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Abstract

The power of Markov random field formulations of low-

level vision problems, such as stereo, has been known for

some time. However, recent advances, both algorithmic and

in processing power, have made their application practical.

This paper presents a novel implementation of Bayesian be-

lief propagation for graphics processing units found in most

modern desktop and notebook computers, and applies it to

the stereo problem. The stereo problem is used for compar-

ison to other BP algorithms.

Keywords: stereo vision, image-based rendering, belief

propagation, graphics processing unit.

1 Introduction

This paper describes a programmable graphics hardware

implementation of belief propagation algorithms for stereo

vision. By stereo vision we refer to the classical dense

stereo problem of computing the depth or disparity of each

pixel in a reference image, by matching them with pixels

in supporting images of the same scene from different posi-

tions.

We represent a Markov random field (MRF) by a set Φ
of potential functions over cliques in an undirected graph

G = (V,E) where the set of nodes V each represent a ran-

dom variable and the edges E represent the dependencies

between pairs of these variables.

Typically for low-level vision problems a pairwise MRF

is used. The set V is comprised of two subsets: Y = {y}
represent observed quantities of the scene and X = {x}
represent hidden quantities about the scene, the value of

which we wish to infer. For each pixel p in the image there

exists an observed node yp and a corresponding hidden node

xp, with (xp, yp) ∈ E. We assume there are equal numbers

of hidden and observed nodes. The hidden nodes {x} are

connected in a grid lattice such that (xp, xq) ∈ E iff pix-

els p and q are non-diagonal neighbors in the image. We

now define the local evidence φ (xp, yp) and the compatibil-

ity matrix ψ (xp, xq) as the joint probability of an observed

node and its corresponding hidden node, and the joint prob-

ability of two neighboring hidden nodes, respectively. We

can write the overall joint probability of all nodes in V as

[3]

P (X,Y ) = cX,Y

∏

(p,q)∈E

ψ (xp, xq)
∏

p∈V

φ (xp, yp) (1)

where cX,Y is a normalization constant and (p, q) is short-

hand for the edge (xp, xq). We can also write the posterior

as

P (X|Y ) = cX|Y

∏

(p,q)∈E

ψ (xp, xq)
∏

p∈V

φ (xp, yp) (2)

where cX|Y =
cX,Y

P (Y ) is another normalization constant.

From here there are two possible objectives: maximizing

the marginal probabilities for each hidden node x using the

minimum mean squared error (MMSE) estimator or com-

puting the maximum a posteriori (MAP) estimator.

MRF formulations of stereo and other early vision prob-

lems have existed for some time, but the computational

and storage complexity make exact solutions infeasible; ex-

act solutions to both the MMSE and MAP estimators are

NP-complete, hence the need for approximation algorithms

such as graph cuts and belief propagation. As processing

power has increased, the approximation algorithms have be-

come practical for stereo.

Both graph cuts (e.g. [9]) and belief propagation (BP)

solve for the MAP estimator by energy minimization or di-

rect calculation of probability densities. Belief propagation

can also be used for the MMSE esimator [2, 7]. Tappen and

Freeman performed a comparison of both algorithms as ap-

plied to the stereo problem [7] for MAP estimation using

identical MRF parameters and found that results were gen-

erally comparable between the algorithms, although graph

cuts found lower energy configurations. However, these

lower-energy solutions were not necessarily closer to the



ground-truth energies. In fact, the ground-truth energy was

often significantly higher than both graph cut or BP due to

pixels that did not match any in the other image.

