contact” spin density). From eq 2, it can be seen
that the value of Aisomay be positive or negative, depending on
whether there exists an excess of R or β spin density at a
particular nucleus. The sign of the hyperfine coupling constant
is taken to be positive where the spins of the electron and
nucleus are antiparallel.1 In relativistic theories, the orbitals and
the electron density have weak singularities at point nuclei, and
the “contact” operators are modified accordingly in order to
sample the electronic structure very close to, but not at, the
nuclei.7The derivation in section 2 provides a case in point. The
contact or near-contact nature of the relativistically generalized
FC mechanism can generally be expected to be subject to large
relativistic effects (scalar effects in particular). The anisotropic
part of the hyperfine tensor is often not calculated because it
does not contribute to the EPR hyperfine coupling for freely
rotating molecules (for instance, in gas phase or solution).
However, it is an important ingredient for calculations of
paramagnetic NMR (pNMR) pseudo-contact chemical shifts.8

In pNMR, large Aiso further give rise to sizable contact shifts.
8,9

The spin�orbit contribution to the hyperfine tensor is often
neglected for light atomic systems, but it becomes increasingly
important with increasing atomic number.10 Inclusion or
neglect of scalar relativistic and spin�orbit (SO) effects can
greatly affect the value of magnetic properties, including
hyperfine tensors, due to the requirement of describing elec-
trons in close proximity to the nucleus and therefore exhibiting
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relativistic behavior. Arbuznikov et al. have investigated
spin�orbit effects on hyperfine tensors and found that the
effects can be very significant for a range of molecules and
nuclei.10 In general, it was found that the correlation to
experiment improved when SO terms were included in the
calculation of the hyperfine tensor.

The treatment of SO effects in calculations of hyperfine
coupling tensors may be assigned to one of two types. These
two approaches mirror those previously discussed by us in a
paper on calculating electronic g-tensors11 and, therefore, are
only briefly summarized described here. In the first type of
calculation, SO coupling is included variationally in the ground
state. The hyperfine tensor is then calculated as a first-order
derivative of the energy; therefore, this route may be termed the
“first-order” or “expectation value” (EV) approach, and has been
implemented in the framework of the two-component relativistic
zeroth-order regular approximation (ZORA)12 by van Lenthe,
van der Avoird, and Wormer.13 The method has been success-
fully applied in conjunction with density functional theory
(DFT) to transition-metal complexes and small organic
molecules.13

Alternatively, SO coupling can be introduced as a perturbation
on top of nonrelativistic or scalar-relativistic calculations. In this
case, the hyperfine tensor is calculated from double-perturbation
theory as a second derivative of energy with respect to the nuclear
spin angular momentum and the effective electronic spin. The
SO contributions to the hyperfine tensor are calculated to lowest
order in this approach from solving a set of linear response
equations, while the FCþSD terms are still computed from an
expectation value integral involving the ground-state orbitals/
wave function only. This type of calculation may be termed the
“second-order” or “linear response” (LR) approach. One pur-
pose of this article is to present an implementation and first
application of the LR approach in conjunction with the ZORA
formalism in the calculation of hyperfine tensors and hyperfine
coupling constants. The approach presented here closely follows
a recent development of a ZORA-based LR method for density
functional theory (DFT) calculations of electronic g-tensors.11

DFT is an attractive electronic structure for calculating many
molecular properties because of its relatively low computational
expense and its often acceptable-to-good accuracy. DFT been
used previously for calculations of magnetic properties of open-
shell molecules.6,10,14,15 Calculations of hyperfine tensors and, in
particular, isotropic hyperfine coupling constants, have been
previously carried out and benchmarked by various groups using
DFT. Hermosilla et al. have analyzed a set of organic and
inorganic radicals with the B3LYP hybrid functional and several
basis sets, concluding through the use of regression analysis, that
such a computational approach is appropriate.16,17 Later, Barone
et al. calculated hyperfine tensors for 208 free radicals using the
B3LYP hybrid functional, again deeming the functional
suitable.14 It should be noted that, in these studies, relativistic
effects were not included since they are likely unimportant for the
relatively light atoms studied. Compounds with heavier nuclei (in
particular, transition-metal complexes) have been studied by a
number of authors, in some cases including SO effects18�20 and
with relativistic effects included using a second-order approach.10

Herein, we investigate the performance of a LR method of
calculating hyperfine tensors using DFT and the two-component
relativistic ZORA Hamiltonian. The new implementation allows
one to directly compare results calculated with this method to
those calculated with the aforementioned EV method reported

by van Lenthe et al.13 Differences may be expected for molecules
where SO coupling is large, such as radicals with third-row
transition metals, lanthanides, or actinides. Both our new LR
method and the EV method of van Lenthe et al.13 are imple-
mented in the Amsterdam Density Functional (ADF) package,21

which is a DFT code that makes use of Slater-type orbital (STO)
basis sets. There are several reasons why it is desirable to have a
relativistic LR approach available for hyperfine tensor computa-
tions. First, in terms of computational efficiency, variational
SO DFT computations for large molecules can become very
demanding on the computational resources, whereas the LR
approach has a computational cost that is comparable to that of
scalar relativistic ground-state computations with real orbitals. For
systems with light to intermediate strength of SO effects, the
analytic LR approach may also be advantageous in terms of
numerical accuracy. Another reason pertains the prediction of the
absolute and relative signs of the g- and the hyperfine tensors; the
sign, which is important for pNMR applications, is straightfor-
wardly determined in LR calculations. In our recent work on
g-tensors, we have highlighted an example (NpF6) where the
prediction of the sign of a tensor appears to be problematic. We
note that the new LR implementation is capable of handling
hybrid functionals and it incorporates finite nucleus effects, which
can be significant for hyperfine coupling tensors of heavy atoms.20

After presenting the theoretical background (section 2) and
some details regarding the computations (section 3, “Computa-
tional Details”), the results of computations using the LR ZORA
DFT implementation and other methods are compared in
section 4.1, in “Results and Discussion”, using a test set of small
molecules with light and heavy atoms. Comparisons are also
made with previously calculated values and with experiment,
where available. Effects due to basis set, functional (nonhybrid vs
hybrid), and finite nucleus corrections are investigated in some
detail. We find that the LR method performs well in comparison
with the EVmethod, even for systems with very heavy atoms. For
heavy-nucleus hyperfine couplings, finite nucleus effects can be
substantial. The sensitivity of hyperfine couplings to features of
the electronic structure near the nuclei highlights the need for
augmentation of the basis set with high exponent functions (in
particular, in relativistic computations). As an additional applica-
tion, calculated pNMR contact and pseudo-contact shifts are
reported for three Ru(III) complexes (see section 4.2). These
and several other complexes have been used recently for a
computational pNMR benchmark by Rastrelli and Bagno.9,22 In
ref 22, relativistic effects on the ligand contact shifts were
considered using the EV ZORA implementation of ADF, in
conjunction with nonhybrid functionals, whereas the influence
of the functional has been assessed by a comparison with
nonrelativistic B3LYP LR calculations, using Gaussian-type basis
sets. We take the opportunity here to revisit a subset of the
complexes studied by Rastrelli and Bagno for which the new LR
code allows us to investigate the performance of various func-
tionals consistently within the ZORA LR regime using the same
STO basis sets. For the pseudo-contact shifts, a comparison is
made between using equations for the dipolar interaction, assum-
ing a point paramagnetic center and using the dipolar hyperfine
and g-tensors calculated from DFT.

