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Hierarchical Characterization Procedures for Dimensional Metrology  
 

David MacKinnon
†
, Jean-Angelo Beraldin., Luc Cournoyer, and Benjamin Carrier  

Institute for Information Technology, National Research Council Canada, Ottawa, ON, Canada  

ABSTRACT  

We present a series of dimensional metrology procedures for evaluating the geometrical performance of a 3D imaging 

system that have either been designed or modified from existing procedures to ensure, where possible, statistical 

traceability of each characteristic value from the certified reference surface to the certifying laboratory.  Because there 

are currently no internationally-accepted standards for characterizing 3D imaging systems, these procedures have been 

designed to avoid using characteristic values provided by the vendors of 3D imaging systems.  For this paper, we focus 

only on characteristics related to geometric surface properties, dividing them into surface form precision and surface fit 

trueness.  These characteristics have been selected to be familiar to operators of 3D imaging systems that use 

Geometrical Dimensioning and Tolerancing (GD&T).  The procedures for generating characteristic values would form 

the basis of either a volumetric or application-specific analysis of the characteristic profile of a 3D imaging system.  We 

use a hierarchical approach in which each procedure builds on either certified reference values or previously-generated 

characteristic values.  Starting from one of three classes of surface forms, we demonstrate how procedures for 

quantifying for flatness, roundness, angularity, diameter error, angle error, sphere-spacing error, and unidirectional and 

bidirectional plane-spacing error are built upon each other.  We demonstrate how these procedures can be used as part of 

a process for characterizing the geometrical performance of a 3D imaging system.   

Keywords: Dimensional metrology, 3D imaging systems, statistical methods, geometrical properties, GD&T   

 

1 INTRODUCTION  

Dimensional metrology is concerned with all aspects of spatial measurements.  A variety of systems exist for generating 

surface models of structures; however, few standards exist to evaluate the geometrical performance of these systems.  

The NRCC-IIT 3D Imaging and Metrology Research Project was formed, along with other research projects, to work 

with other research institutes in Canada and around the world to participate in the process of defining and refining 

standards for 3D imaging systems.  The nomenclature and variable naming convention has been selected to be familiar 

to operators of the 3D imaging System Under Test (SUT) who use GD&T procedures.  This differs from the more 

common approach based on nomenclature used by those familiar with Computerized Measuring Machines (CMMs).   

The NRCC-IIT 3D Imaging and Metrology Research Project has adopted a hierarchical approach to artifact-based 

characterization and verification
[1]

 of the performance of 3D imaging systems.  This approach does not depend on 

characteristic values published by the equipment manufacturer but can be used to compare the performance of 3D 

imaging systems.  All testing procedures utilize reference surfaces that would be certified to have certain spatial 

characteristics, and each spatial characteristic has associated with it a measure of the uncertainty associated with that 

characteristic value.  Statistical analyses are used to verify the performance of the SUT.  Finally, testing procedures have 

been developed to minimize the number of depth maps generated by each scanner while maintaining statistical validity.   

The procedures presented in this paper represent the minimum required to quantify each characteristic being tested.  

These procedures would then be used as part of either a volumetric or application-specific analysis that has been adapted 

to each type of 3D imaging system.  Discussion of volumetric and application-specific analysis methods is beyond the 

scope of the current paper.  The ISO 17025
[17]

 recommends that test procedures should be selected to suit the application 

to which the SUT will be placed so not all tests presented here will be required for all systems.  Discussion is also 

limited to procedures that quantify the geometrical performance of the SUT.  Procedures to assess the optical properties, 

resolution, and model fidelity of the SUT are also under development but have not been included in this paper.  It is 

assumed that all tests are performed under constant and consistent environmental conditions (temperature, humidity, 

ambient illumination, etc.) whose contribution to the uncertainty budget is small enough to be neglected.   
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1.1 Terminology  

The terminology used in this report is consistent with the terminology defined in the VIM
[1]

, GUM
[2]

, and ASTM E 

2544-8
[4]

; however, care must be taken when using characteristic values published for individual 3D imaging systems 

because not all published characteristics adhere to the definitions in the VIM
[1]

, GUM
[2]

, or ASTM E2544-8
[4]

.  This 

section summarizes the ISO and ASTM definitions of the terms precision and trueness, and indicates how each is 

measured.  The term accuracy is not discussed in this document because it is an abstract, so unquantifiable, statistical 

concept.   

1.1.1 Precision  

Precision, illustrated in Figure 1, represents the closeness of agreement, or dispersion, of measured values and is 

quantified using measurement repeatability, intermediate precision, and measurement reproducibility.  Each term can be 

described as follows: 

Repeatability: Repeatability is evaluated under test conditions that do not change
[1][4]

.  Repeatability is evaluated by 

performing multiple repetitions of the test procedure.   

Intermediate precision: If most test conditions, such as the location and reference material remain the same but 

conditions like operator, calibration, or test date change then the term intermediate precision is used
[1][4]

.  

Intermediate precision is evaluated by performing the same test procedure using a different operator, 

calibration, test date, or a combination of these.   