Each random variable Xp represented by the node xp

can take any one of L values or labels. In the case of

stereo, labels are disparity or depth levels. Let φp (f) =
φ (Xp = f, yp) be the probability that node xp is labelled f

and let ψpq (f, g) = ψ (Xp = f,Xq = g) be the probability

that node xp is labelled with f and neighboring node xq is

labelled with g, for f, g ∈ {0, 1, ..., L− 1}. BP estimates a

MAP labelling for the MRF by sending a message mt
pq from

every hidden node xp to each of its (hidden) neighbors xq at

every iteration t. Each message is a vector of length L, with

each component being proportional to how likely node xp

“believes” it is that node xq will be have the corresponding

label. BP Algorithms that perform MAP or MMSE esti-

mation are referred to as “max-product” and “sum-product”

respectively because of how the messages are updated. In

the max-product algorithm messages are updated in the fol-

lowing way [4, 7]

mt
pq (g) = κmax

f



ψpq (f, g)φp (f)
∏

s∈N(p)\q

mt−1
sp (f)





(3)

where κ is a normalization constant. After T iterations, the

beliefs are computed [4, 3]

bp (f) = κφp (f)
∏

q∈N(p)

mT
qp (f) (4)

and the MAP labelling for node xp is

fMAP
p = arg max

f
bp (f) . (5)

Messages in the sum-product algorithm are computed as

follows [3]

mt
pq (g) =

∑

f

ψpq (f, g)φp (f)
∏

s∈N(p)\q

mt−1
sp (f)

and the belief is computed the same as in the MAP estima-

tor.

Sun et al [4] achieve a speed-up the propagation step

by about 30-60 percent by observing that each row of the

compatibility matrix is a unique peak distribution and that

most messages for distributions with a unique peak. The

product of two unique peak distributions itself has a unique

peak, which lies between the peaks of the first two. This

fact can be used to eliminate unnecessary multiplications.

Felzenszwalb and Huttenlocher presented [5] three

algorithmic techniques to substantially improve the running

time of BP for early vision problems. First, they noted that

for early vision problems, such as stereo, the compatibility

matrix is a function only of the difference between the

two labels, as opposed to the actual values of the labels.

This leads to a message updating scheme, as described in

Section 2.1, that is linear in L instead of quadratic, as is

generally the case. Second, a four-connected image grid

graph is a bipartite graph. That is, X can be partitioned

into two subsets A and B such that any node xp ∈ A has

only neighbors xq ∈ B. Coloring X in a checkerboard

pattern and taking A to be one color and B as the other is

such a partition. Given the messages sent from nodes in

A at iteration t, we can compute the messages sent from

nodes in B at iteration t + 1, and in turn the messages sent

from nodes in A at iteration t + 2 without ever computing

the messages sent from nodes in A at iteration t + 1. This

means only half the messages need to be updated each

iteration. Third, they use a “multiscale” or hierarchical

scheme for coarse-to-fine MAP estimation. Messages are

typically initialized to zero, but if they were initialized

closer to their point of convergence, they should take less

time to converge. This is achieved by defining nodes in

level k + 1 to be the aggregation of four spatial neighbors

in level k. The BP algorithm is then iterated at higher levels

first, and the resulting messages are used as initial values

for the child nodes in next (lower) level.

All of these MRF formulations require the definition of

parameters, such regularization weight, the values of which

can dramatically affect the performance of the algorithm.

These values often vary significantly from data set to data

set, and must often be hard-coded by trial and error. In their

comparison of graph cuts and belief propagation, Tappen

and Freeman use ten combinations of three parameters

for each data set. Zhang and Seitz recently presented an

expectation maximization (EM) approach to estimating

these paramters [8].

Belief propagation is well suited for parallel execution

and hardware implementation [4]. While conceptually

message updates are performed in parallel, a single CPU

will perform the computations sequentially. Graphics

processing units (GPUs) are highly parallel single-

instruction-multiple-data (SIMD) processors built into

modern graphics cards along with up to 256 or even 512
MB of high-speed memory. Vertex and fragment progams,

or shaders, allow developers to perform custom, complex

arithmetic and texturing operations in hardware. GPUs

and their programmable interface have become so versatile

that much research has been done on performing general

purpose computation in graphics hardware (GPGPU). For

many such examples, the interested reader is referred to

http://www.gpgpu.org. Core computer vision algorithms,

such the Canny edge detector and feature extraction, have

been implemented for the GPU [10]. Gong and Yang use

image gradients in their real-time stereo algorithm for

the GPU [11] and Yang et al. presented a plane-sweep

algorithm on the GPU for real-time view synthesis [12].



