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Abstract 

This paper presents the artificial neural networks (ANN) as a promising analytical technique that can 

provide pavement engineers with adequate databases that contain the resilient modulus and permanent 

deformation properties of aggregate materials. Utilizing a laboratory-generated data set, consisting of 30 

test result entries, a number of ANN models were constructed and evaluated in this study. The laboratory 

database contained results that spanned a wide range of various factors that are known to influence the two 

mechanical parameters (resilient modulus, Mr, and percent permanent deformation, %PD) of the tested 

materials. The developed models showed good capabilities for estimating the two parameters at different 

states of stress, moisture contents, and percent fines passing sieve # 200 (0.075 mm mesh opening). The 

model that produced the least error in the value of the estimates was selected to expand the database to 

include conditions that were not covered in the laboratory study. Findings from this research clearly 

indicate the potential of ANN for expanding databases. 

Introduction 

The Urban Roads group of the National Research Council Canada has recently developed 

a new characterization scheme for determining the mechanistic properties of unbound 

materials (Khogali and Hussein, 2004). The established technique, named the Mr–PD 

test, goes beyond the conventional method of determining the resilient modulus (Mr) by 

concurrently measuring the percentage permanent deformation (%PD) that the material 

accumulates under dynamic loading. The two parameters obtained from the test define 

the full material response; thus making it an effective method for assessing the material’s 

potential performance under prevailing in-situ conditions. Obtaining the two parameters 

in the laboratory for a wide range of physical and loading conditions is an expensive and 

time-consuming undertaking. This paper presents an approach that circumvents the need 

for extensive Mr–PD testing by combining the use of limited laboratory-generated data 

with analytical modeling to produce adequate size databases. 

Artificial neural networks (ANN) are analytical techniques that mimic the process that 

the human brain uses to learn and make deductions. An ANN model consists of a number 

of neurons that are connected together in a way similar to the architecture of the human 

brain (Basheer and Hajmeer, 2000). These neurons, which reside in layers, are referred to 

as nodes. An ANN model is usually made up of three or more layers, with a specified 

number of nodes in each layer. The first layer contains the input parameters of the 

process that need to be modeled while the last layer contains the output (solution) 
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parameter(s) of the process. One or more layers known as hidden layers are usually 

incorporated between the input and output layers. The number of hidden layers as well as 

the number of their nodes is usually determined by trial and error to achieve an optimum 

performance of the built network. The optimization process involves training the built 

network and testing it using a data set of known input and output entries. 

There are many ways a neural network can be trained. The back propagation technique is 

one of the most popular processes and has been used in many fields of science and 

engineering such as construction simulation (Flood, 1990), constitutive modeling 

(Rogers, 1994) and structural analysis (Garrett et al., 1992). In a back propagation 

learning process, training is achieved by assigning random weights to the connections 

between neurons and calculating the output using the present connection weights. At a 

second stage, the process involves back propagating the error, defined as the difference 

between the actual and computed output, through the hidden layer(s). This procedure is 

repeated for all training inputs/outputs until the error obtained is within a certain 

tolerance. The resulting network with final connection weights is then saved to serve as 

the prediction model. The ANN model developed in this study utilized the back 

propagation process. 

Model structure and adequacy 

The ANN model developed in this study has four inputs, namely, percentage fines 

passing sieve #200 (0.075 mm), compaction density, moisture content and deviator stress 

that the material is subjected to. These factors were chosen because of their known 

effects on aggregate materials’ behaviour (Hicks, 1970; Rada and Witczak, 1981; Smith 

and Nair, 1973; Sweere, 1990; Dawson et al., 1996; Khogali and Hussein, 2004). The 

model output included the two mechanistic parameters; the resilient modulus and the 

percentage permanent deformation. To arrive at an optimized network, several ANNs 

were developed and their prediction capabilities were assessed using the percentage 

“Absolute value of the Relative Error” (ARE) defined in Equation 1. 

( )
%100

Actual

Actualpredicted

X

XX
ARE

−
=     (1) 

The laboratory data used to build and train the ANN models consisted of 30 data sets, 

representing different conditions of density (89–98% Modified Proctor Density, MPD), 

moisture content (3.5–7%), deviator stress (35–80 kPa), and percentage fines (2–16%). 