Reproducibility: If the varied test conditions include different locations and test objects then the reproducibility of the 

system is being evaluated
[1][4]

.  Reproducibility is evaluated in collaboration with other laboratories who repeat 

the test procedure using their own staff and artifacts.   

If it can be assumed that the measured values follow a Gaussian distribution, then precision can be quantified as 

measurement uncertainty.  Measurement uncertainty is represented in dimensional metrology by the standard 

measurement uncertainty u [1][2]
, which is represented by the experimental standard deviation of the mean

[2]
.   

A distinction can also be made for 3D imaging systems between image-level and test-level uncertainty.  An image is 

composed of multiple measured results so the image-level uncertainty of these measured results compared to a surface 

model can be assessed.  We use N  to represent the number of measurement results within each image.  Each image can 

also be considered a single “measurement” of a surface so multiple images must be acquired to generate test-level 

measurement uncertainty.  Repeatability, intermediate precision and reproducibility are all quantified by test-level 

uncertainty, and we use K  to represent the number of images.   

1.1.2 Trueness  

Trueness, illustrated in Figure 1, is the closeness of agreement between a set of measured results and a reference value
[1]

, 

and is quantified by measurement bias
[1][4]

.  Also known as the systematic measurement error, measurement bias is a 

consistent, or systematic, deviation of the average measured result from a reference value
[1]

 so can only be quantified 

where a reference value exists.   

 

1.1.3 Metrological versus Statistical Traceability  

A characteristic value is considered to be metrologically traceable if an unbroken chain of calibrations, each with a stated 

uncertainty, exists between the indication and a primary standard
[1][17]

; although it is generally sufficient to establish a 

link to a national standard.  Metrological traceability of the results of a measurement device, such as a 3D imaging 

 
Figure. 1.  Graphical representation of precision (dispersion of measurement results about the average) and trueness 

(disparity between the average measurement result and reference value).   



 

 

 

 

system, would be formally established by an accredited laboratory when it is calibrated
[17]

 and is beyond the scope of this 

document.  We instead refer to the statistical traceability of a characteristic value when it is possible to establish the 

chain of uncertainties.  To be metrologically traceable, procedures capable to generating statistically traceable 

characteristic values would need to be performed in adherence to ISO 17025; a process that involves documenting the 

uncertainties, documenting the measurement procedure, performance of all procedures by an accredited laboratory, 

establishing the metrological chain to the SI, and documentation of the intervals at which calibrations of the SUT are 

performed
[1]

.   

Metrological traceability of a measurement instrument applies to two procedures: calibration and validation
[17]

.  

Calibration is the process of quantifying the relationship between a measurement results and one or more Certified 

Reference Value (CRVs), which can then be used to apply a correction to the measurement result to minimize the bias.  

Validation is the process of verifying that the measuring instrument is adequate for a given purpose, where verification is 

the provision of evidence that a set of specified requirements have been met
[1]

.  Where it is not practical to perform 

formal calibration we use the term optimization to refer to the process of identifying and correcting for biases.  An 

optimized SUT is considered to be calibrated only if the optimization process is metrologically traceable.   

2 HIERARCHICAL TESTING  

One of the primary areas of concern in dimensional metrology is characterizing how well a set of N  measured results 
3 NP  fit a Certified Reference Surface (CRS).  The set of measured results is then used to create a best-fitting 

surface model (BFSM) 3M  where M  is defined as a connected, orientable, two-dimensional manifold
[9]

.  The 

precision of the SUT is evaluated by first examining the measurement dispersion after creating M  with minimal 

constraints on the dimensions of M .  The trueness of the SUT is then evaluated by quantifying the bias relative to the 

CRV provided with each CRS.   

2.1 Form Precision  

Surface fit precision is quantified by determining the image-level variation of P  about M  using the appropriate surface 

model class.  Frequently, the surface model class is either a sphere or a plane, but other custom forms, referred to as 

freeform surfaces, can be used for specialized applications; however, the surface model class must be sufficiently 

defined so that P  can be assumed to be normally distributed about M .  Form is the lowest-order classification of 

surface topography, the other two being surface waviness (2
nd

 order) and surface roughness (3
rd

 to 5
th

 order)
[22][23]

.  

Discussion about the characterization of waviness and roughness is beyond the scope of this paper.  The amount of 

image-level variation of P  about M  is represented in two ways: form spread and form uncertainty.  Form spread is 

used to represent the size of the region within which most measurements about M  should lie.  Form uncertainty is the 

image-level uncertainty associated with the image defined by P .   

The precision characteristic value associated with the CRS must be verified to be much smaller than the precision 

characteristic value associated with the SUT.  For example, the VDI 2634 Part 2
[5]

 recommends in some tests that the 

precision characteristic value associated with the CRS be at least 5 times less than the associate characteristic value 

generated for the SUT.  This approach, however, ignores the effects of measurement uncertainty in both the test method 

and the instrument or method used to generate the precision characteristic value associated with the CRS.  In this 

document it is recommended that the precision characteristic value associated with the CRS must also be statistically 

verified to be significantly smaller than the characteristic value generated by the SUT for the CRS to be considered 

valid.   