2. THEORETICAL METHODS

2.1. Hyperfine Tensors Calculated As Second Derivatives
of the Scalar Relativistic Electronic Energy. What follows is a
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brief outline of the theory as it applies to hyperfine tensors. For a
related ZORA-based derivation for LR calculations of g-tensors
providing additional details and references, we refer the reader to
ref 11. If spin�orbit (SO) effects are to be treated as a perturba-
tion, element u,v of the hyperfine coupling tensor with u,v∈ {x, y,
z} can be defined as a second derivative of energy, with respect to
electron and nuclear spin:

Auv ¼
D2E

DIuDSv
¼ gNβN

D2E
DμN, uDSv

ð3Þ

Here, and in the following, derivatives are assumed to be taken at
Iu = 0, to eliminate higher-order terms from the nuclear spin
perturbation. Assuming either a complete basis set or a basis set
that is not dependent on the derivative parameters (which is the
case for hyperfine coupling), the hyperfine tensor components
for nucleus N are within a spin-unrestricted Kohn�Sham DFT,
which is given as follows: The “first-order” (EV) FCþSD term
reads

AFC þ SD
uv ¼

2gNβN
nR � nβ

∑
r, s
Pð0ÞR�β
sr Æχrjĥ

ðu, vÞ
jχsæ ð4aÞ

and the second-order (linear response) paramagnetic spin orbital�
spin orbit (PSOSO) term is given as

APSOSO
uv ¼

2gNβN
nR � nβ

∑
r, s

PðvÞR�β
sr Æχrjĥ

ðuÞ
jχsæ ð4bÞ

Here, nR and nβ are the numbers of occupied R and β spin orbitals,
respectively, expressed in the basis set {χr} with MO coefficients
Cri
(0) (unperturbed) and Cri

(v) (perturbed by the v component of the
nuclear spin magnetic moment or by the v component of the SO
operator derivative with respect to the electron spin operator).
Furthermore, Prs

(0)R�β and Prs
(v)R�β are elements of the scalar

relativistic unperturbed and first-order spin density matrices:

Pð0ÞR�β
rs ¼ ∑

i

nRi C
ð0ÞR
ri C

�ð0ÞR
si � ∑

i

n
β
i C

ð0Þβ
ri C

�ð0Þβ
si ð5aÞ

PðvÞR�β
rs ¼ ∑

i

nRi ½C
ð0ÞR
ri C

�ðvÞR
si þ C

ðvÞR
ri C

�ð0ÞR
si �

� ∑
i

n
β
i ½C

ð0Þβ
ri C

�ðvÞβ
si þ C

ðvÞβ
ri C

�ð0Þβ
si � ð5bÞ

The ZORA12 one-electron Fock operator in the absence of
electromagnetic fields used in DFT computations with a local
effective potential V reads (in atomic units)

ĥ ¼ V þ
1

2
ðBσ 3 p̂ÞK ðBσ 3 p̂Þ

¼ V þ
1

2
p̂K p̂þ

1

2
iBσ 3 ðp̂K � p̂Þ ð6Þ

with

K ¼
2c2

2c2 � V
ð7Þ

The potential in K is typically approximated by a sum of local
atomic potentials, which represents an efficient but quite accurate
approximation of ZORA used in several electronic structure pro-
gram packages.23�26 In a hybrid DFT scheme, part of the effective
exchange potential in eq 6 may be combined with a fraction of

Hartree�Fock exchange. In eq 6, σB is the 3-vector of 2 � 2 Pauli
spinmatrices, with componentsσB= (σx,σy,σz), and p̂ =�i= is the
momentum vector operator. Regarding the importance of two-
electron SO terms see refs 11 and 27. The scalar relativistic part of
eq 6 is taken to be the zeroth-order Fock operator,

ĥ
ð0Þ

¼ V þ
1

2
p̂K p̂ ð8Þ

while the last term on the right-hand side of eq 6, the ZORA SO
operator, is considered to be one of the perturbations. The nuclear
spin magnetic perturbation is included in the formalism, following
the derivations of refs 11, 13, and 28. The relevant perturbation
operators to calculate hyperfine tensors for point nuclei are given by

ĥ
ðuÞ

¼ �
i

2
½K ðUN � =Þu þ ðUN � =ÞuK � ð9aÞ

ĥ
ðvÞ

¼
i

2
ðp̂K � p̂Þv ð9bÞ

ĥ
ðu, vÞ

¼
1

2
fδuv= 3 ðK UNÞ �=uðK UN, vÞg ð9cÞ

In the previous equations,

UN ¼ c�2 rN
rN3

� �

ð10Þ

assuming a nuclear point magnetic dipole. Here, rN is the
electron�nucleus distance vector and rN is its length. (For
incorporation of a finite nucleus model, see below.) The operator
in eq 9c is the sum of the ZORA analogs of the FCþSD operator
derivatives, and eq 9a is the paramagnetic spin�orbit (PSO)
operator. Regarding eq 9c, it is important to keep inmind that the
derivations leading to the operators as published in refs 28 and 29
implicate that= in this operator only acts inside the operator, not
on any function to the right-hand side of the expression. To
indicate this, the operator has been enclosed between curly
brackets { 3 3 3 }. The operator in eq 9b does not occur explicitly
in eqs 4a and 4b. It is used to calculate the perturbed MO
coefficients and density matrices (eq 5b) using methods to solve
the coupled-perturbed Kohn�Sham (CPKS) equations that have
been described elsewhere.29�31 We have also implemented the
LR part of the computations with the reverse order of perturba-
tion operators, i.e. by solving the CPKS equations for the
perturbation eq 9a for each nucleus, instead of using eq 9b, and
obtained identical results as required by the interchange theorem
of double perturbation theory.
2.2. Nonrelativistic Limit, Pauli Approximation, and Point-

Charge Models. The nonrelativistic limit within the ZORA
framework is given byK f 1. In this case, the hyperfine tensor
has only the EV contribution, because the spin derivative of the
SO operator (ĥ(v)) vanishes. If the hyperfine tensor is calculated
by using the Pauli approximation of the SO operator, the
operator of eq 9b approximates to

ĥ
ðvÞ
ðPauliÞ ¼

i

4c2
ðp̂V � p̂Þv ð11Þ

corresponding to the substitutionK fV/(2c2). Schreckenbach
and Ziegler32 used the operator that is described by eq 11 for
LR calculations of molecular g-tensors based on the Pauli
approximation. For LR calculations of g-tensors, the SO “spin
perturbation” yielding the operator ĥ(v) is the same as that used in
the calculations of hyperfine tensors.
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The nonrelativistic limit of the operator ĥ(u) in eq 9a is the
well-known PSO operator that is used to calculate nonrelativistic
nuclear magnetic shielding and J-coupling tensors. The factor of
1/c2 in this operator indicates the smallness of nuclear hyperfine
terms and corresponds to μ0/(4π) in SI units converted to
atomic units. Threfore, this factor is not altered when taking a
c f ¥ nonrelativistic limit.
The nonrelativistic limit of the FCþSD operator derivative is

obtained with the help of

ru
rN
rN3

� �

¼
4π

3

� �

δuvδðrNÞ þ
δuv

rN3
� 3

rN, urN, v
rN5

� �

After lettingK f 1, taking the derivatives of UN in eq 9c, and
regrouping terms, the operator reads

ĥ
ðu, vÞ

ðnrelÞ ¼
1

2c2
8π

3

� �

δuvδðrNÞ �
δuv

rN3
� 3

rN, urN, v
rN5

� �� �� �

ð12Þ

Using this operator in the first term on the rhs of eq 4a yields
an expression that is equivalent to the hyperfine tensor
contributions given in eqs 2 and 3 of Eriksson,2 apart from a
factor of ge βe, which equals 1 in atomic units used here, and a
factor of c�2 that is not present in Eriksson’s equation. This
factor, again originating from μ0/(4π) in SI units, indicates
the smallness of the nuclear hyperfine terms, relative to other
perturbations.
Consider a situation where the hyperfine interaction is caused

by one singly occupied molecular orbital (SOMO), with all R
orbitals, for the sake of simplicity, assumed to have the same
shape as their β counterparts, and nR� nβ = 1 in eqs 4a and 4b. In
this case, the density matrices in eqs 5a and 5b are both reduced
to one term from the SOMO. The assumption that the SOMO is
completely localized on one paramagnetic center (for example, a
heavy metal) located at the coordinate origin leads to a purely
dipolar “through space” hyperfine tensor. Approximating the
SOMO spin density as a delta distribution (a point spin density)
simplifies the nonrelativistic EV in eq 4a to

Adip
u, vðnrelÞ �

gNβN
c2

3
rN, urN, v
rN5

� �

�
δuv

rN3

� �

ð13Þ

(in atomic units). This simplification is commonly applied in
calculations of pseudo-contact (PC) shifts.33

2.3. Calculation of OperatorMatrix Elements, Finite Nucleus
Model. The perturbation operators for hyperfine coupling and
g-factors, such as other magnetic perturbation operators in ZORA,
involve derivatives ofK . In numerical integrations, it is desirable to
avoid the calculation of these derivatives. By using the turnover rule
for the momentum operator and/or partial integration, the deriva-
tives can be switched over to the basis functions χμ and χν instead,
assuming that the basis functions vanish at the integration limits.
For the PSO operator (eq 9a) needed for hyperfine coupling,

the AO matrix elements are the same as those reported in ref 29,
which read as follows (after partial integration):

hðuÞrs ¼ �
i

2

Z

d3r 3K ðUN � ½χ
�

r ð=χsÞ � ð=χ
�

r Þχs�Þu ð14Þ

To calculate the analogous matrix elements needed for g-tensors,
one simply replaces UN by r/2, as outlined in ref 11. In some of
the calculations, we have adopted a finite nucleus model in the
form of Gaussian nuclear charge distributions.34,35 In this case,

the nuclear charge density is given as

FGaussN ðRÞ ¼ ZN
ξN
π

� �3=2

exp � ξN jR � RN j
2

� �

ð15Þ

where RN is the charge center of nucleusN and R is a position in
space where the nuclear charge density is evaluated. The
exponent ξN is readily calculated from the nuclear isotope
mass.34We define~rN = (ξN)

