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Abstract: Integrated project systems hold the potential for improving the quality while 

reducing the time and cost of Architecture/Engineering/Construction (AEC) projects. A 

fundamental requirement of such systems is to support the modeling and management of 

the design and construction information and to allow the exchange of such information 

among different project disciplines in an effective and efficient manner. This paper 

presents a methodology to implement integrated project systems through the use of a 

model-based approach that involves developing integrated “smart AEC objects.”  Smart 

AEC objects are an evolutionary step that builds upon past research and experience in 

AEC product modeling, geometric modeling, intelligent CAD systems, and knowledge-

based design methods. Smart objects are 3D parametric entities that combine the 

capability to represent various aspects of project information required to support multi-

disciplinary views of the objects, and the capability to encapsulate “intelligence” by 

representing behavioral aspects, design constraints, and life cycle data management 

features into the objects. An example implementation of smart objects to support 

integrated design of falsework systems is presented. The paper also discusses the 
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requirements for extending existing standard data models, specifically the Industry 

Foundation Classes (IFC), to support the modeling of smart AEC objects. 

Keywords: integrated project systems, product models, interoperability, intelligent CAD 

systems, industry foundation classes, falsework systems, smart objects. 

   

INTRODUCTION 

Integrated project systems are a key tool to help the industry to meet the increasing 

demands to reduce projects cost and time, and to improve the quality of the facility 

design and construction process. A fundamental requirement of such systems is to 

support the modeling and management of the project information and to allow the 

exchange of this information among project participants efficiently and effectively. The 

main functionality to be rendered by an integrated project system involves building and 

maintaining an integrated project database. This integrated database would serve to 

ensure the consistency and integrity of project data, enable efficient data sharing and 

exchange throughout the project life cycle, support tools interoperability, and enable 

timely access to up-to-date project information. Integrated project systems would also 

help to streamline project activities by allowing downstream disciplines to access the 

design information to evaluate the design and to assess the impact of design decisions on 

downstream project activities early in the design process. 

AEC project information typically flows from the design phase to the construction 

phase to the facility management phase, with very costly and time-consuming feedback 

loops in the form of change orders and rework during the construction phase, or 

excessive maintenance work during the facility management phase. AEC objects 

typically involve large, complex, and dynamic information structures that are shared 

 2



among various project processes (e.g. design, specification, cost estimating, scheduling, 

etc.). A typical facility is comprised of a large number of such objects with distinct 

structural, functional, and behavioral characteristics, as well as complex dependencies 

and relationships. Different project disciplines usually have different views of the same 

object, and each view defines its own set of object attributes and methods. 

Due to the highly interdependent and multi-disciplinary nature of AEC objects, the 

unidirectional style of information flow has often resulted in inefficient communication 

and exchange of project information, and subsequently caused project cost and time 

overruns, reduced quality and maintainability, loss of design intent, and the inability to 

efficiently access and exchange objects information in a timely manner. Historically, 

AEC systems were not so much concerned about sharing or exchanging data across 

different project domains. The objects embedded in these systems have typically 

implemented functionality and behavior that focus squarely on the specific requirements 

of the supported domain, with little or no regard to the common characteristics that these 

very same objects share across different domains. A clear manifestation of this 

phenomenon is the very limited object semantics exchanged by these systems as the 

project progresses from the design stage to the cost estimating or scheduling processes. 

Although the processes for estimating the cost or planning the construction of specific 

AEC objects significantly draw on the design semantics of these objects, we find that 

most AEC systems either define this semantics from scratch using an idiosyncratic 

approach, or replicate much of the semantics that was previously embedded in a software 

tool that was used in an upstream project activity. Lack of a standardized way to define 

and exchange objects’ semantics was a major factor that contributed to this limitation. 
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Attempts have been made to overcome some of these limitations through the use of 

Artificial Intelligence (AI) and knowledge-based techniques to add more intelligence and 

semantics to the objects. During the last two decades, numerous schemes for 

systematizing and representing design knowledge, cognitive computational models, 

design theories, and frameworks have been proposed (e.g. Gero 2000). Despite the 

significant body of knowledge currently available in this area, these models rarely 

produced commercial software solutions to the AEC industry. Most of the developed 

systems were primarily experimental research prototypes that could not attract the 

interest of the industry. An outcome from this research is the realization of the 

importance that design objects should embed the functional and behavioral semantics 

needed to support other downstream project activities. The view that design systems are 

purely analytical or drafting tools that are used at later and more detailed stages of the 

project have been replaced with a more integrative view of the role that these systems can 

play in the overall lifecycle of the project.    