Characterizing precision is highly dependent on the best-fit algorithm used to create M  so it is important that only well-

tested and widely-accepted fitting algorithms are used.  Where possible, we use the same algorithms the National 

Institute of Standards and Technology (NIST) used as reference methods in their Algorithm Testing System (ATS)
[11]

.   

2.2 Fit Trueness  

Once an appropriate surface model class has been identified, the trueness of the 3D imaging system can be evaluated for 

that surface model class.  Trueness is evaluated by determining whether the bias between a characteristic value and the 

appropriate CRV is small enough to be non-significant.  Each CRV is, in fact, a pair of values: one represents the 

reference value and the other represents the measurement uncertainty associated with the reference value.   



 

 

 

 

2.3 Surface Response  

In dimensional metrology, it is also important to characterize how the SUT responds to changes in surface features such 

as surface orientation, depth, curvature, edges and variations in surface reflectivity.  The effect of surface changes is 

quantified using a combination of detection limits
[2]

 and measurement uncertainty.  Surface response characteristic 

values can be traceable or untraceable depending how they are calculated.  Discussion about surface response 

characteristics is beyond the scope of this paper.   

3 SURFACE FORM PRECISION  

A common approach to surface fitting involves minimizing the 
2L , or Euclidean, distance between P  and M .  The 

2L  

distance is found by  

    Tiiiiii pppppp ˆˆˆ
2

 
 (1) 

where   Pzyxp iiii   is an 3N  vector representing a measured point in the 3-dimensional data space, N  is 

the number of measurement results, and Mpi ˆ  is the corresponding expected measured value in M .  The error model 

can be expressed as  

 
iii pp 
  ˆ  (2) 

where 31i


 is a normally-distributed random error vector with zero mean and covariance 
pS  .  The form of 

pS   

depends on the technology behind the 3D imaging system under evaluation.   

The surface forms can be divided into simple linear forms, simple nonlinear forms, and complex nonlinear forms.  

Simple linear forms, also known as planes, can be fit using a closed-form solution so are the simplest class of surface 

form.  Simple nonlinear forms are solved iteratively, with the speed of solution depending on how close the initial guess 

is to the final solution, and includes any other surface for which a derivative can be provided.  Complex nonlinear forms 

consist of all other surfaces that require an iterative search to find a BFSM but are too complex to easily calculate a 

derivative to speed the search.  Complex nonlinear forms can be fit using iterative closest point (ICP) procedures
[18][19][20]

 

but are not discussed in this paper.   

3.1 Simple Linear Forms: Planar Surfaces  

Let P  be a data set obtained by scanning a planar CRS and in which all edge-affected regions have been removed.  

Because P  should fit a planar-class surface model, M  can be obtained using a procedure referred to as orthogonal 

least-squares regression
[6][7][8]

 or Total Least-squares Regression (TLR)
[8][10]

.  An example of a CRS for which M  can be 

assumed to be a planar-class surface model can be seen in Figure 2(a).  If the residuals are normally distributed about 

M  then the approximation is also a maximum likelihood estimator (MLE), provided the measurement uncertainties for 

all axes are identically distributed
[8]

.   

The TLR solution can be obtained using a variety of approaches but the simplest and most widely accepted is Singular 

Value Decomposition (SVD).  The SVD approach is applicable only if the measurement uncertainty of the 3D imaging 

system can be assumed to be primarily along each of the three spatial axes, are statistically independent of each other, 

and the uncertainty is approximately the same along each axis.  Figure 2(b) shows that these assumptions may not be 

valid in some cases so more research is required into more robust plane-fitting methods.  SVD was the reference 

algorithm for planar fitting used by National Institute of Standards and Technology (NIST) in their Algorithm Testing 

System (ATS)
[11]

.  The TLR solution generates the normal n


 of M  from the eigenvector associated with the smallest 

eigenvalue of the SVD solution.  Combined with the centroid  zyxp   of P , the planar BFSM can be uniquely 

and completely described.   

3.1.1 Plane-fit Residual Uncertainty  

If the assumption that the residuals are normally-distributed holds true then precision to a planar CRS can be quantified 

using the Type A standard form uncertainty for a planar model, referred to here as the plane-fit residual uncertainty 



 

 

 

 

planeu .  We first find the signed orthogonal-fit residuals )( ppn ii   , then calculate the standard error of the 

estimate (SEE) for the planar BFSM using  

 

dim

1

2





  

N
s

N

i i

plane
 (3) 

where N  is the  number of measurements in P  [3] and 
dim  is the number of dimensions

[2][3]
, in this case 3dim  .  

Equation (3) represents the experimental standard deviation
[2]

 of the measurements about (orthogonal to) the planar 

BFSM
[3]

.  The plane-fit residual uncertainty is then obtained using  

 
N

s
u

plane

plane   (4) 

and is an unbiased estimator of the population standard deviation
[2][12]

.  Equation (4) somewhat overestimates the true 

planar measurement uncertainty because 
planeu  is a combination of the surface roughness and surface waviness of the 

CRS, and the measurement uncertainty of the SUT.  The planar measurement uncertainty is an example of image-level 

uncertainty.   