1/2rN. With the finite nucleus model,
the matrix elements of the PSO operator can be straightforwardly
calculated from

hðuÞrs ¼ �
i

2

Z

d3r 3K P
3

2
,~r2N

� �

ðUN � ½χ
�

r ð=χsÞ � ð=χ
�

r Þχs�Þu

ð16Þ

where P(a,x) is the lower incomplete gamma function ratio:

Pða, xÞ ¼
1

ΓðaÞ

Z x

0
dt ta � 1 exp � tð Þ ð17Þ

For a point nucleus, the value of P(3/2,~rN
2) in eq 16 is equal to 1

and eq 14 is recovered. The adoption of a Gaussian nucleus
model in other hyperfine integrals leads to the same substitution
of K UN by K P(3/2,~rN

2)UN, which we therefore adopt in the
following. Furthermore, the potential energy terms used to
determine K in eq 7 and the electron�nucleus potential used
in ĥ(0) are calculated based on the Gaussian nucleus model. For
further details (presented in the context of calculations of nuclear
indirect spin�spin coupling), please see ref 31.
For the bilinear FCþSD operator in eq 9c, the derivatives

are only acting within the operator. Thus, a simple partial
integration shifts the derivative to the product of the basis
functions instead:

hðu, vÞrs ¼ �
1

2
δuv

Z

d3rK P
3

2
,~r2N

� �

UN 3=ðχ
�

r χsÞ

þ
1

2

Z

d3rK P
3

2
,~r2N

� �

UN, v=uðχ
�

r χsÞ ð18Þ

For the matrix elements of the spin�orbit operator derivative
ĥ(v), we have adopted the same technique that was used for our
recent development for g-tensor computations. The relevant AO
integrals are calculated numerically using

hðvÞμν ¼
i

2

Z

d3rðK � 1Þ½f=χ
�

μg � f=χνg� ð19Þ

As for the other operator matrix elements, with the Gaussian
nucleusmodel, the functionK used in the numerical integration
is not the same as when a point nucleus model is adopted.

3. COMPUTATIONAL DETAILS

All computations were carried out with a developers version
(pre-2010 release) of the Amsterdam Density Functional (ADF)
package.21 Geometry optimizations of the molecules in the test
set employed the BP86 functional36�38 and a triple-zeta polar-
ized STO all-electron basis set with two sets of polarization
functions for all atoms (TZ2P from the ADF basis set library),
and the scalar ZORA spin-unrestricted formalism. The small
molecule test set is a subset of that used in our recent benchmark
of ZORA g-tensor calculations.11 Point-group symmetry was not
explicitly applied in the computations. Calculations of the
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hyperfine tensors were based on the optimized geometries and
employed a setting of 7.0 for the numerical integration accuracy
parameter to ensure well-converged results and accurate pertur-
bation operator integrals.

The functionals used in the hyperfine-tensor calculations were
the Perdew�Burke�Ernzerhof (PBE) nonhybrid functional
and, for comparison, the PBE-based PBE0 hybrid functional,39,40

which affords 25% Hartree�Fock exchange. In the calculation
of hyperfine tensors, a basis set that includes high-exponent
functions must be used to accurately calculate the Fermi-
contact term.41 Therefore, a custom STO basis set (JCPL)
was used, based on previous work on nuclear spin�spin
coupling.42,43 This basis set includes functions with high ex-
ponents that are required to model the electronic structure
close to the nucleus. To determine the effect of the point-nuclei
approximation, calculations using a Gaussian finite-nucleus
correction were carried out with HgH, HgF, and NpF6, using
the implementation in ref 31, and as outlined above. The
comparison between the LR method outlined in Section 2 and
the EV approach made use of the ADF implementation by van
Lenthe et al.13 For comparison, computations with both codes
were performed with spin-unrestricted scalar ZORA orbitals,
as well as with spin-restricted orbitals populated using config-
urations with nR 6¼ nβ.

The structures of Ru(III) complexes chosen for comparison
with the work of Rastrelli and Bagno22 were optimized according
to the procedure outlined by Rastrelli and Bagno, which is almost
identical to that detailed above (BP86/TZ2P, no symmetry, spin-
unrestricted scalar ZORA).22 Hyperfine calculations were then
carried out as previously described, and also with the Becke88�
Perdew86 (BP) nonhybrid functional and with the popular
Becke three-parameter hybrid B3LYP.44 In order to save some
computational expense, the JCPL basis was used solely for the
hydrogen atoms for these three molecules; the regular ZORA-
optimized TZ2P basis from the ADF basis set library was
used for all other atoms. Since the valence basis functions in
JCPL are derived from TZ2P, the use of this locally dense basis
is not expected to lead to a basis set imbalance for the Ru(III)
complexes.

When calculating properties using basis sets as large as JCPL
used in the current study, near-linear dependencies may form in
the basis set. Overcompleteness of the AO basis can be remedied
by removing problematic linear combinations of the basis func-
tions. Such a case occurred with some of the molecules when
using the hybrid functionals (PBE0 and B3LYP), in which case a
check for linear dependency is automatically switched on in the
ADF program. Some molecular orbitals (MOs) were removed
accordingly from the self-consistent field procedure and from the
MO set used in the calculation of the magnetic properties in
order to reduce numerical noise.

4. RESULTS AND DISCUSSION

4.1. Hyperfine Coupling: General Performance of the LR
ZORA Approach, Basis Set Effects, and Finite Nucleus Cor-
rections.A summary of the results of the calculation for the suite
of test molecules using the various approaches is shown in
Table 1. Most results are given with four significant figures;
some small numbers are given to within 3 decimal places. Very
small values may be affected by the numerical precision of the
calculation. All hyperfine couplings are given in SI units of MHz.
These can be converted to units of Gauss (G), using the

following formula:3

AMHz ¼ 2:8025
giso

ge

 !

AGauss ð20Þ

where giso is the isotropic g-factor (LR data consistent with the
hyperfine couplings may be taken from ref 11), and ge is the free-
electron g-value. Electron paramagnetic resonance (EPR) experi-
ments cannot straightforwardly deduce the sign of the isotropic
hyperfine coupling; therefore, the sign of the experimental
hyperfine coupling has been listed in agreement with the sign
predicted by the computations.
There is excellent agreement between the method developed

in this study and the EV method of van Lenthe et al. for atoms in
the first to third rows. For the heavier elements (e.g., Hg), the
agreement is still very close, although it can be seen that,
percentage-wise, there are significant differences in the PSOSO
mechanism for these linear molecules. A breakdown of the
perturbational treatment of the SO operator for linear systems
echoes that for g-tensors; for a detailed discussion and further
references, we refer the reader to refs 11, 54, and 55 . The overall
good agreement between the LR and EV treatment of hyperfine
coupling is not surprising, since the hyperfine tensor has large
nonrelativistic and scalar relativistic contributions, which are
calculated to be the same with both methods.
In the spin-restricted calculations, we have calculated the

FCþSD and the PSOSO terms obtained from the first-order
EV approach separately. When comparing these results to those
from the spin-restricted LR calculations, it is apparent that for
light atomic systems where SO coupling is small, the two
mechanisms yield essentially identical results. Continuing with
the comparison of the spin-restricted results, starting with SiOH
and SiSH, one begins to observe small deviations in the dom-
inating FCþSD term between the two approaches, which is due
to SO coupling slightly affecting the shape of the ground-state
unperturbed MOs in the EV computations. The PSOSO me-
chanism also begins to exhibit some differences; we remind the
reader that, in the EV approach, this contribution is calculated
from an expectation value, just like the FCþSD mechanism,
whereas in the LR approach the PSOSO contribution is calcu-
lated from the linear response of the orbitals to either the PSO or
the SO operator (see section 2).
Larger deviations between calculations and experiment are

found for the hyperfine coupling constant of the neptunium
nucleus of NpF6, with the first-order spin-polarized EV treatment
underestimating the isotropic coupling and the LR spin-polar-
ized treatment overestimating the isotropic coupling. The spin-
restricted calculations are clearly not suitable at all for this
coupling constant. Sizable deviations also occur for the fluorine
nuclei in HgF, TiF3, and NpF6, with both the LR and EV
methods underestimating the magnitude of the experimental
isotropic hyperfine value. This underestimation is often corre-
lated with the number of lone pairs on the atom of interest and
the deficiency of commonly used (LDA and GGA, but also
hybrid) functionals in accurately modeling the spin densities with
nuclei-containing multiple lone electron pairs.10,56,57

The effect of SO coupling is explicitly (separately) obtained in
the set of LR data. While this effect generally small for first- and
second-row elements, the need for SO treatment increases with
increasing atomic number. Where the SO term is large (in HgH
and NpF6), its inclusion substantially improves the results,
compared to a method neglecting this effect. Indeed, for the
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Table 1. Summary of Calculated and Experimental Isotropic Hyperfine Coupling Constants (All Values Given in MHz)a

Spin-Polarized LRb (PBE) Spin-Polarized LRb (PBE0) Spin-Restricted LRb (PBE) Spin-Polarized Spin-Restricted EVc

FCþSD PSOSO total FCþSD PSOSO total FCþSD PSOSO total EV FCþSD PSOSO total exp. previous calc.