Parallel to these efforts, another thread of research was evolving with primary focus 

on the data modeling of AEC objects. Although this area started as a part of the AI 

approach, it became a separate research thread within the AEC IT research community. 

This research focused on the developing and implementation of standard data models to 

enable systems to share objects definition and semantics, and thus enable their integration 

and interoperability. Several data models for AEC objects were proposed. Examples 

include GARM, PISA, ATLAS, COMBINE, RATAS, OPIS, ICON, COMBI, and 

VEGA, just to name a few. (Eastman 1999) provided an excellent review of many of 

these models, which have, undoubtedly, contributed significantly to our ability to 
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represent AEC objects data. Many AEC models can now represent objects, their 

properties, and their inter-relationships in a comprehensive and accurate manner. Many 

efforts have been underway to standardize the representation of objects data to enable the 

exchange of project information in a standard and neutral format. 

In this paper, we present an evolutionary model-based approach that builds on past 

research and experience in AEC product modeling, geometric modeling, intelligent CAD 

systems, and knowledge-based design techniques. This approach involves the modeling 

and implementation of “smart” AEC objects. Smart objects are three-dimensional (3D) 

design entities that combine the capability to represent various aspects of project 

information required to support multi-disciplinary views of the objects, and the capability 

to encapsulate intelligence and “knowledge” by representing objects’ behavioral aspects, 

design constraints, and life cycle data management features. This approach aims to enable 

efficient execution of design activities, sharing and exchange of project information, 

interoperability of discipline-specific software tools, streamlining the project processes, 

and facilitating the communication of project information among project participants. We 

view this approach as a major enabler to support the development of next-generation 

modular, interoperable, integrated, and intelligent AEC systems.  The approach was used 

to implement an integrated software environment to support the design and management 

of falsework systems for highway bridge construction projects. 

 

STANDARD DATA MODELS AS ENABLING TECHNOLOGIES FOR 

INTEGRATED PROJECT SYSTEMS 
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Developing standard data models has been a major thrust for academic and industrial 

research during the past decade. Several efforts have been underway to develop standard 

data models to support interoperability among various software tools and the 

development of integrated project systems. Many of the object models have reached a 

high level of maturity in supporting a wide range of project aspects. Most notably, the 

Industry Foundation Classes (IFC), developed by the Industry Alliance for 

Interoperability (IAI) (IAI 2003), now represents the largest scale standard AEC data 

model. The IFC model defines an integrated schema that represents the structure and 

organization of project data in the form of a class hierarchy of AEC objects. The schema 

defines the main data objects, their characteristics, and their inter-relationships. The IFC 

class hierarchy covers core project information such as building elements, the geometry 

and material properties of building products, project costs, schedules, and organizations. 

Instances of the IFC are initialized, linked, and assembled by application software to 

create an object model of the building project. Generally, the information from many 

types of software applications can be mapped into IFC data files. In this way, IFCs 

provide a standard data model and a neutral file format that enables applications to 

efficiently share and exchange project information. 

The IFC model is the culmination of over a decade of research and development. The 

model has undergone four major releases, and many commercial software tools have 

already implemented IFC file exchange capabilities. The use of the IFC project data 

model could significantly improve the availability and consistency of project information, 

and would serve to integrate the multi-disciplinary aspects of the projects and facilitate 

the exchange of project information between function-specific software tools. As a result, 
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this would minimize the need for human intervention to re-interpret and re-format the 

data to marshal it between various tools, thus improving efficiency and eliminating the 

possibility of errors during data transformation. 