The concept of the plane-fit residual uncertainty is often unfamiliar to those who approach the assessment of 3D imaging 

systems from the perspective of GD&T.  For this reason, we do not include it in to the list of geometrical properties used 

to assess the SUT.  The plane-fit residual uncertainty is not itself sufficient to indicate the quality of the SUT unless it is 

provided with respect to one or more invariant reference quantities such as depth, lateral position, surface angle, surface 

reflectivity, etc., such as would be provided within a volumetric or application-specific analysis.  Moreover, 
planeu  is 

only valid if the best-fit plane was generated using TLR, limiting its applicability to data sets in which the residuals can 

be assumed to be normally-distributed.  As can be seen in Figure 2(b), this may not always be a valid assumption. 

Several less restrictive approaches to planar fitting are being explored including generalized TLR-ICP
[20]

, 

renormalization
[25]

,  and least-median squares regression
[16][26]

. 

 

3.1.2 Flatness  

People who are accustomed to working with GD&T quantify the precision of a planar surface using the Flatness 

metric
[21]

.  According to the ASME Y14.5, a surface is considered flat if all measurements lie within a tolerance region 

bounded by planes parallel to the best-fit median plane
[16]

; however, the TLR plane is generally easier to obtain for large 

  
(a) (b) 

Figure. 2.  Flatness.  (a)  Diffusely-reflecting planar reference surface for assessing Flatness.  (b) Jarque-Bera statistics for 

skewness, kurtosis and normality obtained from 7 triangulation-based laser range scanners.  Bars that extend outside the 

horizontal bounding lines deviate significantly from the assumptions required for TLR fitting. The top graph represents the 

assumption of symmetry, the middle the assumption of peakedness, and the bottom is the combined assumption of fitting a 

normal distribution.   



 

 

 

 

data sets so is used instead of the median plane.  Similarly, the precision with which the SUT is able to measure a planar 

surface can be represented by the Flatness characteristic F .  We define F  as the signed minimum distance between 
ip


 

and the BFSM  

    i
P

i
P trimmedtrimmed

F  minmax   (5) 

where 
trimmedP  is a subset of P  after no more than 3 measurement results per thousand with the largest absolute 

i  have 

been removed.  Flatness, therefore, represents the ability of the SUT to determine whether a planar surface destined for a 

particular application meets tolerance limits.  Equation (5) is equivalent to the flatness measurement error defined in the 

VDI 2634 Part 2
[5]

 and is a composite of the uncertainty introduced by the SUT and the roughness and waviness of the 

surface of the CRS.  Unlike 
planeu , F  is a non-parametric measure of precision so can be used with any plane-fitting 

method.   

If the residuals are normally distributed with negligible surface roughness and waviness then 
planesF 6 ; however, an 

examination of 7 triangulation-laser-based 3D imaging systems, shown in Figure 2(b), indicates that this assumption 

should be treated with caution.  Jarque-Bera (JB) tests
[14][15]

 of skewness (top graph), kurtosis (middle graph) and overall 

normality (bottom graph) indicate that most of the scanners tested deviate significantly from normality, as indicated by 

bars extending outside the horizontal bounding lines.  As a result, it should not be assumed that 
planes6  can be used to 

represent Flatness for all 3D imaging systems.   

Given a set  KFF ,,0   of F  values generated as part of a volumetric or application-specific analysis, the F  value 

associated with the SUT is  


 jK FFFF ,,max 0  , also known as the L  norm of the set.  It represents the 

maximum tolerance limits that can be assessed by the SUT under the conditions of the analytical protocol so indicates 

the performance of the SUT under worst-case operating conditions.  It is, therefore, important to assess the applicability 

of the analytical protocol to the expected operating conditions of the SUT before drawing conclusions about the probable 

performance of the SUT.   

3.1.3 Flatness Repeatability versus Reference 

The F  characteristic associated with a single scan has little meaning without information about the repeatability of F  

so multiple data sets 
jP  must be acquired under repeatability conditions to obtain the uncertainty 

Fu  associated with the 

F  value.  Moreover, for the CRS to be considered a useful reference, the certified Flatness of the CRS 
refref uF   must 

be significantly smaller than 
FuF   where  

 
K

F
F

K

i i  0  (6) 

is the average F  value and  

 
 

)1(

0

2




  

KK

FF
u

K

i i

F
 (7) 

is the repeatability of F .  Unlike 
planeu , 

Fu  is an example of test-level uncertainty.  The significance of the difference 

between F  and 
refF  can be evaluated using  

 
z

uu

FF
H

refF

ref 



22

0 :  (8) 



 

 

 

 

where 
0H  denotes the null hypothesis and z  is the z-statistic at a significance level   for a single-tailed test.  