Section 2 describes the proposed BP algorithm and its

implementation. Section 3 discusses the results obtained

and compares them to similar methods. Section 4 draws

some conclusions based on the results and discusses areas

for future work.

2 BP on the GPU

We propose a modification of the hierarchical or

“Multiscale” BP algorithm presented by Felzenszwalb and

Huttenlocher [5] for solving the stereo problem. Using

the stereo problem as illustrative example, we incorporate

edge and occlusion information to demonstrate the use

of additional cues and intermediate results within the

hierarchical BP algorithm. To preserve clarity, we consider

here only binocular, narrow-baseline stereo of rectified

images. To simplify the implementation slightly and

aide numerical stability we convert the problem from

max-product to min-sum by working with the negative

logarthim of the probabilities. Section 2.1 describes the

modified hierarchical BP algorithm while Section 2.2

details the GPU implementation.

2.1 BP Algorithm

In min-sum form we minimize the energy function

Γ (F) =
∑

(p,q)∈E

Upq (fp, fq) +
∑

p

Dp (fp) (6)

where F is a configuration or labelling with a label fp

for every node xp, and Dp (f) ∝ −ln (φp (f)) and

Upq (f, g) ∝ −ln (ψpq (f, g)) are the data cost and dis-

continuity cost, respectively. The message vector mt
pq is

defined over each label g by

mt
pq (g) = min

f



Upq (f, g) +Dp (f) +
∑

s∈N(p)\q

mt−1
sp (f)





(7)

where N(p) is the first-order neighborhood of xp (not in-

cluding yp).

After T iterations the belief vector bp is defined over

each label f by

bp (f) = Dp (f) +
∑

q∈N(p)

mT
qp (f) . (8)

The label fp corresponding to the minimal component of bp

is taken as the MAP solution for xp.

For the data cost Dp (f) we use the sum of squared dif-

ferences between the two images or SSD over a 3 × 3 win-

dow centered on the pixel p. In the hierarchical scheme, for

a node xk
b in the level-k MRF corresponding to block b of

22k pixels, Dk
b (f) =

∑

p∈bDp (f).
For the discontinuity cost Upq (f, g) we follow the trun-

cated linear model

Upq (f, g) = min (λ ‖f − g‖ , dpq) (9)

where λ is a scale factor and dpq is the truncation threshold

for discontinuity between pixels p and q. A discontinuity

cost function like this one allows messages to be computed

in two passes over the set of labels, making the complex-

ity of computing a single message linear in L as opposed to

quadratic as is the case in the standard BP algorithm [5].

The message passing iterations are divided into a for-

ward pass and a backward pass over the set of possi-

ble labels. In the forward pass, for each label f =
{0, 1, ..., L− 1} we compute

mt
pq (f) = {

hpq (f) If f = 0
min

(

hpq (f) ,mt
pq (f − 1) + λ

)

otherwise

(10)

where hpq (f) = Dp (f) +
∑

mt−1
sp (f). In the backward

pass, for each label f = {L− 2, L− 3, ..., 0} we compute

mt
pq (f) = min

(

mt
pq (f) ,mt

pq (f + 1) + λ
)

(11)

mt
pq (f) = min

(

mt
pq (f) ,min

g
hpq (g) + dpq

)

. (12)

At each iteration, we update in the above fashion only

the messages for the appropriate subset A or B of X based

on whether the iteration number t is even or odd, respec-

tively, as per the bipartite graph optimization described in

Section 1.

It has been observed [4, 1] that occlusion is a long-

ranging interaction beyond the capacity of a pairwise

MRF to model. Hierarchical BP was proposed [5] with

the express purpose of facilitating long-range flow of

information across the Markov network, and we exploit this

for the purpose of occlusion modelling in addition to faster

convergence. Tappen and Freeman found [7] that between

sixty and eighty percent of the energies of ground-truth

disparity maps for four standard stereo data sets were due to

occluded pixels. Since the correct labelling for these nodes

adds significant energy to the system, using the data cost

for these nodes is likely to adversely affect the solution.