In the simplest form of interoperability, the project model is communicated from one 

application to another in a data file (e.g. using ISO 10303 Part 21 format). Upon receipt 

of the data file, the receiving software will re-create the project model for further 

processing. As an example of the current capabilities of IFC-based file exchange, the 

following scenario has been implemented using tools developed by the Building 

Lifecycle Interoperable Software group (BLIS 2003).  

• One tool is used to define the basic rooms and spaces of a building, including the 

names, areas, and other basic requirements.  The resulting preliminary space plan is 

exported to an IFC data file. 

• The IFC file is read into a two-dimensional technical drawing tool.  In this tool, 

previously identified rooms are arranged into an overall floor plan, and various 

design details such as windows, doors, plumbing and mechanical systems, are 

added.  The resulting design is then exported as an IFC file.   

• The IFC file is opened by an energy analysis tool. Although the information had 

previously been constructed in a 2D drawing package, all of the elements have 

height and elevation properties, and can form full 3-D models in the CAD system.  

This tool performs energy simulations, and allows design revisions to the HVAC 

components, with the results again exported to an IFC file. 
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• The IFC file is opened in a tool that generates a 3-D virtual reality view of the 

project, allowing the user to rotate, zoom in and out, and walk-through the building.  

This tool then runs a series of design checks; rules which look for specific code 

conformance issues.  Items that fail to pass the design checks, such as a room with 

insufficient fire egress provisions, will be highlighted in the 3-D model. 

• The IFC file is opened in a tool that itemizes all of the physical components in the 

building, and maps their properties to an estimating database, to build up a complete 

cost estimate for the project. 

This scenario describes the current state-of-the-art in IFC-based information 

integration. With the basic product modeling capabilities of the IFCs now reaching a high 

level of maturity and stability that has proved to be successful in many project scenarios, 

we are focusing on defining and developing ways to extend the model semantics and 

intelligence, data exchange mechanisms, project areas, and application domains. 

Specifically, we are working to extend the IFC model in several main directions:   

• Adding support for smart AEC objects. We are working to extend the IFC model to 

enable the encapsulation of objects intelligence and knowledge into the model.  

New IFC classes could be added to support smart AEC objects that represent richer 

semantics regarding objects behavior, management of evolutionary object data, and 

representation of the objects’ design rules, constraints, and procedures. This paper 

focuses on this research direction.  

• Moving beyond file-based data exchange. Current implementations of IFC-based 

integration rely almost exclusively on the exchange of IFC files.  This simple mode 
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of transferring data is very limited in its ability to manage a large pool of shared 

project information that is accessed concurrently by many users, or to enable 

transactional forms of data exchange between project parties and applications. The 

development of system architectures for distributed systems, such as IFC-based 

centralized object-oriented project repositories, is the next logical step.  

• Moving beyond ad-hoc transactions. While the IFC model standardizes the 

information content of an information exchange transaction, it offers no guidance to 

the context of these transactions.  It is still left up to the two parties exchanging 

information to come up with ad-hoc agreements about what data are being 

exchanged, for what business purpose, with what constraints and obligations on 

each participant, etc.  We are pursuing the formalization and possible 

standardization of data exchange protocols to support IFC-based transactions in 

distributed and heterogeneous environments.  

• Extending the IFC model to address project areas that are currently not supported. 

This could be achieved either by referencing and linking with other data modeling 

schemas (e.g. CIMSteel for structural design), by adding new property sets (e.g. to 

model specifications), or by introducing new IFC entities (e.g. facilities 

management classes).  

• Extending the IFC application domains. The IFC model specifically addresses 

building construction. Yet much of the content of the model is fairly generic and 

could be applied to other segments of the industry (e.g. bridges).  

The next section discusses the fundamental characteristics and role of smart AEC 

objects. Then, the implementation of smart AEC objects to support integrated design of 
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falsework systems is presented. Finally, the requirements to extend the IFC model to 

support the modeling of smart object are outlined. 