Typically 05.0  is used so 65.1z .  If (8) is false then F  is significantly larger than 
refF  and the CRS is a 

valid reference.  In this case, 
FuF   is provided as the Flatness characteristic of the SUT under repeatability conditions 

to represent the expected range of F  values that could be generated for a given planar surface.   

It should be noted that z  best approximates the sample distribution if many images ( 30K ) were used to generate 

Fu .  If few images were used to generate 
Fu  then 

1, Kt  is a more appropriate statistic.  The z-statistic for a given   is 

smaller than the equivalent t-statistic so (8) would fail more often if z  is used.  Everywhere that the z-statistic is used 

in this document, the t-statistic should be substituted when the number of images used to generate the repeatability 

statistic of the characteristic value is 30 or less.   

3.1.4 Angularity  

In GD&T, Angularity A  is the Flatness of a planar surface 
angledP  under the constraint that it is at a specified angle   to 

a reference, or datum, plane 
datumP .  A datum is a surface feature that serves as a spatial reference for a characteristic 

value so 
datumP  is defined as a plane that serves as a reference planar surface on the CRS.  Angularity, Perpendicularity, 

and Parallelism are classes of Orientation tolerances, where A  is the Orientation in which the angle in radians between 

angledn


, the normal of 
angledP , and 

datumn


, the normal of 
datumP , is 20   .   

For 3D imaging systems, A  represents the effect of surface orientation on the F  value generated by the SUT.  When 

performing volumetric or application-specific analysis, 
datumP  will typically be fixed to some spatial position and 

orientation so that the 
planeu  of the reference is fixed.  The A  value associated with the SUT is the worst-case F  value 

generated using a volumetric or application-specific analysis in which only   is varied with respect to 
datumP .  Given a 

set  KFF ,,0   of F  values in which only   is varied, the A  value associated with the SUT is 


 jFA .   

Figure 3(a) shows a CRS that can be used to assess the Angularity of the SUT.  The CRS consists of a series of planar 

surfaces oriented at different angles to the central planar surface.  The CRS can also be used to assess the Angle Error of 

the SUT, discussed in Section 4.2, and the Unidirectional Plane-spacing Error, discussed in Section 4.3.   

 

3.2 Simple Nonlinear Forms: Spherical Surfaces  

Let P  be a data set obtained by scanning a spherical CRS and in which all edge-affected regions have been removed.  

Because P  should fit a spherical-class surface model, M  can be generated using a nonlinear least squares fit to a 

sphere.  In this case, the construction of M  is constrained only in that the distance from all points on M  to the center of 

the sphere are the same.  An example of a CRS for which M  can be assumed to be a spherical-class surface model can 

 

 

(a) (b) 
Figure. 3.  Angularity and Angle Error.  (a) Reference surface for assessing Angularity, Angle Error, and Plane-spacing 

Error.  (b) Illustration of how Angle Error is determined.   



 

 

 

 

be seen in Figure 4(a).  The CRS in Figure 4(a) can also be used to assess Diameter Error, discussed in Section 4.1, and 

Sphere-spacing Error, discussed in Section 4.2.   

3.2.1 Unconstrained Sphere Fitting  

Characterizing sphere fit precision requires performing sphere fitting with the radius unconstrained.  There is no closed 

form solution so this approach requires an iterative procedure initialized with an estimate of the location of the sphere 

centre  cccc zyxp ˆˆˆˆ   and the sphere radius estimate r̂ .  The objective is then to seek a sphere center 

 cccc zyxp   such that the objective function  

   


N

i ci rppf
1

2

2


 (9) 

is minimized.  The speed of convergence to an optimal solution depends on both how close the initial guess of 
cp


 is to 

the solution and on the search algorithm used to seek the solution.  Several variants of the search algorithm exist but the 

most popular is the Levenberg-Marquardt (LM) method.  The LM method is considered to be the standard method for 

solving nonlinear least-squares problems
[13]

 and is used by NIST in their ATS
[11]

.   

3.2.2 Sphere-fit Residual Uncertainty  

If the assumption that the residuals are normally-distributed holds true then precision to a spherical CRS is can be 

quantified using the Type A standard form uncertainty for an unconstrained spherical model, referred to here as the 

sphere-fit residual uncertainty 
sphereu .  Using the signed orthogonal-fit residuals rpp cii

ˆˆ
2
  , we calculate the 

SEE for the spherical BFSM as  

 

dim

1

2





  

N
s

N

i i

sphere
 (10) 

where 3dim  .  Equation (10) represents the experimental standard deviation of the measurements orthogonal to the 

surface of the spherical BFSM.  The sphere-fit residual uncertainty is obtained using  

 
N

s
u

sphere

sphere   (11) 

which somewhat overestimates the true spherical measurement uncertainty because 
sphereu  is a combination of the 

roughness and waviness of the surface of the CRS, and the measurement uncertainty of the SUT.   