Initially, the search for an optimized model considered simple ANNs consisting of a 

single hidden layer. Results obtained indicated that regardless of the number of nodes 

used in the hidden layer, the developed models always gave good predictions of the %PD 

parameter (|ARE| < 15%) but not the Mr parameter (|ARE| > 35%). In a second stage of 

the analysis, the use of advanced models with two hidden layers was examined. 

Optimization during this stage involved varying the number of nodes in both hidden 

layers, considering one layer at a time. The use of eight nodes in the first hidden layer 
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produced robust models that consistently exhibited |ARE| values that are lower than 25% 

for both outputs (Mr and %PD). Keeping the number of nodes to eight in the first hidden 

layer, the search for an optimum number of nodes in the second hidden layer yielded the 

pattern displayed in Figure 1. From this figure, it is evident that using seven nodes in the 

second hidden layer yielded satisfactory results with |ARE| less than 15% for the two 

output parameters. Accordingly, the final model selected for further evaluation and 

expansion of the database consisted of the one that contained two hidden layers with 8 

and 7 nodes, respectively. 

Figure 1. Effect of number of nodes in second hidden layer on model accuracy. 

To ensure that the selected model had effectively learned the features contained in the 

original data set, the trained network was used to check known material behaviour related 

to variations in density, moisture content, percent fines, and deviator stress. Figure 2 

shows typical predictions of Mr obtained at different stress levels for a material with 7% 

fines content compacted to 90% MPD and 4.0% moisture content. The displayed trend 

indicates an increase in Mr with an increase in stress. This effect diminishes at high stress 

levels (≥ 70 kPa), where the resilient modulus reaches a plateau. The results of Figure 2 

clearly demonstrate the ability of the ANN model in capturing similar trends reported in 

the literature.  

Figure 3 displays the combined effect of fines and moisture content on %PD. An increase 

in either moisture content or percent fines produces a corresponding increase in the 

amount of permanent deformation. Results shown are for a material compacted at 92% 

MPD tested at 50 kPa. The results depicted in Figure 3 concurred with laboratory 

observations. For a given percentage of fines, low moisture contents have little influence 
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on permanent deformation. However, as the moisture content approaches the material 

optimum moisture content (5.5% for this example), the material starts accumulating 

permanent deformation at a high rate. As the moisture content is increased further beyond 

the optimum, a decrease in the rate of accumulation of permanent deformations is 

observed. It is also noted that the effect of fines content on permanent deformation is 

quite significant (e.g., the predicted %PD at 5.5% moisture for a material with 5% fines 

content is 0.67% compared with a %PD of 2% for a material with 12% fines content). 

Figure 2. Effect of deviator stress on resilient modulus.  

Population of database 

After assessing its adequacy, the ANN model was utilized to populate the original 

laboratory database. The process involved selecting specific increments within each 

range of the four input parameters and using the ANN model to predict values of the two 

outputs (Mr and %PD) at various combinations of the selected increments. This exercise 

resulted in expanding the original database from 30 to more than 10,000 data entries 

covering the ranges of input variables in increments of 1% for compaction density, 0.5% 

for moisture content, 1% for percent fines, and 5 kPa for deviator stress. An example 

illustrating the population of the database for a typical aggregate material containing 7% 

fines and compacted to a typical road specification of 95% MPD is given in Table 1. The 

example depicted in Table 1 covers the full range of moisture content (3.5–7%) and only 

two stress levels (40 and 80 kPa).  
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Figure 3. Combined effect of fines and moisture content on permanent deformation.  
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3.5 151 0.10 

4 142 0.12 

4.5 134 0.16 

5 124 0.27 

5.5 110 0.64 
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4 318 0.40 
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80 

7 103 2.72 

Table 1. Example showing population of database. 
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Conclusions 

An analytical study was carried out to examine the merits of using the artificial neural 

network (ANN) technique to alleviate the need for extensive testing to characterize 

aggregate materials. A small laboratory-generated data set, covering a wide spectrum of 

factors that are known to influence the materials’ resilient and permanent deformation 

properties, was used to build and train the ANN model. Results obtained showed that the 

ANN technique is a powerful tool that has the capability of capturing material behaviour 

trends observed in the laboratory and reported in the literature. Furthermore, the 

developed model exhibited satisfactory accuracy (≤ 15% Absolute Relative Error) in 

providing estimates of the resilient modulus and percentage permanent deformation. The 

tool was effectively utilized to expand the original database from 30 entries to more than 

10,000 entries. 
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