CHARACTERIZATION OF SMART AEC OBJECTS  

AEC objects typically involve complex information structures and complex relationships. 

Objects’ data typically span several domains and involve the structural, functional, and 

performance characteristics of the object. A typical facility is comprised of a large 

number of inter-related objects. Moreover, different project disciplines usually have 

different views of the same object. Each view can be described as a set of attributes and 

methods. A major requirement of an integrated project system is to develop an integrated 

data model that can support the representation of project information across various 

project disciplines and to enable efficient exchange and sharing of project information. 

The model-based approach is an object-oriented data modeling methodology that aims to 

represent and structure the project data around a set of parametric AEC objects and to 

organize these objects in a class hierarchy according to their relationships. 

Developing an integrated data model requires considering the interaction of different 

project disciplines at the object level. A typical AEC object model would encapsulate 

geometric and non-geometric data as well as methods to interface with other objects. It 

would also incorporate the knowledge required to synthesize and configure design 

alternatives. This integrated data model would enable fast generation of alternative design 

solutions. It would also enable capturing the information pertinent to different project 

views in one consistent and accurate representation that models the inter-dependencies of 

various model parameters. Object models explicitly define and capture the design 

rationale and any design assumptions. Constraints-based reasoning methods could also be 
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implemented to ensure that structural, functional, and performance constraints are 

satisfied and to ensure correct and realistic interaction among various domain objects.  

Smart AEC objects are semantically-rich, product-centric data models that include an 

AEC object or object assemblies that represent not only the data attributes of these 

objects, but also encapsulate objects’ behavior and intelligence in the form of behavioral 

attributes, object inter-relationships, design rules, and configuration constraints. These 

objects are software components that implement the structural, functional, and behavioral 

characteristics of domain objects and support the representation of various aspects of 

project information pertinent to these objects. Smart objects are represented by a set of 

parametric attributes, methods, and a set of rules and/or procedures. Smart objects are 

particularly suitable to support configuration design problems where objects could be 

fully described using a set of configuration parameters and the rules that specify 

configuration constraints on the object and on sets of dependent objects can be explicitly 

defined. Seven basic characteristics for smart AEC objects have been identified: 

First, a distinguishing characteristic of smart objects is their behavioral intelligence. 

Objects implement methods to ensure the integrity of their components and validity of 

their structural, functional, and behavioral parameters. The objects implement design 

rules to maintain the consistency of the design within each object and with regard to the 

interdependencies among various objects. For example, an object may adjust the values 

of some of its parameters based on changes in other parameters, or an object may re-

configure or re-locate some of its components in response to changes in other related 

objects. Objects also implement behavioral features to ensure intelligent and realistic 

interaction with other objects in the system. For example, re-configuring or re-locating 
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one object may automatically cause re-configuration or re-location of other objects. Also, 

smart objects could implement methods to enable objects to ensure the data consistency 

and correctness within the object and in relation to other objects. Objects’ methods can 

also implement functions to derive or calculate more information from the defined object 

parameters. For example, an object’s method may automatically perform a quantity 

takeoff from the object geometric representation. 

Second, a smart object can manage its evolutionary state throughout the project life 

cycle. Moving from conceptual to preliminary to final design stages, smart objects can 

keep track of their evolution history. Two possible evolution changes can be tracked: 

changes in object definition (or schema) and changes in object configuration (i.e. 

parameter values). Changes in objects’ schemas are tracked by maintaining a “version 

identifier” for each schema and defining methods to map between different schemas. 

Changes in object configuration are tracked by maintaining a list of the object “parameter 

set” along with a change version identifier and change information. Each object has a 

current “parameter set,” from which previous sets (or object states) can be navigated.   