 

3.2.3 Roundness  

The ASME Y14.5
[21]

 defines Roundness to represent the width of the region orthogonal to the surface of the sphere 

bounded by two spheres within which all measurements are found.  Similarly, we define the Roundness characteristic R  

as representing the region orthogonal to the surface of the spherical BFSM within which at least 99.7% of all 

measurements should be found.  The signed minimum distance between 
ip


 and the BFSM, R  is defined as  

    i
P

i
P trimmedtrimmed

R  minmax   (12) 

 
 

Figure. 4.  Roundness, Diameter Error and Sphere-spacing Error. (a) Ball-bar used to measure Roundness, Diameter Error, 

and Sphere-spacing Error.  (b) Illustration of how to measure Sphere-spacing Error.   



 

 

 

 

where 
trimmedP  is a subset of P  after no more than 3 measurement results per thousand with the largest absolute 

i  have 

been removed.  Equation (12) is equivalent to the probing error defined in the VDI 2634 Part 2
[5]

 and the VDI 2617 Part 

6.2
[24]

 but overestimates the true Roundness of the SUT because it is a composite of the uncertainty introduced by the 

SUT, and the roughness and waviness of the surface of the CRS.  If the residuals are normally distributed then 

spheresR 6 .   

3.2.4 Roundness Repeatability versus Reference 

For the CRS to be considered a useful reference, the certified Roundness of the CRS 
refref uR   must be significantly 

smaller than 
RuR   where  
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is the average R  value and  
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is the repeatability of R .  .  The significance of the difference between R  and 
refR  can be evaluated using the method 

described in Section 3.1.3.  If the null hypothesis is false then R  is significantly larger than 
refR  and the CRS is a valid 

reference.   

4 SURFACE FIT TRUENESS  

When CRVs are provided with a CRS, form trueness can be evaluated for the 3D imaging system.  Each CRV consists 

of a pair of numbers, one indicating the reference value and the second indicating the Type A standard uncertainty 

associated with the reference value.  In this section, we present diameter error, angle error, sphere-spacing error, and 

plane-spacing error.   

4.1 Diameter Error  

Characterizing the trueness of a sphere diameter estimate involves seeking only an estimate of the sphere center location 

that minimizes the Euclidean distance and, by extension, the spread of diameter values associated with each 

measurement result.  The process is similar to the unconstrained radius case described in Section 3.2.1 except that r̂  is 

not obtained during the search process.  The CRS shown in Figure 4(a) is an example of a surface that can be used to 

evaluate the sphere diameter trueness of a 3D imaging system.   

The sphere form spread is not a useful metric in the constrained radius case because the residuals are rarely normally 

distributed about 
refr .  Instead, we define the diameter error to be  

 
 

















  

ref

N

i ci

D r
N

pp
E 1 2

ˆ
2


 (15) 

where 
refr  is the CRS sphere radius.  A positive 

DE  indicates that the measured diameter is larger than 
refr2 .  The 

diameter error uncertainty is found using  

 222 refsphereD uuu   (16) 



 

 

 

 

where 
sphereu  is the sphere-fit residual uncertainty obtained using (11) and 

refu  is the uncertainty associated with the 

sphere radius CRV.  Equation (16) arises from the law of propagation of uncertainties
[2]

 and forms part of the statistical 

traceability chain
[1]

 from 
DE  through the CRS to the certifying laboratory.   

The significance of the difference between the measured and certified diameters can be evaluated using  
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where 
0H  denotes the null hypothesis and 

2z  is the z-statistic at a significance level of 2  for a two-tailed test.  

Typically 05.0  is used so 96.12 z .  If (17) is true then the measured sphere diameter is not significantly 

different than the certified sphere diameter.   

4.2 Sphere-spacing Error  

An extension of the known radius case is quantifying how accurately the 3D imaging system can measure the separation 

between sphere centers.  An example of a CRS that can be used to evaluate the sphere-to-sphere distance trueness of a 

3D imaging system can be seen in Figure 4(a).  Spheres are often used as reference points for localizing surfaces so the 

accurate measurement of the size of a structure depends on the ability to accurately and precisely measure the distance 

between sets of reference spheres.   

The measured sphere-to-sphere separation l  is obtained for multiple data sets 
jP  under repeatability conditions to obtain 

the test-level uncertainty 
lu  associated with l .  We combined the data sets to obtain 

lul   where  
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l
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is the average l  value and  
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is the repeatability of l .  We define the sphere-spacing error to be  

 
refSS llE   (20) 

where 
refl  is the CRS sphere-to-sphere distance.  The spheres-spacing error is analogous to the sphere-spacing error as 

defined in the VDI 2634 Part 2
[5]

 with the difference that the VDI requires only a single data set to be generated.  It is 

also similar to the error of indication of the sphere-to-sphere length of a ball-bar as described in VDI 2617 Part 6.2
[24]

.  

Neither document suggests using statistical testing to establish whether 
lul   is statistically distinguishable from 

refref ul  .   

Related to 
SSE , which quantifies the trueness of the sphere-to-sphere distance, is the sphere-spacing uncertainty

SSu , 

which quantifies the precision of the sphere-to-sphere fit.  The sphere-spacing uncertainty is found using  

 22

reflSS uuu   (21) 

where 
refu  is the uncertainty associated with the sphere-spacing CRV.  The significance of the difference between the 

measured and certified sphere-to-sphere distance then takes the form  
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If (22) is true then the measured sphere-to-sphere distance is not significantly different than 
refl .   