CH2

C 208.3 �0.180 208.2 223.7 �0.180 223.5 133.5 �0.153 133.4 209.1

H �19.39 0.009 �19.38 �25.51 0.009 �25.50 39.66 0.010 39.67 �19.43

CH3

C 66.64 �0.152 66.49 82.05 �0.157 81.89 0.071 �0.100 �0.029 67.02 0.070 �0.100 �0.029 108d

H �65.47 0.018 �65.45 �74.20 0.017 �74.19 0.002 0.022 0.024 �65.44 0.001 0.022 0.024 �64.46d

HCO

C 385.4 �0.478 384.9 393.4 �0.495 392.9 367.0 �0.581 366.4 386.8 367.0 �0.591 366.4 365e

H 375.6 �0.083 375.5 378.5 �0.084 378.5 334.6 �0.109 334.5 375.2 334.6 �0.119 334.5 354e 343.1k

O �22.11 0.490 �21.62 �32.21 0.468 �31.74 �13.95 0.538 �13.41 �21.72 �13.95 0.540 �13.41

HSiO

Si �541.8 0.878 �540.9 �557.4 0.859 �556.5 �586.7 0.902 �585.8 �541.2 �586.7 0.903 �585.8 630f

H 434.0 �0.027 434.0 438.4 �0.027 438.4 359.3 �0.032 359.2 435.4 359.3 �0.032 359.2 450f 397.1k

O �5.718 0.099 �5.619 �9.740 0.050 �9.689 �4.492 �0.068 �4.560 �5.738 �4.492 �0.060 �4.561

HSiS

Si �509.0 1.648 �507.3 �517.8 1.725 �516.1 �536.1 1.782 �534.3 �506.5 �536.0 1.792 �534.2

H 328.0 �0.066 327.9 328.8 �0.070 328.8 269.1 �0.077 269.0 328.6 269.1 �0.078 269.0 304.9k

S �0.105 0.048 �0.057 0.268 0.186 0.454 4.993 0.409 5.402 0.078 4.991 0.399 5.406

SiOH

O �22.45 0.724 �21.73 �22.27 0.736 �21.53 �24.19 3.602 �20.59 �21.75 �23.97 3.616 �20.48

Si 30.19 6.546 36.74 15.63 7.030 22.66 �2.347 27.41 25.06 37.87 �1.849 26.37 24.48

H 54.72 �0.151 54.56 52.13 �0.149 51.98 53.17 �0.698 52.47 55.37 52.79 �0.877 52.11 51.3k

SiSH

S 26.01 �0.164 25.85 21.34 �0.160 21.18 34.59 �0.256 34.34 26.03 34.57 �0.345 34.30

Si 39.75 4.666 44.42 24.44 5.013 29.45 �0.616 7.816 7.200 44.21 �0.572 7.816 7.202

H 131.8 �0.059 131.7 122.3 �0.058 122.2 114.5 �0.098 114.4 129.7 114.4 �0.099 114.3 109.6k

HgH

Hg 7259 �189.7 7070 7708 �192.3 7516 9725 �221.8 9503 6989 9746 �333.5 9413 7002g 6357l

H 758.8 �1.800 757.0 742.0 �1.624 740.4 566.3 �1.909 564.4 728.4 543.5 �1.928 541.6 710g

HgF

Hg 18480 �22.76 18460 19870 �35.94 19830 20170 �25.55 20140 18420 20070 �63.06 20010 22163h 19292l

F 248.9 �144.8 104.2 299.3 �102.9 196.5 196.8 �183.9 12.91 87.57 188.0 �187.8 0.209 670h

TiF3

Ti �235.8 2.085 �233.7 �202.6 2.796 �199.8 �270.0 3.417 �266.6 �234.1 �269.9 3.435 �266.4 �184.8i �260.8m

F 1.381 0.535 1.916 �18.53 0.597 �17.93 22.59 1.872 24.46 4.484 22.56 1.889 24.45 23.6i 26.1m
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heaviest atom in our test set, neptunium, the isotropic coupling is
predominantly caused by the PSOSO mechanism (∼85% in the
LR calculations). The results for NpF6 somewhat resemble those
that we obtained recently for the Δg-tensor of this complex,11 in
the sense that SO coupling treated at the LR perturbational level
appears to be suitable for predicting the huge magnitude and the
sign of its EPR parameters.
For most test compounds, calculations using the hybrid

functional PBE0 yield results that are close to those obtained
using the nonhybrid PBE functional. Again, larger deviations are
confined to fluorine nuclei in the heavier compounds. For F in
NpF6, the hybrid DFT result agrees best with the experiment.
For Np in NpF6, the two functionals agree, in terms of the total
isotropic coupling, but there are some differences regarding
relative contributions of the FCþSD and PSOSO mechanisms.
The calculations with PBE predict the FCþSD term to be∼10%
of the total coupling, whereas in the calculation with the PBE0
functional, this mechanism becomes insignificant for Np.
The coupling constant calculated with the spin-restricted

methods have a much wider variability than those calculated
with other methods. While this approach seems fair for the
medium atomic weight molecules in our test suite, it yields a
vanishing hyperfine coupling for the simplest singlet radical that
was tested with this method (CH3). The planar geometry of
CH3, combined with the nature of the SOMO, is a typical case
where spin polarization is essential to obtain the correct result. If
the spin-restricted SOMO is a pure C 2p orbital perpendicular to
the CH3 plane, there cannot be any spin density at the carbon
nucleus or at the hydrogen nuclei. As a result, the all-important
contact term vanishes. The situation resembles that for the
phenyl radical as discussed by Rieger.3

It is important to note that, when using spin-restricted orbitals,
the sign of the isotropic coupling is fixed. That is, starting from a
restricted set of orbitals and assigning the SOMO as one of the
R orbitals always results in the FR�β(0) term in eq 2 being
positive. Some of the hyperfine couplings listed in Table 1
contain negative FCþSD contributions because of the negative
magnetic moments for oxygen, silicon, and titanium nuclei. The
spin-polarized calculations for CH3 show that spin�polarization
effects can be large enough to change the sign of the contact
density at a nucleus away from the atom upon which an R spin
SOMO is centered.
The calculations discussed up to this point used point charges

for the nuclei. This approximation is not always suitable,
especially when hyperfine properties for very heavy nuclei are
considered. Indeed, Malkin et al. have reported sizable finite
nucleus size effects calculated for hyperfine coupling constants of
a set of Group 12 compounds including Hg, and for Group 11
atoms.20 Spin-free relativistic DFT calculations using the Douglas�
Kroll�Hess Hamiltonian and a Gaussian nuclear charge distri-
bution yielded finite-nucleus effects that reduced the magnitude
of Hg hyperfine coupling constants by as much as 20% relative
to calculations using a point nucleus, with finite nucleus effects
improving the agreement with experiment. Computations with a
four-component relativistic method also showed reductions in
calculated hyperfine coupling constants, in particular for mer-
cury-containing compounds, although for other molecules the
reduction was not as severe.58