Third, smart objects can be arbitrarily complex by aggregating or referencing other 

objects and defining the rules that describe the inter-relationships and interaction between 

these objects. The advantage of defining objects as compositional assemblies of more 

primitive objects is two-fold: higher level objects are more intuitive and easier to work 

with from a design viewpoint; configuration rules and design constraints can be enforced 

to control complex objects configuration at higher level objects and therefore, ensure the 

consistency and validity of the design at all design stages. 
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Fourth, unlike traditional CAD objects, smart objects’ parameters not only describe 

the geometry but also describe other non-geometric information such as material, 

specification, cost, construction methods, etc. Smart objects integrate project information 

by representing and considering the interaction of different project disciplines at the 

object level. That is, the object model will glue together different project views pertaining 

to the object and enable interoperability of function-specific software tools addressing 

these views. Using the same object model, different project disciplines can access data 

relevant to their domains. Also, integrating different project views would enable 

developing methods to automate mapping between these views (e.g. automatically 

performing quantity takeoff). 

Fifth, three-dimensional geometric representation of smart objects can be constructed 

given the set of object geometric parameters. Addressing configuration design problems 

requires accurate geometric representation of objects and their spatial relationships (e.g. 

for objects layout, interference detection, etc.). The use of 3D models would provide a 

wide range of benefits to various project processes. Project team members can more 

easily review and evaluate the design details and the construction process from multiple 

perspectives to identify potential problems. This could significantly improve the 

communication and collaboration among project teams. 3D models would also enable 

effective understanding of project information through visual interaction with and 

manipulation of design entities. The construction team can evaluate the constructibility of 

the design, and every design discipline team can assess the impact of their design 

decisions on other teams.  
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Sixth, smart objects can support and potentially automate many project activities such 

as quantities takeoff, automatic generation of analysis models and FE mesh for structural 

analysis, and checking interferences with other objects.  By exploiting the dependencies 

among various parameters, changes can be propagated in such a manner to ensure that the 

object data remains up-to-date and reflects the current status of the project. 

Seventh, smart object models can serve as the building blocks for knowledge-

intensive design environments (Tomiyama and Mantyla 1998). Smart objects models 

support attaching computable or non-computable forms of objects-related knowledge. 

Computable knowledge can be represented declaratively in the form of production rules 

(e.g. configuration constraints or design rules) or procedurally in the form of 

computational methods (e.g. for calculating structural responses or materials quantity). 

Non-computable knowledge, such as unstructured documents, can also be linked to 

specific object parameters. Making object-related knowledge accessible through the 

object model could be used to automate the computation of some objects parameters and 

to provide an efficient method to index and access project documents. This will also 

allow the use of the object model to capture and represent the design knowledge and 

expertise in the form of object-centered design knowledge bases (Yoshioka et al 1998). 

As design becomes increasingly knowledge-intensive, the need to support the capturing, 

representation, and use of design knowledge becomes even more critical. 

 

IMPLEMENTATION OF AN INTEGRATED FALSEWORK DESIGN SYSTEM 

USING SMART OBJECTS 

 14



A prototype software environment was implemented using the smart objects concept to 

support the integrated design, layout, structural analysis, cost estimating, and erection 

planning of falsework systems used for constructing cast-in-place concrete box girder 

bridges. Falsework objects can be thought of as specialized assemblies of the IFC 

columns and beams elements that are designed and erected to satisfy structural, schedule, 

and site constraints, among others. The software was implemented using the ObjectARX 

C++ class library that extends the AutoCAD environment (AutoDesk 1999). The system 

was developed in collaboration with Hua Construction, Inc., a Taiwan-based falsework 

subcontractor. 

Falsework systems are complex structures in terms of the number of geometric and 

functional parameters that a designer must consider in order to develop a structurally safe 

and economical system. Falsework systems are typically designed and erected by a 

specialty contractor who needs to share and exchange project information with both 

design and construction teams. The input to this process typically consists of the bridge 

design documents, site topography (including soil data), and the construction schedule. 

The falsework subcontractor team will then define the design parameters along with the 

specification, cost estimating, and erection planning to meet the bridge design and 

construction schedule constraints. This process typically requires several iterations and is 

subject to stringent code requirements to ensure the stability and safety of the system.  