4.3 Unidirectional and Bidirectional Plane-spacing Error  

Planes are often used to evaluated characteristics such as depth or range resolution; however, the ability of the 3D 

imaging system to represent the distance between parallel planes must first be assessed.  An example of a CRS used to 

evaluate unidirectional plane-spacing error is shown in Figure 5(a).  In practice, two planes are rarely coplanar so the 

BFSM is modified so that both planes have the same normal vector.  This approach assumes that the planes are mostly 

coplanar and any non-coplanarity becomes part of the residuals.   

 

Given two planes 
nearP  and 

farP , we can find the centroids 
nearp  and 

farp  and use them to create a composite measured 

space  
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in which each plane has been translated to the origin independently.  The composite normal 
qn


, illustrated in Figure 

5(b), is then generated using the TLR procedure described in Section 3.1.  The distance between the planes along 
qn


 

becomes  
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where 1
2
qn


 if 

qn


 is a unit vector.   

Multiple data sets 
jP  must be acquired under repeatability conditions to obtain the test-level uncertainty 

du  associated 

with d .  We combined the data sets to obtain 
dud   where  
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d
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K

i i  0  (25) 

is the average d  value and  

 

 

(a) (b) 
Figure. 5.  Plane-spacing Error. (a) Example of certified reference surface for Plane-spacing Error using stacked gauge 

blocks.  (b) Illustration of how Plane-spacing error is determined.   
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is the repeatability of d .   

The unidirectional plane-spacing error is obtained using  

 
refUPS ddE   (27) 

where 
refd  is the CRV for the plane-to-plane spacing, illustrated in Figure 5(b).  The unidirectional plane-spacing 

uncertainty is found using  

 22

refdUPS uuu   (28) 

where 
refu  is the uncertainty associated with 

refd .  The significance of the difference between the measured and 

certified plane-to-plane distance can be evaluated using  
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If (29) is true then d  is not significantly different than 
refd .   

Bidirectional plane-spacing error 
BPSE  is similar to 

UPSE  except that it applies to 3D imaging systems, such as those 

employing a rotating bed, that can image planer surfaces with opposite surface normals.  For these systems, planes with 

the same and opposite normals must both be considered.  Equations (27) to (29) are applied to 
BPSE  and its associated 

uncertainty 
BPSu  the same way they were applied to 

UPSE  and 
UPSu .  Bidirectional plane-spacing error is similar to the 

error of indication of the length of a gauge block as described in VDI 2617 Part 6.2
[24]

; however, the VDI does not 

suggest using statistical testing to establish whether 
BPSBPS uE   is statistically distinguishable from 

refref ul  . 

4.4 Angle Error  

Angle error 
aE  characterizes the ability of the SUT to represent the angular difference between two planar surfaces.  

Figure 3(a) shows an example of a CRS that can be used to assess 
aE , Consider the two-plane system introduced in 

Section 3.1.4 in which the CRV of the difference in orientation between 
angledn


 and 
datumn


 is 
refref u , as illustrated in 

Figure 3(b).  Unlike the previously-presented trueness metrics, the normal of a plane is a test-level variable so the 

repeatability of the surface normal must be generated from a set  KPP ,,0   of images.  For each image, a pair of 

normals  
idatumangled nn


,  is generated and the angular difference, or inter-plane angle, between them is found using  
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from which  u  is calculated as the test-level mean inter-plane angle and associated uncertainty.  The angle error is 

then found using  

 
refaE    (31) 

to represent the signed different between the reference and measured angles.  The angle uncertainty is found using  

 22

refa uuu    (32) 



 

 

 

 

so that the significance of the difference between the measured and certified inter-plane angle can be evaluated using  

 
20 : z

u

E
H

a

a      .   (33) 

If (33) is true then the average inter-plane angle is not significantly different than the reference value.   

5 EXAMPLE  

We illustrate the application of these characteristics with a simple example.  We use a short-range (less than 1 meter) 

laser line scanner as the SUT and perform a limited assessment of the performance of the SUT.  All tests of significance 

were at a probability of less than 0.05.  The test procedure is as follows: 

 Plot F  as a function of depth z  within the expected operational depth-of-field DoF using the CRS shown in 

Figure 2(b) in which the planar surface normal is oriented along the z  axis and the CRS is centered in the field 

of view.  Three images are obtained at regular intervals through the DoF.   

 Repeatability of F  is assessed near the point of minimum F  based on 10 images.   

 Unidirectional Plane-spacing Error versus reference plane near the point of minimum  F  based on 10 images 

using the CRS shown in Figure 5(a).   

 The CRS used to assess F  is also used to assess A  and 
aE .   

 Plot R  as a function of z within the expected operational DoF using the CRS shown in Figure 4(a) in which 

the CRS is centered in the field of view.  Three images are obtained at regular intervals through the DoF.   