The BP algorithm generally proceeds by iterating for

some number of iterations T and then selecting the label fp

that minimizes the belief vector bp for node xp. However,

following the backward pass we have all the information

needed to compute the belief vector and the minimizing

label. Thus, for an even iteration, after computing the

messages from nodes xq ∈ A for each label f , we compute

the belief for nodes xp ∈ B by (8) and the label fp with

minimal belief for xp. For an odd iteration, we analogously



compute the messages from xp ∈ B and then the belief for

nodes xq ∈ A and fq.

We thus have a intermediate disparity map after each

iteration, and we can use this to test for occlusion before

computing the next iteration of messages. If a pixel is

occluded (in the right image), we ignore its data cost by

multiplying by a visibility mask O. If pixel p is occluded,

O (p) = 0; otherwise O (p) = 1. Drouin et al observed

experimentally [1] that many stereo algorithms have a

tendency to overestimate the disparity of occluded pixels,

making close objects larger, and causing a misclassification

of pixels: occludees as occluders, occluders as regular

pixels and regular pixels as occludees. Drouin et al note

that this observation discourages the direct use of visibility

as a mask and compensate for this bias by labelling both

occluders and occludees as invisible. Hence, O (p) = 0 if

p either occludes another pixel or is occluded by another

pixel.

Given O is computed from an intermediate disparity

map, which contains errors, we use a simple, non-

exhaustive occlusion test, and recompute O every iteration.

Also note that as we perform this occlusion masking at

higher levels of the hierarchy as well as the full-resolution

grid, we do not want pixels to be masked-out permanently

as a result of occlusion involving a higher-level block to

which those pixels belong. The occlusion test is performed

for every hidden node xp at the current level of the hierar-

chy. The change in disparity from xp to its left neighbor xl

and to its right neighbor xr is computed as ∆− = fp − fl

and ∆+ = fp − fr where fl and fr are the disparity

levels computed at xl and xr in the previous iteration,

respectively. Let x− and x+ be the nodes |∆−| to the

left and |∆+| to the right of xp, respectively and let their

disparities be f− and f+. If f− + ∆− = fp and ∆− ≥ 1,

then pixel p is an occluder and O(p) = 0; if f+ + ∆+ = fp

and ∆+ ≤ −1 then pixel p is an occludee and O(p) = 0.

Otherwise, O(p) = 1.

2.2 Implementation

By storing the message data and the data cost in textures,

we can use fragment programs to perform the message

update scheme described in Section 2.1 in a much more

parallel way than in a CPU implementation. (Newer GPUs

can process as many as 16 or 24 fragments in parallel.)

Each message is a vector of length L, and each node

xp sends a message to each of its four neighbors. By

component-wise interleaving the messages from xp to each

of its neighbors we can store corresponding components

of those messages in a four-channel floating-point texture

element. Thus, the message data for a given label is stored

in a single texture. A one-channel floating-point texture is

used to store the data cost for each label.

The storage complexity of this algorithm is O (ML),
where M is the number of pixels, and for standard dense

stereo data sets this fits on newer graphics cards. The

bipartite graph optimization described in Section 1 allows

us to further cut in half the amount of message data that

must be kept in graphics memory by packing the message

data as shown in Figure 2.2.

We compute the forward and backward passes of the

message passing iterations described in Section 2.1 by

rendering a screen-aligned rectangle textured with the

necessary input fields. For each label in the forward pass,

for every pixel p and each of its neighbors q, textures

storing mt−1
pq (f), mt

pq (f − 1) and Dp (f) are applied and

a fragment program computes mt
pq (f) per (10) and stores

it in another texture. Figure 2.2 illustrates how the fragment

program computes the intermediate quantity hpq (f) in

(10).