Similar effects have also been investigated in ZORA computa-
tions of NMR spin�spin coupling (J-coupling), which involves
perturbation operators that have the same rN dependence as
those that dominate the hyperfine coupling.31 Finite nucleus
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effects reduced the magnitude of one-bond Hg-ligand coupling
constants typically by up to ∼10%. The correction terms arising
from the finite nuclear volume have different origins: one is the
modification of the electronic structure due to the weakened
electrostatic electron�nucleus potential in the vicinity of the
nuclear radius; the other one arises from the finite range of the
nuclear current density in the perturbation operators, which is
responsible for the nuclear magnetic moment. The level of
treatment by a spherical Gaussian distributionmay be considered
relatively crude, yet the bulk of effects on isotropic hyperfine
couplings (and NMR spin�spin coupling) is obtained with this
straightforward-to-implement model and should be sufficient for
computations of EPR parameters using DFT.
In order to investigate the magnitude of finite nucleus effects in

the present LR ZORA hyperfine coupling calculations, we make a
comparison between point nucleus and Gaussian nucleus calcula-
tions for HgH, HgF, and NpF6. The results of these calculations
are shown in Table 2. The finite nucleus correction decreases the
magnitude of the isotropic hyperfine value for all molecules, but
strongly so only for the heavy nuclei. In the PBE computations, as
well as the PBE0 computations, the effect for Hg is an 8%�9%
reduction of the isotropic coupling. The reduction is less pro-
nounced than that which has been reported previously, but this is
largely a consequence of the JCPL basis set not being able to reach
a converged point-nucleus hyperfine coupling constant with
respect to the augmentation of the basis with high exponent
functions. This point has already been made in ref 31; therefore,
we forego additional computations with basis sets that are more
compatible with point nucleus computations. In previous work by
Malkin et al. using Gaussian basis sets and the second-order

Douglas�Kroll�Hess relativistic two-component Hamiltonian,
the point nucleus Hg hyperfine couplings were larger than those
in the experiment; therefore, finite nucleus effects improved the
agreement with the experiment.20 In our calculations, the trends
for the finite nucleus corrections are the same, reducing the Hg
hyperfine couplings. Because of the overall slightly lower magni-
tudes, the agreement with experiment deteriorates slightly when
changing from point nuclei to finite nuclei. Ultimately, however,
the performance of the computations should be assessed using
the most realistic computational model which, for hyperfine
coupling, should afford finite nuclei. Table 2 demonstrates that
the finite nucleus model primarily affects the FCþSD mecha-
nism, which is to be expected, given the “contact” nature of the
FC operator. As a consequence, the hyperfine coupling for neptu-
nium in NpF6 is hardly affected by finite nucleus corrections
because the hyperfine coupling is dominated by the PSOSO
mechanism. In the PBE computations, where the FCþSD
mechanism is not negligible for Np, a strong reduction (by
∼34%) of this mechanism due to finite nucleus effects is found.
The JCPL basis used for Hg set represents an economic choice in
terms of balancing accuracy and required computational re-
sources. However, additional high-exponent functions may be
needed to fully converge the finite nucleus results for Hg,31 with
respect to augmentation by high-exponent basis functions onHg.
Additional computations were performed for HgF with basis

sets of different flexibility. The results of varying basis set size
with HgF are collected in Table 3. The series of basis sets is not
designed to guarantee monotonous convergence but, instead, is
used here to illustrate the variability of the results when using
small, computationally efficient, basis sets (DZ, DZP), compared

Table 2. Effect of the Finite-Nucleus Approximation on Calculated Hyperfine Coupling (Isotropic Couplings Given in MHz)a

FCþSD PSOSO Total

point finite point finite point finite experimental

Nonhybrid (PBE)

HgH

Hg 7259 6677 �189.7 �190.5 7070 6487 7002b

H 758.8 758.9 �1.800 �1.793 757.0 757.1 710b

HgF

Hg 18480 17180 �22.76 �21.32 18460 17160 22163c

F 248.9 250.6 �144.8 �146.8 104.2 103.8 670c

NpF6
e

Np �293.1 �216.8 �2337 �2338 �2630 �2555 �1994d

F �36.81 �47.20 �10.33 �10.35 �47.13 �47.20 �72.67d

Hybrid (PBE0)

HgH

Hg 7708 7084 �192.3 �192.9 7516 6891 7002b

H 742.0 741.7 �1.624 �1.617 740.4 740.0 710b

HgF

Hg 19870 18440 �35.94 �35.01 19830 18410 22163c

F 299.3 300.2 �102.9 �103.8 196.5 196.4 670c

NpF6
e

Np �19.20 13.40 �2541 �2543 �2560 �2530 �1994d

F �50.71 �50.78 �29.54 �29.61 �80.25 �80.39 �72.67d

aA Gaussian nuclear charge distribution was used as described in ref 59 and section 2; otherwise, the computational protocol remained the same as
previously described. bData taken from ref 50. cData taken from ref 51. dData taken from ref 46. e Six basis function combinations removed due to linear
dependency.
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to basis sets that one may consider as being of good to very good
quality (QZ4P and, to some extent, TZ2P). Regarding the
convergence for high exponent augmentation, please see ref
31. Both JCPL and QZ4P have several high-exponent functions
for Hg but only JCPL has exponents that significantly exceed
the nuclear charge for F. Therefore, the effect from the high-
exponent augmentation is more strongly seen in the FCþSD
contributions of the F hyperfine coupling. For Hg, the JCPL and
QZ4P results are more similar, relative to the magnitude of the
FCþSD term. Across the table, there is a readily apparent trend
for the FCþSD mechanism: increasing the number of basis
functions increases the FCþSD contribution, better matching
experiment. The sensitivity of the FC mechanism and its
relativistic generalizations in nuclear spin�spin coupling is
well-documented7,60,61 and also is seen here to affect the
hyperfine coupling significantly. Table 3 affords additional results
with aHg basis of higher augmentation (TZ2P3), affording Slater
exponents of up to 4 � 104 but otherwise comparable to JCPL,
which was previously used for a J-coupling benchmark.31 Com-
pared to the JCPL basis, which is limited to exponents up to 1�
104, there is a slight increase in the Hg hyperfine couplings, but
not sufficient to obtain quantitative agreement with the experi-
ment. We observe an effect on the F hyperfine couplings when
comparing JCPL and TZ2P3, showing that an improved descrip-
tion of the Hg valence orbitals core tails is coupled to changes in
the outer region of these orbitals as well. The coupling for
fluorine in HgF, although showing some improvement with the
larger basis sets, remains conspicuously underestimated, com-
pared to experiment. According to Table 1, with the PBE
functional, the comparison of the LR approach with the EV
approach reveals some shortcomings of the LR approach for the
linear HgF molecule, but not to an extent that would indicate a
severe breakdown of the LR calculations. There is a strong
cancellation between the FCþSD and the PSOSO mechanisms
for fluorine. Such a balance of opposing terms tends to expose

deficiencies in the computational model. We tentatively attribute
the discrepancy between the calculated and the experimental
fluorine hyperfine coupling for HgF to approximations in the
density functionals preventing an accurate description of the spin
density distribution and its linear response in this system.
4.2. Paramagnetic NMR Effects in Some Ru(III) Complexes.

Knowledge of the hyperfine tensor can be used in the prediction
and analysis of paramagnetic NMR shifts.4,8,62,63 The contact
shift due to the hyperfine interaction is, to a first approximation,
given by64,65

δFC ¼
gisoβe
gNβN

SðSþ 1Þ

3kT
Aiso ð21Þ

where giso is the isotropic average of the g-tensor. Because of this
dependence on the g-tensor, prediction of pNMR shifts is not
straightforward, as the dependence of the pNMR shift on excess
R or β electron spin density at a nucleus is to be combined with
the sign and magnitude of giso. For a given calculated sign of Aiso,
it is possible for the contribution to pNMR shift to be of the
opposite sign if the value of giso is negative. This situation is not
typically encountered for organic radicals, but it may well be the
case for complexes that contain heavy elements.
In a previous study, Rastrelli and Bagno investigated the effect

of relativistic effects in calculations of ligand pNMR shifts of
several Ru(III) compounds of potential pharmaceutical interest,
with particular emphasis placed on the contribution of contact
shifts to the overall pNMR shifts.22 As a first application of our
new LR ZORA method for computations of hyperfine tensors,
calculations were carried out for three complexes selected from
the test set of Rastrelli and Bagno: NAMI, Ru(acac)3, and
Ru(tfac)3, whose structures are shown in Figure 1. Because the
isotropic g-factor plays a role (as seen in eq 21), g-tensors were
calculated using a compatible ZORA method (i.e., first-order EV
g-tensors were combined with EV hyperfine tensor calculations,

Table 3. Effect of Basis Set Flexibility on the Calculated Calculated Isotropic Hyperfine Coupling Constants of HgF (Isotropic
Couplings Given in MHz)a

DZ TZP TZ2P QZ4P JCPL TZ2P3b experimentc

Non-Hybrid (PBE)

Hg

FCþSD 14930 15390 15410 1704 17180 17510

PSOSO �15.01 �15.53 �13.57 �21.16 �21.32 �18.7

total 14920 15370 15400 17020 17160 17490 22163

F

FCþSD �14.94 54.22 62.52 230.9 250.6 256.0

PSOSO �150.0 �146.8 �141.7 �146.1 �146.8 �143.7

total �165.0 �92.58 �79.21 84.87 103.8 112.3 670

Hybrid (PBE0)

Hg

FCþSD 16070 16550 16620 18300 18440 18760

PSOSO �27.77 �30.30 �28.04 �34.77 �35.01 �31.80

total 16040 16520 16600 18260 18410 18730 22163

F

FCþSD �0.650 101.4 108.8 273.5 300.2 307.5

PSOSO �104.4 �103.1 �100.3 �104.6 �103.8 �102.5

total �105.1 �1.686 8.467 168.9 196.4 205.0 670
aComputations with a Gaussian nuclear model. bTZ2P3 on Hg (see ref 31 and text for details); JCPL for F. c Experimental data taken from ref 51.
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and LR g-tensors were combined with LR hyperfine tensor
calculations).