 Repeatability of R , 
dE , and 

SSE  is assessed near the point of minimum R  based on 10 images.     

 

The top graph of Figure (6)(a) shows the average F  value (solid line with dot markers) obtained through the operational 

DoF of 50  mm (closest to the SUT) to -20>  mm (farthest from the SUT).  Flatness varied from a minimum of 

00387.0186.0  mm at 26.28z mm to a maximum of 00472.0538.0  cm at 85.9z  mm.  In all cases, F values 

were significantly larger than 5 times the Flatness CRV so the CRS is considered to be sufficient to evaluate the Flatness 

of the SUT with an acceptable margin of error.   

  
(a) (b) 

Figure. 6.  Test results .  (a) Top graph: Flatness (dot markers) and Roundness (cross markers) versus Depth.  Bottom graph: 

Flatness versus Orientation taken at a point indicated in top graph with a circle.  (b)  Top graph:  Angle Error versus 

Orientation.  Bottom graph: Unidirectional Plane-spacing Error versus plane-to-plane separation with points not 

significantly different than the reference value (prob<0.05) indicated with circles. 



 

 

 

 

Angularity (solid line with cross markers), shown in the bottom graph of Figure (6)(a) , was assessed as the maximum 

F  at 26.28z  cm and was found to be 00526.0210.0  mm from a surface with orientation 40 degrees. All  F  

values used to assess A were significantly larger than 5 times their respective CRVs so the CRS was considered to be 

sufficient to evaluate the Angularity of the SUT with an acceptable margin of error.  Angle errors, shown in the top 

graph of Figure (6)(b) were significantly large for all orientations so recalibration may be required.   

The top graph of Figure (6)(a) shows the average R  value obtained through the operational DoF.  Roundness varied 

from a minimum of 00500.0149.0  mm at 41.17z mm to a maximum of 00260.0427.0  cm at 56.14z  mm. 

No Roundness CRV was provided for the CRS so the sufficiency of the CRS to evaluating the Roundness of the SUT 

could not be established.  Diameter Error was assessed at all 10 depth positions, but in all cases was significantly large 

so recalibration would be required.   

Sphere-spacing Error was assessed at all 10 points used to assess R , but in all cases was significantly large so 

recalibration would be required.    Unidirectional Plane-spacing Error was assessed by placing the reference surface near 

the point of minimum F  can calculating the error for 7 plane separation values.  Figure (6)(b) shows 
UPSE as a function 

plane separation with points in which the measured plane separation was not significantly different than the applicable 

CRV indicated with circles.   

In summary, the CRS shown in Figure 2(b) was sufficient to assess F of the SUT, which varied from 0.186 to 0.538 

within the operational DoF.  The CRS shown in Figure 4(a) was sufficient to assess the R  of the SUT, which varied 

from 0.149 to 0.427.   Sphere diameter, sphere-to-sphere distance, and plane orientation were found to be significantly 

different than the applicable CRV so the SUT may require recalibration. Plane-to-plane distance was found to different 

significantly than the applicable CRV in more than half the tested plane separations so the SUT may require 

recalibration. 

6 ADDITIONAL WORK  

This paper covered only a portion of the test suit designed for use with the Metrology Testkit.  The complete test suite 

includes measures of surface geometric, model fidelity, resolution, optical properties, and external frame of reference 

(EFOR).  Model fidelity refers to how closely a measurement model of the SUT matches the reference model (plane, 

sphere or freeform surface) of the CRS.  Resolution includes characteristics such as depth, structural, and intensity 

resolution.  Optical properties focus on the ability of the SUT to respond to different optical properties of the surface and 

include, but is not limited to, characteristics such as dynamic range and 
UPSE  as a function of surface reflectivity.  

EFOR applies when the SUT uses an external frame of reference when generating a measurement model and includes 

systems in which the motion of the data acquisition unit must be tracked.   

The test suit also includes procedures to measure SUT repeatability, intermediate precision, and reproducibility.  These 

procedures can be adapted for a general volumetric analysis of the SUT or tailored for application-specific analysis.  

Also not covered in this paper were procedures for characterizing the geometric properties of localization and profile.  

Localization refers to the ability of the SUT to localize spatial structures with respect to a reference structure.  Profile 

refers to the ability of the SUT to reproduce a freeform surface.   

7 CONCLUSION  

We have presented a series of dimensional metrology procedures designed to evaluate the geometrical performance of a 

3D imaging system, specifically flatness, angularity, roundness, diameter error, sphere-spacing error, unidirectional and 

bidirectional plane-spacing error, and angle error.  These characteristics, divided into surface form precision and surface 

fit trueness, are statistically traceability through a certified reference surface to a certifying laboratory.  The procedures 

were hierarchically organized so that the suitability of the reference surface could be assessed prior to performing error 

analysis.  Statistical methods were presented to first test whether flatness and roundness metrics are significantly larger 

than the equivalent for the certified reference surface, then whether diameter, sphere-spacing, unidirectional and 

bidirectional plane-spacing errors, and angle errors are not significantly different than zero.  
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