To demonstrate the importance of sharing an integrated data model in a typical 

falsework project, let us consider the following scenario. Suppose that design changes 

have modified the layout or configuration of some falsework components. The objects 

representing these components need to re-build the structural model and perform 
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structural analysis on the new model, recalculate the quantities to be used for cost 

estimating, or perform checks to ensure that the new changes are within the code limits. 

By encapsulating the data relevant to each of these domains in the objects, it would be 

possible to automate and support inter-related project tasks across multiple domains 

while ensuring the consistency and integrity of the project data. Figure 1 demonstrates the 

role of smart objects in integrating falsework design and erection processes. 

{Insert Figure 1 here} 

Falsework smart objects were developed to support efficient design as well as the 

sharing and exchange of project information between various project disciplines. The 

objects are implemented as ARX classes. These objects included the falsework segments, 

towers, beams, and grids (Figure 2). The object model encapsulated rules to ensure the 

consistency and correctness of the design throughout the project stages. A falsework 

system is comprised of a series of straight and/or curved segments. Each segment 

contains an array of towers positioned at regular or irregular grid points. In laying out a 

segment, the user specifies the segment parameters which include length, width, start and 

end offsets, number and spacing of towers in each direction, the dimensions of each 

tower, and the ground elevation and top elevation at the start and end of the segment. The 

user can define any number of segments. The user can also modify segments’ global 

properties (e.g. its elevation) as well as the location, height, and dimensions of individual 

towers. Dialogs for editing the grid dimensions and towers configuration are also 

implemented. The user can also place layers of beams longitudinally or transversely in a 

segment. The system has been developed to primarily support the following use cases: 1) 

Create, configure, and modify falsework segments; 2) Perform structural modeling and 
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analysis; 3) Produce layout drawings; 4) Produce bill of materials and cost estimates; 5) 

Planning and visual simulation of the erection schedule in relation to the bridge 

construction schedule; and 6) Edit the object library. 

  

{Insert Figure 2 here} 

A number of different configurations for each object are stored in a library from 

which a falsework designer would select the components and configurations that are most 

suitable to the project at hand. Designers then specify values for the pre-defined objects 

parameters. Based on these values, the objects determine their 3D geometric 

configuration and can perform several functions such as generating a bill of materials for 

cost estimating (Figure 3) or a finite element model to check the stability against different 

loading conditions. Designers position the objects in their exact location by referencing 

points on the bridge structure or on the site. Figure 4 shows an example of a complete 

falsework system. Objects’ behavior was modeled and implemented in the form of 

methods to control their response to user modifications in order to ensure that the objects 

will remain in a consistent and valid state and that the relationships to other objects are 

maintained. Designers can modify different objects (e.g. tower heights) and the impact of 

any changes is automatically propagated by the object methods to other dependent 

objects (e.g. beams layers).  

{Insert Figure 3 here} 

Objects also implemented methods to store, access, and manage the multi-disciplinary 

project information. By encapsulating the data relevant to different project disciplines, it 
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would be possible to automate and support inter-related project tasks across multiple 

disciplines while ensuring the consistency of the project data. For example, if the objects’ 

configuration changes, the objects can modify the structural model and re-perform 

structural analysis, recalculate the quantities to be used for cost estimating, or perform 

checks to ensure that the new changes are within the code limits. 

{Insert Figure 4 here} 

Components of the falsework systems are represented, organized, and managed as 

parts of an integrated object model. Users could navigate through the object model using 

the “project explorer” interface (Figure 5). This interface provides a hierarchical view of 

various pieces of project information such as the falsework product model, schedule, cost 

estimate, and documents. Users could associate pieces of information between different 

views to indicate “relationships” between different project aspects.  For example, users 

could drag schedule activities and drop them onto falsework components to indicate that 

a particular component is dependent on one or more activities. As a result, a 4D 

simulation of the erection process could be automatically generated. 