In Table 4, calculated isotropic hyperfine couplings and
isotropic g-factors are collected and compared with data pre-
viously reported by Rastrelli and Bagno. All calculations that
employ a relativistic Hamiltonian are seen to yield quite
comparable results, with very little deviation among the g-
tensors and only slight variations in the isotropic hyperfine
couplings. The differences in the hyperfine couplings are likely a
consequence of the use of the JCPL basis for the protons, as
opposed to the universal use of the TZ2P basis by Rastrelli and
Bagno. Comparison between the nonhybrid functionals BP86
and PBE shows almost negligible differences with regard to
both EV and LR approaches. At the relativistic level, switching
to a hybrid functional shows a tendency to increase both the
hyperfine coupling magnitudes (with some notable exceptions)
as well as the isotropic g-factors. The effects from switching to
the hybrid are noticeable but not dramatic for the three Ru(III)
complexes.
Table 5 lists the pNMR contact shifts predicted from eq 21,

based on the calculated isotropic hyperfine and g-tensor data of
Table 4. There is generally good agreement in both magnitude
and sign among all relativistic methods, with the main exception
being the H2 proton of NAMI. Overall, the comparison with
the experiment was not quantitative in ref 22, but the overall
trends for the set of complexes were reproduced. Because of the
smaller benchmark set used here to test the new implementa-
tion, we forego a discussion of the chemical shifts and refer the
reader to ref 22. In agreement with Rastrelli and Bagno, the
calculated contact shifts do not seem to be negative enough for the
H2�H4 andNH protons of NAMI to bring the sign of the overall
calculated and experimental chemical shifts for these protons to
agreement. The calculated contact shifts for Ru(acac)3 and Ru-
(tfac)3 are large enough such that the sign of the overall calculated
chemical shifts match the experiment, but the magnitude of the
contact shifts are too large for the methyl protons.
Knowledge of the hyperfine tensor, along with the g-tensor,

can also be used in the prediction of pNMRpseudo-contact (PC)
Figure 1. Structures selected from the Rastrelli and Bagno ruthenium
complex benchmark set. See ref 22.

Table 4. Isotropic Hyperfine Couplings and g-Factors Calculated for the Present Work and Comparison with Data from Rastrelli
and Bagno22 a

Rastrelli and Bagno22 EVd LRe

Non-Rel.b Rel.c (PBE) (BP86) (PBE) (BP86) (B3LYP)

NAMI

giso 1.858 2.194 2.193 2.193 2.203 2.203 2.233

CH3 �0.20 �0.32 �0.316 �0.307 �0.327 �0.323 �0.336

H2 0.08 0.094 0.123 0.128 �0.034 �0.019 �0.049

H3 �0.03 �0.11 �0.067 �0.067 �0.188 �0.234 �0.186

H4 �0.10 �0.15 �0.142 �0.145 �0.142 �0.143 �0.163

NH1 �0.06 �0.072 �0.063 �0.062 �0.070 �0.074 �0.102

Ru(acac)3

giso 2.683 2.138 2.103 2.102 2.123 2.122 2.237

CH3 �0.54 �0.59 �0.676 �0.709 �0.669 �0.711 �0.726

H-β �0.68 �0.87 �1.382 �1.557 �1.436 �1.595 �1.286

Ru(tfac)3

giso 2.587 2.084 2.082 2.082 2.103 2.102 2.209

CH3 �0.81 �0.89 �0.693 �0.792 �0.702 �0.744 �0.828

H-β �1.50 �1.87 �1.617 �1.846 �1.730 �1.899 �1.586
a Isotropic g-factors were calculated using a method equivalent to that used in the calculation of the hyperfine tensor. bHyperfine couplings in MHz.
Gaussian09/B3LYP with cc-pVTZ on H,C,N,O,S,F,Cl and DZVP on Ru. cADF/EV/BP86/TZ2P. dEV = expectation value approach (“first-order”). eLR =
linear response approach (“second-order”).
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shifts. An approach for calculating the isotropic PC contribu-
tion was previously derived by McConnell and Robertson,67

expanded upon by Kurland and McGarvey,65 and discussed in
detail by Bertini et al.33 This approach approximates the para-
magnetic center as a point similar to eq 13. The overall PC shift
resulting from the point approximation may take many forms,
including33

δpcs ¼
1

12πr5
Trf3r X ðr 3 χÞ � r2χg ð22aÞ

δpcs ¼
1

4πr3
ðχzz � χÞ

2z2 � x2 � y2

2r2
þ ðχxx � χyyÞ

x2 � y2

2r2

"

þ χxy
2xy

r2
þ χxz

2xz

r2
þ χyz

2yz

r2

#

ð22bÞ

δpcs ¼
1

4πr3
ðχzz � χÞ

3 cos2 θ� 1

2
þ ðχxx � χyyÞ

sin2 θ cos 2φ

2

"

þ χxy sin
2 θ sin 2φþ χxz sin 2θ cos φþ χyzsin 2θ sin φ

#

ð22cÞ

where r is the vector from the paramagnetic center to the NMR
nucleus of interest, r is the distance |r|, and θ and φ are polar
angles with respect to the principal axes. The principal compo-
nents of the magnetic susceptibility tensor χ can be obtained
using the principal elements of the g-tensor:33

χii ¼ μ0βe
2gii

2SðSþ 1Þ

3kT
ð23Þ

An alternate approach to calculating PC shifts that arises from a
rigorous derivation of paramagnetic NMR shielding tensors pre-
viously carried out by Moon and Patchkovskii,8 and shown by
Hrob�arik et al. to be applicable tometal complexes,62does notmake
particular assumptions about the spatial distribution of the spin

density from which the dipolar hyperfine tensor is calculated. The
PC shift can be calculated in such a way by

δpcs ¼
βe

βNgN

SðSþ 1Þ

9kT
Tr½gAT

dip� ð24Þ

with all constants given in SI units, and the traceless dipolar hyperfine
tensor Adip = A� Aiso1 with Aiso being the isotropic value of the
hyperfine tensor, and1 being a 3� 3 identitymatrix. The superscript
T denotes a transpose. Because of the symmetry of the g-tensor,
eq 24 can bewritten in several equivalent forms, differing in the order
of gAdip matrix multiplication and whether or not the transpose of
Adip is used. Hrob�arik et al. obtained an equivalent expression for the
PC shift.62 We adopt the coordinate frame used by Moon and
Patchkovskii,8 where the g-tensor is diagonal and the A-tensor is
transformed to the principal axis system (PAS) of the g-tensor. The
Adip tensor (given in SI units of Joules) can be approximated in the
same way as in the derivation leading up to eq 13, or alternatively,
from the Hamiltonian expression for interacting magnetic dipoles:

Ĥ¼ �
μ0
4π

"

3ðμN 3 rÞðμe 3 rÞ
r5

�
μN 3μe

r3

#

ð25Þ

¼
μ0
4π

geβegNβN

"

3ðI 3 rÞðI 3 rÞ
r5

�
I 3 S
r3

#

ð26Þ

where μN is the nuclear magnetic moment operator (μN =
γNI = gNβNI) and μe is the magnetic moment for the electron.
In eq 26, the magnetic moment of a free electron (μe =�geβeS)
was used, and, under this approximation, the resulting equation
for the traceless dipolar hyperfine tensor is identical to eq 13
(given here in SI units):