Similarly, a fragment program is used to compute

(11) and (12) for each label in the backward pass from

textures storing mt
pq (f), mt

pq (f + 1), ming hpq (g) and

optionally dpq, which is otherwise constant. The texture

storing ming hpq (g) is written in the forward pass fragment

program using the ability of the GPU to render to multiple

textures at once.

A0,0 B0,0 A1,0
B1,0 A2,0 B2,0

B0,1 A0,1 B1,1 A1,1 B2,1 A2,1

A0,2 B0,2 A1,2 B1,2 A2,2 B2,2

B0,3 A0,3 B1,3 A1,3 B2,3 A2,3

A0,0 A1,0 A2,0

B0,0 B1,0 B2,0

A0,1 A1,1 A2,1

A0,2 A1,2 A2,2

A0,3 A1,3 A2,3

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3 B1,3 B2,3

Figure 1. Bipartite partitioning of the image
grid. Red arrows indicate messages incom-
ing to A0,1 and blue arrows indicate mes-
sages incoming to A2,2. The left side shows
how the nodes are located relative to one an-

other in the MRF, while the right side shows
how incoming messages from the previous
iteration are read with the bipartite optimiza-
tion in effect.

Figures 2.2 and 2.2 show how the forward pass fragment
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Figure 2. Combining incoming messages to
compute outgoing message. Beginning at
the top-left with the bipartite neighbor pattern
for the given node xp, messages from right,
up, left and down neighbors are read into four
separate registers, combined into one incom-
ing message register, which is then multi-
plied by the incoming channel mask matrix
and then added to the data cost.

program handles the texture addressing for mt−1
sp (f) under

the bipartite grid packing scheme by switching texture coor-

dinate offsets based on whether p is in an even or odd row in

the image. Other calculations are made in both the forward

and backward pass fragment programs to offset the texture

look-ups to handle multi-level MRFs within the same tex-

ture in the hierarchical version. By setting the viewport, we

ensure that only the appropriate rectangular region of the

output texture is updated for a given level k and label f .

3 Results

Figure 3 shows the results of using a five-level hierarchy

with six iterations at each level to compute the disparity

map for the Tsukuba data set [14], without incorporating

occlusion or edge information. Figure 4 shows results

for the same trial with occlusion and edge information

incorporated.

The running time for the GPU version of the modified

BP algorithm was compared to the original version without

edge and occlusion information [5] on a 3.4 GHz Pentium

4, using an NVidia GeForce 6800 GT with 256 MB of

video memory and a PCI-Express bus. Over twenty

trials, the original [5] averaged 1.189 s, while the GPU

version averaged 0.610 s. The GPU version with occlusion

handling averaged 1.661 s. Using the error measure BÔ

Figure 3. Disparity map generated for the
Tsukuba data set using a GPU implementa-

tion of the algorithm by Felzenzwalb and Hut-
tenlocher.

[13], the GPU version achieve an error rate of 3.6 (original

algorithm) and 3.3 (incorporating occlusion information)

percent erroneous disparities.

4 Conclusion

We have presented a novel implementation of a belief

propagation algorithm to run on programmable graphics

hardware, which applied to stereo vision produces fast, ac-

curate results. The algorithm incoporates side information

and intermediate results, in the form of edge and occlusion

information for stereo. The scalability of the algorithm

presented allows it to be applied other applications.

Areas of interest for future work are numerous. They

include the incorporation of information about the prior

distribution, and enumerating local minima using local

optimization method such as randomized gradient descent

and using the local minima as the labels for the belief

propagation algorithm. Incorporating parameter estimation

[8], improving the edge information used, using the sum-

product BP algorithm to compute the MMSE estimator

and applying belief propagation on the GPU to other

image processing and computer vision problems, such as

superresolution, would also be interesting areas of inves-

tigation. On going work involves applying this technique

to generating panoramic images from multi-sensor cameras.



Figure 4. Disparity map generated for the
Tsukuba data set using occlusion and edge
information. Computed entirely on the graph-
ics card.
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