{Insert Figure 5 here} 

 

EXTENDING IFC SCHEMA TO SUPPORT MODELING OF SMART OBJECTS  

Currently, the IFCs are used to exchange the form and structure of a project model 

between applications.  Each application is responsible for implementing the appropriate 

object behaviour; there is no notion of exchanging or standardizing this behaviour.  Yet, 

users might reasonably expect these objects’ behaviour to be similar between different 
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applications.  Extending the IFCs so that they could incorporate object behaviour within 

the model could capture this notion of common object behaviour, and may improve the 

efficiency of software development since the behaviour would not need to be re-created 

independently within each application.  

While the current IFC model does not address behavioral or functional aspects of the 

objects, traditional knowledge-based techniques do not address the modeling of the multi-

disciplinary objects’ data in a complete and comprehensive manner. Representing a 

hybrid of the two approaches, smart objects are positioned to play an integrative role that 

would build on the strength of both approaches to allow software tools to share and 

exchange semantically rich AEC object models. By supporting the capabilities of smart 

objects in the IFC model, systems will no longer merely represent and exchange objects’ 

static data, but more knowledge and semantics about design, including behavior, objects’ 

relationships, design rules, and constraints will also be represented and exchanged. 

Extending the IFC model to support smart objects would enable the addition of more 

semantics (i.e. behavior and knowledge) to IFC objects and allow the definition of 

application-specific custom complex objects that are composed of more primitive objects. 

The IFC model defines a flexible, yet powerful, mechanism that allows extensions to 

the model through the use of the IfcPropertySet entity. An IFC property set could be used 

to define a set of properties (IfcProperty entities or other nested IfcPropertySet entities), 

and can be linked to any number of IFC objects using the IfcRelAssignsProperties entity. 

Representing and linking objects’ behavior could be supported following a similar 

approach. A new IfcBehaviorDef entity could serve as a container for object-related 

behavioral if-then rules as well as procedures, both of which are supported by the 
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EXPRESS language. IfcBehaviorDef entities can be linked to any number of IFC objects 

using another entity called IfcRelAssignsBehavior. 

Objects’ behavioral constraints can be modeled more naturally using if-then 

production rules. In a typical IfcBehaviorDef entity, rules may reference the attributes of 

the same object or other related objects. The rules could be used to enforce design 

constraints to maintain the consistency and correctness of the design. For example, in the 

falsework model described in this paper, a constraint was implemented to specify a 

relationship between a tower type and its minimum dimensions, and the change of a 

tower type would require changing certain dimensions. Also, changing the towers height 

would require changing the supported beams elevation. Rules could be formulated to 

enable automatic propagation of these changes. For example, a rule stating that “if tower 

type is X then dimension Y = Z” could be used to represent the dependency between a 

tower type and dimensions, while a constraint stating that the beams’ elevation equals the 

towers’ top elevation could be used to propagate the second change.  

Rules could also be used to enforce spatial constraints among different objects (e.g. 

adjacency or connectedness constraints). Changing the location of an object may require 

that other related or connected objects be relocated according to certain rules. For 

example, moving the falsework towers would also require moving the supported beams 

in order to maintain the correctness of the system. Supporting the propagation of this type 

of change could be supported by adding an entity that represents “anchors” between 

different objects as well as a mechanism or “reactors” to detect that changes have 

occurred in some objects. Anchors can be thought of as another form of relationships 

between objects that indicates “spatial-dependencies” between objects. 
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The definition of objects’ behaviour would typically become part of the IFC model-

development process.  The domain and modelling experts that initially define the IFC 

objects would define the constraints and procedures, which would then be available for 

use by software developers and end users. 

There are several possibilities for how these procedures and constraints in object 

behaviour definitions might be executed by applications.  For example, each application 

could implement or interface with a rule-processing engine, possibly as part of a standard 

IFC toolkit.  Alternatively, procedures could be defined in behaviour sets by their 

interface (i.e. signature) and implemented using standard component interfaces (e.g. a 

standard COM interface), or using web services.  Applications could then interact with 

standardized component libraries or web services to execute these procedures. For 

example, a “CalculateFalseworkBillOfMaterials” procedure may be implemented in a 

standard interface (e.g. IFalseworkBillOfMaterials), or as a web service. Other 

procedures could be implemented to check some object values or to retrieve some data 

(e.g. form an online product repository).  