Adip
u, v �

μ0
4π

geβegNβN 3
rN, urN, v
rN5

�
δuv

rN3

� �

ð27Þ

In molecules that contain heavy elements, particularly transi-
tion metals, such an approximation is likely not valid and a better

Table 5. Comparison of pNMR Contact Shifts for the Ru(III) Complexes of Figure 1 Estimated from eq 21, Using the Data from
Table 4a

Rastrelli and Bagno22 EVd LRe

Non-Rel.b Rel.c PBE BP86 PBE BP86 B3LYP

NAMIf

CH3 �6.25 �9.41 �9.166 �8.905 �9.513 �9.412 �9.914

H2 2.45 2.73 3.580 3.726 �0.991 �0.554 �1.447

H3 �0.98 �3.21 �1.954 �1.955 �5.478 �6.818 �5.494

H4 �3.29 �4.29 �4.107 �4.219 �4.138 �4.167 �4.814

NH1 �1.99 �2.11 �1.820 �1.793 �2.040 �2.156 �3.013

Ru(acac)3
g

CH3 �19.3 �16.8 �18.36 �19.27 �18.35 �19.50 �21.00

H-β �24.2 �24.6 �37.56 �42.32 �39.39 �43.75 �37.19

Ru(tfac)3
h

CH3 �25.4 �24.7 �18.85 �21.53 �19.26 �20.43 �23.86

H-β �46.7 �51.5 �43.96 �50.17 �47.50 �52.12 �45.72
a Physical constants used in eq 21 are those reported in ref 66. bGaussian09/B3LYP with cc-pVTZ on H,C,N,O,S,F,Cl and DZVP on Ru. cADF/EV/
BP86/TZ2P. d EV = expectation value approach (“first-order”). e LR = linear response approach (“second-order”). fData obtained at 25 �C. gData
obtained at 32 �C. hData obtained at 29 �C. See ref 22.
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expression for the electron spin magnetic moment is μe =
� βegS, where g is the full g-tensor.1 By substituting this into
eq 25, one can obtain an expression for the dipolar hyperfine
tensor:

Adip �
μ0βegNβN

4π

� �

T 3 g ð28Þ

where T = r�5[3rr � r21] is the geometric factor seen in eqs 13
and 27; this is consistent with McConnell and Robertson’s
derivation.67 Substituting eq 28 into eq 24 results in the
equations given by Bertini et al. (eqs 22a�22c),33 assuming
diagonal g and magnetic susceptibility tensors.
To compare the two approaches, the isotropic PC shifts were

calculated for the Ru(III) complexes of the Rastrelli and Bagno
study discussed above. The results are collected in Table 6. The
calculated g-tensor was diagonalized and both the approximate
hyperfine tensor calculated using eq 24 and the tensor from the
ZORA DFT calculations were transformed to the PAS of g
accordingly. The conversion factor used for the calculated ZORA
hyperfine tensor uses ge. Therefore, in order to directly compare
the two approaches, the hyperfine tensor from ADF was first
divided by the value of ge, and then multiplied by the calculated
g-tensor in order to arrive at eq 28.
The agreement between the two methods reveals some

significant differences. However, there is universal agreement
in sign. (See the Supporting Information for more detailed data.)
The discrepancies between the two methods must be attributed
to the point-dipole approximation underlying eq 22a, which is
not used in the PC shifts calculated from eq 24. Visualization of
the SOMOs for the Ru(III) complexes (see the Supporting
Information) demonstrates that these orbitals have a significant
spatial extension; thus, an approximation that neglects the spatial
distribution of the spin density can be expected to break down to
some extent. The PC shifts calculated from the full ZORA DFT
hyperfine tensors (eq 24) are in most cases smaller in magnitude
than those calculated with the point-dipole approximation.
Qualitatively, the situation is similar to where one considers the
difference of the electrostatic energy between two point charges
and the interaction between a point charge and a continuous

spherical charge distribution, with the latter being smaller in
magnitude. The most noticeable discrepancies are found with
the H-β protons on Ru(acac)3 and Ru(tfac)3. Two of these
protons on each complex are bonded to carbon atoms that contain
significant electron density from the SOMO. Considering the
spatial distribution of the spin density in the hyperfine tensor
computations results in a sizable increase of calculated PC shift
magnitudes for Ru(acac)3, and a slightly smaller (but still sig-
nificant) increase with the corresponding protons in Ru(tfac)3.
The other H-β protons, which lie along the principal axis of their
respective complexes, do not afford SOMO density on the
adjacent carbons; therefore, the effect is not as large.
Therefore, the trend is that the spatial extension of the SOMO,

compared to a point spin density, will yield a smaller PC shift,
potentially excluding cases where the SOMO is significantly
delocalized to regions near the nucleus for which the PC shift is
being calculated.
Isosurface plots of the SOMOs and tables with individual

proton contact and PC shifts are available in the Supporting
Information.

5. SUMMARY AND OUTLOOK

A density functional theory (DFT)-based method for calculating
the electron paramagnetic resonance hyperfine coupling tensors,
using second-order perturbation theory and the relativistic zeroth-
order regular approximation (ZORA) Hamiltonian, has been
developed and tested for radicals with few atoms and for three
Ru(III) complexes. The implementation (1) makes use of Slater-
type orbital (STO) basis sets, (2) is capable of both nonhybrid
and hybrid DFT computations, and (3) supports a Gaussian
finite nucleus model. The new procedure performs well,
compared to hyperfine couplings calculated using an expecta-
tion value (first-order) approach developed previously by van
Lenthe et al.13 Using a hybrid functional shows a tendency to
increase the magnitude of the calculated hyperfine couplings.
The use of a finite nucleus model may significantly improve the
agreement with the experiment for very heavy atoms. The role of
basis set was also investigated, with the requirement for high-
exponent basis functions to describe the core electronic structure
along with flexibility in the valence region being illustrated in
computations on HgF. Preliminary test calculations of contact
and pseudo-contact paramagnetic NMR chemical shifts based on
calculated hyperfine and g-tensors for a set of Ru(III) complexes
demonstrate that the method is computationally efficient.

’ASSOCIATED CONTENT

bS Supporting Information. Supporting Information is
available containing information about individual proton shifts
and SOMO distribution for the Ru(III) complexes. This infor-
mation is available free of charge via the Internet at http://
pubs.acs.org.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: jochena@buffalo.edu.

’ACKNOWLEDGMENT

The authors acknowledge support of this research from the
Center of Computational Research at SUNY Buffalo, and

Table 6. Comparison of eq 22a and eq 24 in Calculating
Pseudo-contact Shifts in Selected Ru(III) Complexesa

Chemical Shift (ppm)

eq 22a33 eq 24

NAMIb

CH3 �2.31 �1.41

H2 �3.52 �2.09

H3 �4.51 �2.30

H4 �2.19 �0.98

NH1 �2.23 �0.99

Ru(acac)3
c

CH3 �0.09 �0.04

H-β �1.05 �1.25

Ru(tfac)3
d

CH3 �0.09 �0.04

H-β �0.97 �1.17
a PBE computations. bData obtained at 25 �C. cData obtained at 32 �C.
dData obtained at 29 �C.



2187 dx.doi.org/10.1021/ct200143w |J. Chem. Theory Comput. 2011, 7, 2175–2188

Journal of Chemical Theory and Computation ARTICLE

financial support from theU.S. Department of Energy (Grant No.
DE-SC0001136) (BES Heavy Element Chemistry Program).

’REFERENCES

(1) Atherton, N. M. Ellis Horwood Series in Physical Chemistry; Ellis
Horwood, PTR Prentice Hall: New York, 1993; pp 46�50, 210.
(2) Eriksson, L. A. ESR Hyperfine Calculations. In Encyclopedia of

Computational Chemistry; Schleyer, P. v. R., Ed.;Wiley: Chichester, U.K.,
1998; pp 952�958.
(3) Rieger, P. H. Electron Spin Resonance. Analysis and Interpretation;

The Royal Society of Chemistry: Cambridge, U.K., 2007; p 3.
(4) Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of

Transition Ions; Clarendon Press: Oxford, U.K., 1970; pp 133�216.
(5) Pyykk€o, P. Theor. Chem. Acc. 2000, 103, 214–216.
(6) Kossmann, S.; Kirchner, B.; Neese, F. Mol. Phys. 2007, 105,

2049–2071.
(7) Autschbach, J.; Zheng, S. Annu. Rep. NMR Spectrosc. 2009,

67, 1–95.
(8) Moon, S.; Patchkovskii, S. First-principles calculations of para-

magnetic NMR shifts. In Calculation of NMR and EPR Parameters.
Theory and Applications; Kaupp, M., B€uhl, M., Malkin, V. G., Eds.;
Wiley�VCH: Weinheim, Germany, 2004.
(9) Rastrelli, F.; Bagno, A. Chem.—Eur. J. 2009, 15, 7990–8004.
(10) Arbuznikov, A. V.; Vaara, J.; Kaupp, M. J. Chem. Phys. 2004,

120, 2127–2139.
(11) Autschbach, J.; Pritchard, B. Theor. Chem. Acc. 2011, 129,

453�466.
(12) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys.