Another possible extension is the capability to represent arbitrarily complex object 

assemblies where an object can be composed of more primitive objects. For example, a 

tower object is composed of a set of column and beam primitives. IFC models a set of 

pre-defined complex or container objects (e.g. building, building storey). A new 

IfcProduct-derived class (e.g. IfcComplexObject) could be used to support this extension. 

This class could define a list of references to its component entities. This would enable 

the modeling, managing, and accessing arbitrarily complex and hierarchical objects as 

one unit. To define the inter-relationships among the set of component objects, an 
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IfcBehaviorDef entity could be used to specify the rules of interaction between these 

objects. Similarly, the IfcBehaviorDef object could then be linked to the 

IfcComplexObject instance using an IfcRelAssignsBehavior object. 

Objects are initially defined using a simple set of parameters and evolve into a more 

comprehensive and detailed representation as more design iterations are performed. The 

IFC model represents a static snapshot of objects data with no ability to record or track 

changes that the object has gone through during various design stages. The IFC model 

defines an entity, IfcOwnerHistory, which supports tracking the agent who performed the 

change. However, it does not define any mechanism to track the changes themselves. An 

important feature of smart objects is their ability to record different changes that occur to 

the object state during different design stages. To add the capability to track and manage 

evolving objects’ data, a mechanism for representing and managing the evolution and 

change of the objects’ data sets is required. One possible approach would involve the use 

of property sets to track the current version and the history of changes in each object. For 

each IFC object, a corresponding version property set that defines the object attributes 

will be added. In addition, the property set will define an attribute for the version number, 

an attribute to reference the previous version property set, if one exists, along with 

attributes that record change information (e.g. cause for change, time and date, etc.). 

Using this capability, the IFC model will evolve with the project while representing a 

complete recording for design changes throughout the project. Such a model could be 

later transferred and used to support the facility management activities. 

 

SUMMARY AND CONCLUSION 
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This paper presented a model-based approach that employs “smart objects” to implement 

integrated project systems. Smart objects are an evolutionary step that builds on almost 

two decades of research and experience. The paper discussed the main characteristics of 

smart AEC objects and presented the requirements to extend the IFC data model to 

support the modeling of smart objects. Besides serving as data models that integrate 

multi-perspective project views and encapsulate behavioral object intelligence, smart 

objects also enable the exchange of semantically-rich data models between different 

software tools.  

Smart objects could potentially offer many benefits to the design process: (1) 

Modeling behavioral aspects within individual objects as well as between inter-dependent 

objects, and integrating those aspects with the structural and configuration aspects of 

AEC objects; (2) Automating routine decisions and design checks that could be based on 

geometric or non-geometric objects parameters; (3) Automating propagation of changes 

and enforcing design constraints and rules to maintain the design consistency and 

validity; (4) Integrating design with other project activities (scheduling, estimating) and 

thus facilitating the information sharing across project activities; (5) Reducing the time 

needed to design complex objects and allow designers to focus on design issues and to 

perform quicker design iterations; (6) Provide feedback to designers if any constraints or 

requirements are violated; and (7) Capturing and encapsulating design rationale into these 

objects. The prototype falsework design system has demonstrated the utility and potential 

of the smart objects approach to support the development of integrated project systems. 

The same approach could be utilized to develop other similar systems within the scope of 

a specific project discipline or across several disciplines.  
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Figure 1: Integration of falsework project processes using smart objects 

 

 26



 

 

Figure 2: Automated Layout and Placement of Falsework Towers and Beams  
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Figure 3: Automatically Generated Bill of Material for an Example Falsework System 
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Figure 4: Views of an Example Falsework System  
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Figure 5: Project Explorer, Product Model, and Process Model of an Example Falsework 

System 
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