1993, 99, 4597–4610.
(13) van Lenthe, E.; van der Avoird, A.; Wormer, P. E. S. J. Chem.

Phys. 1998, 108, 4783–4796.
(14) Barone, V.; Cimino, P.; Stendardo, E. J. Chem. Theor. Comput.

2008, 4, 751–764.
(15) Neese, F. Coord. Chem. Rev. 2009, 253, 526–563.
(16) Hermosilla, L.; Calle, P.; Garca de la Vega, J. M.; Sieiro, C.

J. Phys. Chem. A 2005, 109, 1114–1124.
(17) Hermosilla, L.; Calle, P.; Garca de la Vega, J. M.; Sieiro, C.

J. Phys. Chem. A 2005, 109, 7626–7635.
(18) Remenyi, C.; Reviakine, R.; Arbuznikov, A. V.; Vaara, J.; Kaupp,

M. J. Phys. Chem. A 2004, 108, 5026–5033.
(19) Komorovsk�y, S.; Repisk�y, M.; Malkina, O. L.; Malkin, V. G.;

Malkin, I.; Kaupp, M. J. Chem. Phys. 2006, 124, 084108.
(20) Malkin, E.; Malkin, I.; Malkina, O. L.; Malkin, V. G.; Kaupp, M.

Phys. Chem. Chem. Phys. 2006, 8, 4079–4085.
(21) Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford,D.; B�erces, A.;

Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.;
Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer,
T. H.; Fonseca Guerra, C.; Ghysels, A.; Giammona, A.; van Gisbergen,
S. J. A.; G€otz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Gr€uning, M.;
Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.;
Jensen, L.; Kaminski, J. W.; van Kessel, G.; Kootstra, F.; Kovalenko, A.;
Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.;Michalak, A.;Mitoraj,
M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii,
S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodríguez, J. I.;
Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.;
Snijders, J. G.; Sol�a,M.; Swart,M.; Swerhone,D.; te Velde, G.; Vernooijs, P.;
Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.;
vanWezenbeek, E.M.;Wiesenekker, G.;Wolff, S. K.;Woo, T. K.; Yakovlev,
A. L. Amsterdam Density Functional; SCM, Theoretical Chemistry,
Scientific Computing & Modelling (SCM), Theoretical Chemistry, Vrije
Universiteit: Amsterdam, The Netherlands. (URL: http://www.scm.com.)
(22) Rastrelli, F.; Bagno, A. Magn. Reson. Chem.. 2010, 48 (S1),

S132�S141.
(23) Philipsen, P. H. T.; van Lenthe, E.; Snijders, J. G.; Baerends, E. J.

Phys. Rev. B 1997, 56, 13556–13562.
(24) Nichols, P.; Govind, N.; Bylaska, E. J.; de Jong, W. A. J. Chem.

Theor. Comput. 2009, 5, 491–499.

(25) Aquino, F.; Govind, N.; Autschbach, J. J. Chem. Theor. Comput.
2010, 6, 2669–2686.

(26) van W€ullen, C. J. Chem. Phys. 1998, 109, 392–399.
(27) Patchkovskii, S.; Strong, R. T.; Pickard, C. J.; Un, S. J. Chem.

Phys. 2005, 122, 214101.
(28) Autschbach, J.; Ziegler, T. J. Chem. Phys. 2000, 113, 9410–

9418.
(29) Autschbach, J.; Ziegler, T. J. Chem. Phys. 2000, 113, 936–947.
(30) Autschbach, J. J. Chem. Phys. 2008, 129, 094105 (and erratum,

J. Chem. Phys. 2009, 130, 209901).
(31) Autschbach, J. ChemPhysChem 2009, 10, 2274–2283.
(32) Schreckenbach, G.; Ziegler, T. J. Phys. Chem. A 1997, 101,

3388–3399.
(33) Bertini, I.; Luchinat, C.; Parigi, G. Prog. Nucl. Magn. Reson.

Spectrosc. 2002, 40, 249–273.
(34) Visscher, L.; Dyall, K. At. Data Nucl. Data Tables 1997, 67,

207–224.
(35) Andrae, D. Phys. Rep 2000, 336, 413–527.
(36) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
(37) Perdew, J. P. Phys. Rev. B 1986, 33, 8822–8824.
(38) Perdew, J. P. Phys. Rev. B 1986, 34, 7406.
(39) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999,

110, 5029–5036.
(40) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.
(41) Watson, M. A.; Handy, N. C.; Cohen, A. J.; Helgaker, T.

J. Chem. Phys. 2004, 120, 7252–7261.
(42) Bryce, D.; Autschbach, J. Can. J. Chem. 2009, 87, 927–941.
(43) Moncho, S.; Autschbach, J. J. Chem. Theor. Comput. 2010,

6, 223–234.
(44) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(45) Weltner, Jr.,W.Magnetic Atoms andMolecules; Dover Publications,

Inc.: New York, 1983.
(46) Butler, J. E.; Hutchison, C. A., Jr. J. Chem. Phys. 1981, 74,

3102–3119.
(47) Holmberg, R. W. J. Chem. Phys. 1969, 51, 3255–3260.
(48) Grein, F. Chem. Phys. 2004, 296, 71–78.
(49) Van Zee, R. J.; Ferrante, R. F.; Weltner, W., Jr. J. Chem. Phys.

1985, 83, 6181–6187.
(50) Knight, L. B., Jr.; Weltner, W., Jr. J. Chem. Phys. 1971, 55,

2061–2070.
(51) Knight, L. B., Jr.; Fisher, T. A.; Wise, M. B. J. Chem. Phys. 1981,

74, 6009–6013.
(52) Case, D. A. J. Chem. Phys. 1985, 83, 5792–5796.
(53) De Vore, T. C.; Weltner, W. J. Am. Chem. Soc. 1977, 99,

4700–4703.
(54) Belanzoni, P.; van Lenthe, E.; Baerends, E. J. J. Chem. Phys.

2001, 114, 4421–4433.
(55) Patchkovskii, S.; Schreckenbach, G. Calculation of EPR g-ten-

sors with density functional theory. In Calculation of NMR and EPR
Parameters. Theory and Applications; Kaupp, M., B€uhl, M., Malkin, V. G.,
Eds.; Wiley�VCH: Weinheim, Germany, 2004.

(56) Malkina, O. L.; Salahub, D. R.; Malkin, V. G. J. Chem. Phys.
1996, 105, 8793–8800.

(57) Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett.
1994, 221, 91–99.

(58) Malkin, E.; Repisk�y, M.; Komorovsk�y, S.; Mach, P.; Malkina,
O. L.; Malkin, V. G. J. Chem. Phys. 2011, 134, 044111.

(59) Hansen, J.; Autschbach, J.; Davies, H. J. Org. Chem. 2009,
74, 6555–6563.

(60) Kowalewski, J. Annu. Rep. NMR Spectrosc. 1982, 12, 81–176.
(61) Helgaker, T.; Jaszu�nski, M.; Ruud, K. Chem. Rev. 1999,

99, 293–352.
(62) Hrob�arik, P.; Reviakine, R.; Arbuznikov, A. V.; Malkina, O. L.;

Malkin, V. G.; K€ohler, F. H.; Kaupp, M. J. Chem. Phys. 2007, 126,
024107.

(63) Kaupp, M.; K€ohler, F. H. Coord. Chem. Rev. 2009, 253,
2376–2386.

(64) Vega, A. J.; Fiat, D. Pure Appl. Chem. 1972, 32, 307–315.



2188 dx.doi.org/10.1021/ct200143w |J. Chem. Theory Comput. 2011, 7, 2175–2188

Journal of Chemical Theory and Computation ARTICLE

(65) Kurland, R. J.; McGarvey, B. R. J. Magn. Reson. 1970, 2,
286–301.
(66) Mohr, P. J.; Taylor, B. N.; Newell, D. B. Rev. Mod. Phys. 2008,

80, 633–730.
(67) McConnell, H. M.; Robertson, R. E. J. Chem. Phys. 1958, 29,

1361–1365.


